
Vol. 30 ISMB 2014, pages i175–i184
BIOINFORMATICS doi:10.1093/bioinformatics/btu290

MIRA: mutual information-based reporter algorithm for

metabolic networks
A. Ercument Cicek1,*, Kathryn Roeder1 and Gultekin Ozsoyoglu2

1Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
15213 and 2Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve
University, Cleveland, OH, USA 44106

ABSTRACT

Motivation: Discovering the transcriptional regulatory architecture of

the metabolism has been an important topic to understand the impli-

cations of transcriptional fluctuations on metabolism. The reporter

algorithm (RA) was proposed to determine the hot spots in metabolic

networks, around which transcriptional regulation is focused owing to

a disease or a genetic perturbation. Using a z-score-based scoring

scheme, RA calculates the average statistical change in the expres-

sion levels of genes that are neighbors to a target metabolite in the

metabolic network. The RA approach has been used in numerous

studies to analyze cellular responses to the downstream genetic

changes. In this article, we propose a mutual information-based multi-

variate reporter algorithm (MIRA) with the goal of eliminating the fol-

lowing problems in detecting reporter metabolites: (i) conventional

statistical methods suffer from small sample sizes, (ii) as z-score

ranges from minus to plus infinity, calculating average scores can

lead to canceling out opposite effects and (iii) analyzing genes one

by one, then aggregating results can lead to information loss. MIRA is

a multivariate and combinatorial algorithm that calculates the aggre-

gate transcriptional response around a metabolite using mutual infor-

mation. We show that MIRA’s results are biologically sound,

empirically significant and more reliable than RA.

Results: We apply MIRA to gene expression analysis of six knockout

strains of Escherichia coli and show that MIRA captures the underlying

metabolic dynamics of the switch from aerobic to anaerobic respir-

ation. We also apply MIRA to an Autism Spectrum Disorder gene ex-

pression dataset. Results indicate that MIRA reports metabolites that

highly overlap with recently found metabolic biomarkers in the autism

literature. Overall, MIRA is a promising algorithm for detecting meta-

bolic drug targets and understanding the relation between gene

expression and metabolic activity.

Availability and implementation: The code is implemented in C#

language using .NET framework. Project is available upon request.

Contact: cicek@cs.cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online

1 INTRODUCTION

Changes with respect to environmental or genetic modifications
lead to complex cellular responses. Standing on the top of the

omics hierarchy, metabolomics reflects changes taking place in
the transcriptome and in the genome. These responses are ana-

lyzed by researchers to discover regulatory mechanisms and dy-
namics of cells. Transcriptional responses of the cells, along with

the corresponding metabolic alterations, have been investigated

in various contexts. Some examples are plant research (Brosch�e

et al., 2005; Carari et al., 2006), diabetes (Ferrara et al., 2008;

Zelezniak et al., 2010), insulin resistance (Jans et al., 2011) and

cancer (Schramm et al., 2010). Functional class-based (Gerstein

and Jansen, 2000; Hughes et al., 2000; Karp et al., 2002; Pavlidis

et al., 2002; Seshasayee et al., 2009) and protein–protein inter-

action network-based analysis of gene expression data

(Chowdhury et al., 2010; Chuang et al., 2007; Goh et al., 2007;

Ideker et al., 2002; Rhodes and Chinnaiyan, 2005) have been well

established. Metabolic network- and metabolic pathway-driven

analysis of transcriptional data have been receiving attention

lately. Efforts have centered on discovering transcriptional regu-

lation architecture of metabolic networks of organisms using

genome-wide association studies (David et al., 2006; Ihmels

et al., 2004; Kharchenko et al., 2005; Tanay et al., 2004).

Various methods with different goals have been developed to

use transcriptomic and metabolic data together in the context

of a metabolic network such as (i) mining for new metabolite-

gene/transcription factor relationships (Ideker et al., 2001; Yeang

et al., 2006), (ii) flux balance analysis and constraint-based mod-

eling of organisms (Covert and Palsson, 2002a, b; Shlomi et al.,

2008) and (iii) using metabolic network topology to identify sig-

nificant changes in related groups of genes (Cakir et al., 2006;

Deo et al., 2010; Dinu et al., 2007; Hancock et al., 2012; Nam

et al., 2009; Oliveira et al., 2008; Patil and Nielsen, 2005;

Subramanian et al., 2005; Ulitsky and Shamir, 2009).
Network topology-based analysis of biological data is a broad

research area (Ma’ayan, 2008). In the context of metabolic net-

works and transcriptomics, the literature so far can be divided

into two subcategories. The first type of analysis uses predefined

metabolic pathways as targets for transcriptional regulation and

analyzes the changes in the pathways. Gene Set Enrichment

Analysis (GSEA) is the first and most established analysis in

this subcategory (Subramanian et al., 2005). Improvements

have been proposed in the literature to eliminate the shortcom-

ings of the GSEA approach (Dinu et al., 2007; Draghici et al.,

2007; Hancock et al., 2012). The second type of analysis con-

siders the metabolic network as a whole, and aims to find signa-

tures or hot spots in the metabolic network that are subject to

transcriptional regulation (Cakir et al., 2006; Nam et al., 2009;

Patil and Nielsen, 2005; Schramm et al., 2010). The most estab-

lished method in this group is the reporter algorithm (RA; Patil

and Nielsen, 2005). Using the z-score-based method introduced

before (Ideker et al., 2002), the algorithm aims to find metabol-

ites around which transcriptional regulation is centered and link

the complex transcriptional motives to metabolome. Various*To whom correspondence should be addressed.
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extensions and modifications to the algorithm have been pub-

lished in the literature. For instance, same idea has been used to

discover reporter reactions (Cakir et al., 2006). A similar z-score-

based approach has also been used analyze the rate-limiting steps

of pathways (Nam et al., 2009). In this article, we focus on the

original RA (Patil and Nielsen, 2005) and its scoring mechanism

(Ideker et al., 2002). Our observations, discussed next, also apply

to the extensions of the RA method.
RA first maps the differential data onto the enzymes (reac-

tions) in the metabolic network, and then calculates the P-values

for each gene, using student’s t-test. P-values are then converted

to z-scores using the inverse normal cumulative distribution

(��1). Equation (1) shows how each pi is converted to the cor-

responding z-score zi. Given all samples, z-score measures how

many standard deviations away a P-value is. It ranges from

negative to positive infinity, where negative infinity corresponds

to no significance at all.

zi=��1ð1� piÞ ð1Þ

The z-score zm for a metabolitem is the aggregation of z-scores

of the k enzymes that are neighbors of m in the metabolic net-

work (through metabolic reactions), and calculated as shown in

Equation (2). The null hypothesis is that the genes adjacent to a

metabolite display their normalized average response by chance.

Should the significance of a metabolite need to be determined,

z-score is normalized and converted back into the corresponding

P-value.

zm=
1ffiffiffi
k
p

P
zi such that enzyme i is a neighbor of metabolite m

ð2Þ

Although RA has been shown to be effective in several different

contexts such as analysis of Type 2 Diabetes (Zelezniak et al.,

2010), genome scale analysis of organisms (David et al., 2008;

Usaite et al., 2009), genome scale analysis of cell lines (Agren

et al., 2012), gene knockout analysis (Holm et al., 2010; Cimini

et al., 2009), targeted pathway analysis (Vongsangnak et al.,

2009), there are some shortcomings that may affect the accuracy

of the algorithm. First, the z-score method uses student’s t-test to

measure the amount of change between two variables. However,

the resulting P-value is highly dependent on the degrees of free-

dom. It has been shown that, owing to the small number of

samples in cohorts, P-values may not work as intended (Cicek

et al., 2013). Second, RA uses a univariate approach. That is, it

determines the changes per gene, and does not take dependencies

among genes into account. For a reaction associated with mul-

tiple genes, the gene with the highest z-score is used, and the rest

are discarded (Zelezniak et al., 2010).
In Figure 1A, we illustrate the problem via an example. The

figure shows an example from the application of the RA algo-

rithm to compare "arcA"fnr and wild-type (WT) strains of

Escherichia coli (aerobic) in the gene expression dataset (Covert

et al., 2004) (please see Section 2 for details). Genes (pentagons)

are assigned z-scores first, and then the maximum z-score is se-

lected and assigned as the z-score of the reaction (rectangles).

For the reaction copragon transport via ton system, the max-

imum z-score belongs to the gene fhuE (0.88). This scoring ignores

the contribution of the gene tonB, as any z-score value for tonB in

the range [�Infinity, 0.88) would yield the same z-score for the

reaction. Finally, the method is additive in aggregating z-scores of

each neighboring reaction to determine the z-score of ametabolite

[as shown in Equation (2)]. However, z-score ranges from nega-

tive to positive infinity, negative infinity representing the most

insignificant case. Therefore, averaging individual results intro-

duces the problem of opposite signs cancelling each other out. In

Figure 1A, copragon is assigned a z-score: 1ffiffi
2
p ð�0:1+0:88Þ=0:54.

Negative z-score (�0.1) assigned to the reaction copragon trans-

port via ABC system partially cancels out the z-score of the reac-

tion copragon transport via ton system (0.88). The problem would

have been resolved if the scoring mechanism used, assigned zero

to the most insignificant case (P=1).

In this article, we present a new algorithm, called Mutual

Information-based Reporter Algorithm (MIRA) that addresses

the shortcomings of the original RA. MIRA is a multivariate

and combinatorial algorithm that calculates the aggregate tran-

scriptional response around a metabolite using mutual

A

B

Fig. 1. Application of RA in comparison of "arcA"fnr and WT strains

of E.coli (aerobic). Rectangles represent reactions, pentagons represent

genes and the circle represents the metabolite, copragon. (A) Reactions

transfer copragon from extracellular space to periplasm, and then to

cytoplasm. The maximum change (z-score) for the genes of copragon

transport via ABC system is �0.1, and the genes of copragon transport

via ton system is 0.88. Aggregate z-score for the metabolite coprogen is

assigned as 0.54. (B) When genes of copragon transport via ABC system

are considered together they return MI of 0.792, and MI for the genes of

copragon transport via ton system is 0.808. Average turns out to be 0.8,

which is a relatively high mutual information value. Result is different

than the prediction made by RA
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information. Mutual Information is an information theoretic

method that measures how much knowing one variable reduces

the uncertainty about the other. In gene expression analysis, it has

been used frequently (Butte et al., 2000; Chowdhury et al., 2010;

Gupta et al., 2010; Steuer et al., 2002; Zhang et al., 2010).

Chowdhury et al. show that combinatorially dysregulated subnet-

works found through mutual information is predictive for cancer.

In metabolomics analysis, using the combinations of metabolites

and their levels, ADEMA(the algorithm for determining expected

metabolite alterations) predicts expected changes of metabolite

levels in a given metabolic network using mutual information

(Cicek et al., 2013). In the context of MIRA, the two variables

are (i) the genotype (e.g., case and control) and (ii) the combin-

ations of the genes associated with a reaction and their expression

levels. More specifically, MIRA performs the following tasks: (i)

discretize gene expression levels using B-spline functions, (ii) cal-

culate the mutual information between the genotype, as well as

combinations of genes associated in a reaction and their discre-

tized expression levels, and (iii) calculate the average mutual in-

formation for each metabolite using the mutual information of

each neighboring reaction. Figure 2 shows the overall flow of the

algorithm.

The advantages of MIRA over RA are as follows:

(1) Combinatorial mutual information works well when the

sample sizes are small, and performs better than univariate

significance testing.

(2) Unlike the RA, MIRA uses a multivariate method, ana-
lyzing multiple genes at a time. Therefore, it does not dis-
card less insignificant changes unlike RA. MIRA uses

measurements of individual samples instead of comparing
sample means and is able to capture linear and non-linear
dependencies among variables.

(3) Mutual information is bounded by zero and the minimum

of the entropies of the two random variables. The most
insignificant case is assigned the score zero; therefore, in-
significant changes do not cancel out significant changes.

(4) MIRA has no bias toward highly connected metabolites,

as it normalizes the sum of changes around a metabolite
using the number of reactions instead of the square root
of number of reactions as RA does [see Equations (2)

and (8)].

Figure 1B shows the results obtained by MIRA for the intro-
ductory example shown in Figure 1A. Unlike the RA, which

assigns a low score to the reaction copragon transport via ABC
system indicating that there is no significant change on this
enzyme, MIRA predicts relatively high mutual information indi-

cating that when considered together genes fhuB, fhuC and fhuD
are expressed differently. MIRA predicts similar results for both
reactions and the average is found as 0.8 (max 0.98 in this test),

whereas the RA assigns 0.54 to copragon (max �13 in this test).
The difference between the two algorithms stems from the fact

that (i) MIRA performs a multivariate analysis compared with

Fig. 2. Algorithm Flow. Rectangles represent reactions, pentagons represent genes and circles represent metabolites (darker red represents higher

average mutual information). Algorithm starts by generating gene-reaction and reaction-metabolite associations out of the SBML file of the recon-

structed metabolic network. Next, for each metabolite, gene sets are constructed based on their association with the neighboring reactions. As the third

step, gene expression levels are discretized using B-splines. Fourth step consists of calculating the mutual information between the class variable and the

discretized expression levels of groups of genes. After each metabolite is assigned average mutual information, based on the calculations done in Step 5,

metabolites are ranked based on their average mutual information, and reporter metabolites are determined (darker red means it is a reporter metabolite)
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the univariate analysis done by RA, (ii) given that there are
only seven samples (3 "arcA"fnr and 4 WT bacteria), mutual

information is able to capture the change better than z-scores
and (iii) being non-negative, mutual information does not cancel

out significant effects.
To evaluate MIRA, we have analyzed six strains of E.coli with

knockouts of transcriptional regulators in the oxygen response

("arcA, "appY, "fnr, "oxyR, "soxS and "arcA"fnr) in aerobic
and anaerobic conditions (Covert et al., 2004). We have used the

reconstructed metabolic network of E.coli (iAF1260; Feist et al.,
2007). We have also analyzed the autism gene expression dataset

(Voineagu et al., 2011) using the Recon 1 genome scale metabolic
network for humans (Duarte et al., 2007). For the E.coli dataset,

we focused on the "fnr knockout, which affects the switch be-
tween aerobic and anaerobic respiration. MIRA was able to suc-

cessfully capture metabolites that were closely related to this
enzyme and anaerobic respiration mechanism. For the autism

dataset, MIRA predicted metabolites that have been recently
discovered in the autism literature. We have also shown that

MIRA has no bias toward hub metabolites unlike RA, and scor-
ing scheme for MIRA is empirically significant.

2 MATERIALS AND METHODS

This section describes subcomponents and techniques MIRA uses to

detect the hot spots in the metabolic network. Supplementary Table S1

describes the abbreviations and notations used throughout the section.

Please see Supplementary Appendix A, Table S1, for a list of terms and

variables and their explanations.

2.1 Constructing the network

In the context of our algorithm, the network is a hyper-graph G(V,E)

where the vertex set V is the union of three entity types: metabolites, genes

and reactions. The edge set E contains two types of edges: (i) edges that

connect reactions to the associated genes whose expression lead to the

corresponding enzyme and (ii) edges that connect metabolites to asso-

ciated reactions based on producer/consumer relationships. Network in-

formation is obtained through the genome-scale reconstructed metabolic

network of the organism to be analyzed using an SBML parser.

2.2 Discretizing gene expression data

To calculate mutual information between the genotype and the gene ex-

pression observations, one needs to calculate the probability of observing

that profile. This is a well-studied problem in the literature (Silverman,

1986). There are three techniques that do not assume that the values come

from a known distribution (which is the case for gene expression data).

Kernel Density Estimation aims to measure the density of observations

falling into a predetermined window using a kernel (Moon et al., 1995),

though it suffers from the high computational cost, and the results are

dependent on the kernel length. Second technique is the histogram-based

classification, which determines thresholds by dividing the domain of the

variable into equal-sized chunks and classifying observations based on

these thresholds. Despite the low computational cost, observations that

are close to the thresholds are likely to be misclassified, as analytical

methods associate an error term with each observation (Cakmak et al.,

2012; Cicek and Ozsoyoglu, 2012). To fix this shortcoming, B-spline

functions have been used to associate probabilities with each bin deter-

mined by the histogram-based approach (Cicek et al., 2013; Faith et al.,

2007). That is, each observation is associated with a probability to be in a

bin, instead of making a binary decision to determine if it is in a given bin

or not.

B-spline functions are defined by parameters M and k where M is the

number of bins (chunks) that the domain is going to be divided into, and k,

1� k�M, is the number of bins an observation can be assigned to (e.g.

k=1 is equivalent to histogram-based binning). Based on M and k,

each B-spline curve i, 1� i�M, is assigned a basis vector, the so-called

knot vector ti, defined as in Equation (3), and then the curve i is defined as

a function of the neighboring curves, as shown in Equations (4) and (5).

ti=

0; i5k

i� k+1; k � i �M

M� k+2; M5i

8>><
>>: ð3Þ

Bi;1ð§ðgnÞÞ=
1; ti � §ðgnÞ5ti+1

0; otherwise

(
ð4Þ

Bi;kð§ðgnÞÞ=Bi;k�1ð§ðgnÞÞ
§ðgnÞ � ti
ti+k�1 � ti

� �
+Bi+1;kðð§ðgnÞÞ

tiþk � §ðgnÞ

ti+k � ti+1

� �
ð5Þ

Each measurement (e.g. expression level for gene gn for person x) is as-

signed to a bin i with probability Bi,k(§(gn)), where §(gn) is a function that

normalizes the value of the measurement for gn using the maximum and

the minimum values observed for gn in the dataset.

2.3 Calculation of mutual information

After expression values are calculated, mutual information is calculated.

Given two random variables X and Y, mutual information I(X;Y)meas-

ures how much knowing one reduces the uncertainty about the other.

In the context of MIRA, the first variable is the binary class variable C

[e.g. control versus variable) and the second variable B(G(r)) is the

binned measurements of a group of genes G(r) that are associated with

a reaction r. For instance, for the example shown in Figure 2B, genes

fhuE and tonB are grouped based on their association with the reaction

coprogen transport via ton system (ctts). Assuming we use 2 bins (up and

down) then, C= {WT, "arcA"fnr} and B(G(ctts))= {fhuE up & tonB

up, fhuE up & tonB down, fhuE down & tonB up, fhuE down & tonB down}.

I(C;B(G(ctts))) is found to be 0.808.

The goal of calculating I(C;B(G(r))) is to learn how much knowing

discretized gene expression levels of related genes reduces the uncertainty

on the genotype. In other words, we find out whether a reaction r and its

corresponding genes are predictive on the genotype. If the expression

levels of these genes (when considered together) are different with respect

to the class variable, then we obtain a high mutual information value.

Equation (6) specifies the mutual information formula.

IðC;BðGðrÞÞÞ=
X

bg2BðGðrÞÞ

X
c2C

pðbg; cÞ � lg
pðbg; cÞ

pðbgÞpðcÞ

� �
ð6Þ

p(bg) is calculated as shown in Equation (7) and k is a constant input to

the algorithm. That is, given a dataset D, probability of observing g (e.g.

fhuE up and tonB up) is the multiplication of spline values for each gene

(e.g. fhuE and tonB) to be in the corresponding bins (e.g. up and up in this

case), summed and averaged over all individuals in D. This calculation

assumes that gene expression values are independent of each other.

p(bg,c) is calculated similarly and p(c) is constant in the dataset.

pðbgÞ=

X
D

Y
gn2GðrÞ

Bbinofgnbg;kð§ðgnÞÞ

jDj
ð7Þ

We define the aggregate transcriptional regulation around a metabolite

m as the average mutual information of the consumer and producer reac-

tions of m. Given that R(m) is the set of neighboring reactions,

then average mutual information Im for metabolite m is defined as in

Equation (8).
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Im=
1

jRðmÞj

X
r2RðmÞ

IðC;BðGðrÞÞÞ ð8Þ

MIRA fits a beta distribution to Im values given the interval. Then,

Im�Beta(�, �) where � and � are learned from the sample. Finally, all

metabolites with P50.05 are picked as reporter metabolites.

2.4 Datasets and experimental design

To test the performance of MIRA and compare it with RA, we con-

sidered two resources. First, we used mRNA expression profiles of six

E.coli strains with knockouts of transcriptional regulators of the oxygen

response ("arcA, "appY, "fnr, "oxyR, "soxS and "arcA"fnr) pub-

lished and released in Covert et al. (2004). For each strain they obtained

measurements in aerobic and anaerobic conditions. Consequently, we

used 12 datasets for the knockouts and 12 for the WT. We compared

the expression profiles of selected knockouts against the control, to

obtain reporter metabolites using each respective method. We did not

perform cross-condition comparisons. For instance, we compared knock-

out measurements under aerobic conditions with WT measurements

under aerobic conditions only. Second, we ran tests on the autism spec-

trum disorder (ASD) brain gene expression dataset (Voineagu et al.,

2011). The dataset contains gene expression levels for 8858 genes for 58

human cortex samples (29 ASD and 29 controls).

We implemented MIRA in C# language using ET Framework 4.0.

Tests were run on a Dell PowerEdge R710 Server with two Intel�

Xeon� quad processors and 48 GB main memory. The server runs on

Windows Server 2008 operating system.

For E.coli knockout tests, we used the genome scale-reconstructed

metabolic network model of E.coli, iAF1260 (Feist et al., 2007). The

model contains 1972 metabolites, 2382 reactions, 1261 genes and 3 com-

partments. We mapped the measured genes to the corresponding reac-

tions in the metabolic network, as annotated in the model. After the

mapping, we obtained 1643 metabolites, to which there was at least

one reaction associated with a gene measured in the dataset. Only the

obtained 1643 metabolites were considered in the tests. For the Autism

dataset, we used the Recon1 genome-scale metabolic network for humans

(Duarte et al., 2007). The model consists of 3188 metabolites, 3742 reac-

tions, 1499 genes and 8 compartments. Mapping the genes measured to

the network resulted in a metabolite set of size 2331 for further consid-

eration. For both datasets, we used M=6 and k=4 to discretize meas-

urements using B-splines. Please see Supplementary Appendix B for time

requirements.

3 RESULTS

3.1 Comparing reporter metabolite sets of MIRA and RA

To compare the performances of MIRA and RA, we obtained

reporter metabolites using both algorithms. First, we investigated

how similar two sets are using the Jaccard distance (JD). JD is

complementary to the Jaccard index, which is the ratio of shared

items between the two sets, A and B, and the union of the items

in two sets. Jaccard index is denoted as J(A,B). JD, J�(A,B), is

equivalent to 1� J(A,B). Two algorithms yield different sets of

reporter metabolites for E.coli knockouts. For the

knockouts "appY (anaerobic) and "OxyR (aerobic), the sets

of reporter metabolites are totally distinct (JD=1) and the

smallest JD obtained in these tests is 0.85. For the Autism data-

set, JD is 0.9.

3.2 Robustness against hub metabolites

Metabolic networks are known to be scale free (Albert, 2005),

that is, their degree distribution follows the power law. Our re-
sults show that the reporter metabolites found by RA are usually

highly connected metabolites known as hubs or common metab-

olites, which are rare in scale-free networks. For instance, in the
test for "fnr (aerobic), RA marks H+, H2O, ATP, ADP,

Phosphate, Diphosphate and CO2 as the top 7 reporter metab-
olites, which participate in many reactions and are associated

with many genes in the metabolic network. To test if RA has a
bias toward hub metabolites, we calculated the average gene

connectivity and reaction connectivity of the reporter metabolites
for each algorithm. We also formed a random set of metabolites

where the size of the random set is randomly chosen as a number

between the sizes of reporter sets produced by MIRA and RA.
We repeated the random set selection 10 000 times and found the

average connectivity for the random set. Figure 3A shows the
average gene connectivity, and Figure 3B shows the average re-

action connectivity of the reporter metabolites for MIRA, RA
and the random set for E.coli knockout tests. Results show that

RA favors highly connected metabolites, whereas reporter me-
tabolites found by MIRA have a closer degree distribution to the

random set, and does not have such a bias. This also applies to

reporter metabolites found in the Autism dataset by RA
(Supplementary Table S5). The intuitive reason for this differ-

ence is that MIRA averages the mutual information found for
each reaction, whereas RA divides the sum by the square root of

the number of reactions around a metabolite.

3.3 Interpreting reporter metabolites for "fnr

(anaerobic) dataset

When E.coli has no O2 as the final electron acceptor, it switches
to anaerobic respiration and uses electron donating dehydrogen-

ases and accepting reductases on the membrane. Fumarate
Nitrate Reductase (fnr) is a transcriptional regulator that regu-

lates 100+ genes and nitrate/fumarate reduction in response to
the switch from aerobic to anaerobic respiration in E.coli. Fnr

has an iron-sulfur cluster [4Fe–4S] that senses the presence of

oxygen and becomes inactivated when oxidized in the presence
of oxygen. It can also be converted into a disulfide form by

glutathione or thioredoxin when inactive (Daruwala and
Meganathan, 1991).

Figure 4 shows a simplified depiction of the dynamics in
anaerobic respiration with respect to fnr (Keseler et al., 2013;

MetaCyc; Unden and Bongaerts, 1997; UniProt). Although
there are many types of dehydrogenases and reductases, we

draw them in two groups for the sake of simplicity: (i) hydrophilic
side toward periplasm and (ii) hydrophilic side toward cytoplasm.

Electron donors like G3P, formate, lactate, NADH, H2 are oxi-
dized by the hydrogenases, and electrons are transported using

menaquinone to the reductases. Focusing on nitrate reductase,

this electron is transferred to protoheme, then to Fe-S cluster
and, finally, to molybdenum (Mo). It is used to reduce nitrate

to nitrite. Fnr stimulates the expression of this enzyme. In the
presence of O2, fnr is oxidized and inactivated. As stated above,

glutathione and thioredoxin act as electron donors to activate fnr.
In Supplementary Appendix C, Table S2 lists the reporter me-

tabolites found by MIRA and Table S3 lists reporter metabolites
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found by RA based on "fnr knockout under anaerobic condi-

tion. Previous description is based on the data obtained from

UniProt Database, which summarizes the key concepts and me-

tabolites related to fnr. The metabolites reported by MIRA

highly overlap with this definition. The second reporter metab-

olite protoheme (heme b) is an important metabolite in the heme-

biosynthesis pathway, and is the first electron acceptor in nitrate

reductase complex (Metacyc). As mentioned above, glutathione

and thioredoxin are key agents to convert the enzyme, and

MIRA detects them as reporter metabolites [glutaredoxin

(reduced/oxidized) and thioredoxin (reduced/oxidized)]. Nitrite

is one of the direct products of nitrate reductase, and it is also

reported as a reporter metabolite.
Aside from the metabolites in UniProt’s definition, MIRA

found dimethyl sulfide/sulfoxide (DMSO) and trimethylamine/

trimethylamine n-oxide (TMAO) as reporter metabolites. As

Figure 4 shows, E.coli uses N- and S- oxides as the terminal

electron acceptors (Daruwala and Meganathan, 1991).
When RA is considered, the top metabolite picked by MIRA

is not a reporter metabolite in RA’s list. Tungstate is known as a

direct inhibitor of nitrate reductase as well as TMAO and

DMSO reductases, which are also reporter metabolites (Prins

et al., 1980). Similarly, tripeptide murein units [short name for

two linked disacharide tripeptide murein units (uncrosslinked

middle of chain)] is also not picked by RA and might seem un-

related at first. Murein units constitute bacterial cell walls.

Membrane-bound lytic murein transglycosylase is the enzyme

that degrades mureins, and the gene responsible to transcribe

this enzyme is dniR (mltD). A mutant of this enzyme is known

to be defective in producing nitrite reductase. Nitrate and nitrite

also stimulate the expression of dniR (Kajie et al., 1991).

Most striking difference in the reporter metabolites found by

RA is that the first seven metabolites are H+, H2O, ADP, P,

ATP, NAD, NADH (NADP, NADPH, O2, CDP, UDP, dADP,

dCDP, GDP, GTP, CoA are also listed). These are highly

connected metabolites, which take place in many biochemical

activities in the cell, and therefore, it is hard to link them to

the effect of the knockout in this test. MIRA puts these metab-

olites within (695 964] in the ranking of 1643 metabolites con-

sidered. Also RA lists many metabolites from the central

metabolism: Glycerophosphoglycerol, pyruvate, glycerol, F6P,
succinate d-glucose and acetyl-CoA. Similarly, these metabolites

can be considered as general owing to the diverse functionality of

the pathway they are in. Having that said, RA detects some

metabolites that are not picked by MIRA and are relevant.

For instance, sulfate and molybdate are incorporated into fnr

and nitrate reductase (Tavares et al., 2006). Menaquinone 8,
menaquinol 8 and 2-demethylmenaquinol 8, link dehydrogenases

and reductases/oxidases in the electron transport chains, and

hence are directly related to fnr enzyme as shown in Figure 4

(Unden and Bongaerts, 1997). Although ubiquinone-8/ubiqui-

nol-8 play an important role in aerobic respiration, they are

listed higher than menaquinone 8/menaquinol 8.
In conclusion, the results suggest that (i) MIRA has no bias

toward hub metabolites, and successfully downplays their im-

portance, and (ii) MIRA yields reporter metabolites, which are

in close proximity to the enzyme and are relevant with respect to
the literature.

3.4 Interpreting reporter metabolites for the

autism dataset

ASD is a developmental genetic disorder that causes social inter-

action abnormalities, communication deficiencies and repetitive

behavior. Although the disease has a genetic origin, metabolic

implications have been studied widely in the literature (Boccuto
et al., 2013; Emond et al., 2013; Yap et al., 2010). Running

MIRA on the gene expression dataset provided by Voineagu

et al., 2011, has resulted in 52 reporter metabolites as shown in

Supplementary Appendix C, Table S4. Reporter metabolites

found by RA is listed in Supplementary Appendix C, Table S5.

A B

Fig. 3. Application of Average gene and reaction connectivity of the reporter metabolites. Panel (A) shows average number of genes associated with the

reporter metabolites found by RA and MIRA in E.coli knockout tests. Random set reports the average number of genes connected randomly chosen

metabolites of the same size as the original sets (repeated 10 000 times and averaged). Panel (B) shows the same results for the average number of

reactions associated with metabolites
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The first and the eighth metabolites located as reporter by

MIRA are protein-linked serine/threonine residue and protein-

linked asparagine residue at glycosylation sites. Glycosylation

is a process that attaches glycans to proteins as a post-trans-

lational modification in the secretion pathway. Secretion path-

way is known as an important factor in brain development,

and DIA1R mutation leads to ASD and mental retardation

(Aziz et al., 2011). More specifically, it is reported in the

literature that 7 glycosylation-related genes are affected by

copy number variations (CNVs) in autism patients (van der

Zwaag et al., 2009; Pinto et al., 2010). We also observe

glycans such as glycophosphatidylinositol later in the reporter

list.
Glucuronidation is an important process for detoxification of

most xenobiotics by making such components more water-

soluble and less toxic by attaching glucuronate to the substrates

(Stein et al., 2011). The second metabolite d-glucorate and the

third metabolite d-glucurono-6,3-lactone (d-glucurone), located

by MIRA, are direct precursors of glucuronate. Stein et al.

(2011) reports evidence on lower glucuronidation levels in chil-

dren ASD, which may explain d-glucurono-6,3-lactone being a

stress point in the metabolic network. L-Arabinose is also in this

pathway and is located as a reporter by MIRA.
Histone n6-methyl-l-lysine, protein n6,n6-dimethyl-l-lysine,

peptdyl-l-lysine and protein n6,n6,n6-trimethyl-l-lysine, all

located by MIRA, belong to lysine degradation pathway.

These metabolites are centered on the path that consumes

lysine and produces carnitine. Celestino-Soper et al. have

revealed that dysregulation of carnitine metabolism may be im-

portant in non-dysmorphic autism. The results show that a de-

letion in TMLHE gene on this pathway has a significant

correlation with ASD (Celestino-Soper et al., 2012). In a recent

work, Frye et al. (2013) links the abnormalities in acyl-carnitine

levels and autism.

Lipoylprotein, lipoamide, dihydrolipolprotein and dihydroli-

poamide, all located by MIRA, are four metabolites that are in

Fig. 4. Anaerobic respiration of E.coli with respect to fnr and reporter metabolites found by MIRA. Anaerobic respiration of E.coli couples electron

donors to electron acceptors via dehydrogenases and reductases on the inner membrane. There are many types of dehydrogenases and reductases;

however, only two types are shown: hydrophilic side toward cytosol and toward periplasm. Sizes and shapes of the proteins are not drawn to scale. Only

nitrate reductase is shown in more detail and separately. Formate, lactate, NADH, H2 G3P are electron donors and lead to reduction of acceptors like

nitrate, nitrite, DMSO, TMSO and fumarate. Menanquinone acts as a mediator between dehydrogenases and reductases. In the case of nitrate reductase,

electron is transferred through protoheme, Fe-S cluster and Molybdenum to reduce nitrate to nitrate. Fnr activates this enzyme, and tungstate is a well-

known inhibitor. Fnr is inactivated by oxygen and can be reactivated by agents like glutaredoxin and thioredoxin. Murein units constitute the cell wall,

and the enzyme that degrades murein units is transcribed by dniR gene. It is known that dniR regulates nitrite reductase and it is stimulated but nitrite

and nitrite
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the glycine cleavage pathway. MIRA reports four metabolites
out of six in this pathway and points to an alteration in

this process. A recent work by Yu et al. (2013) confirms that a

mutation in AMT gene is also associated with ASD. This muta-
tion leads to a deficiency in glycine cleavage system. In addition

to this, the metabolic profiling done by Yap et al. (2010) shows
significant differences in glycine levels in the urine of autistic

children.
Starting with stearidonyl coenzyme A, MIRA detects 17 inter-

mediates of fatty acid synthesis pathway as reporter metabolites.

Fatty acid metabolism and autism have been associated in the
literature. Richardson and Ross point to the growing evidence

on the relation between neurodegenerative diseases and fatty acid

abnormalities (Richardson and Ross, 2000). Among more recent
works, Tamiji and Crawford state that children with autism

show higher rates of lipid metabolism than controls (Tamiji

and Crawford, 2010). El-Ansary et al. (2011) report increase in
most of the saturated fatty acids in a cohort of 52 autism

patients.
In comparison, none of the aforementioned reporter metabol-

ites are located by RA, but common metabolites are highly

ranked as in E.coli tests.
In summary, reporter metabolites picked by MIRA for autism

are backed by literature. Results show that, although some pre-
dictions (e.g. glycine cleavage deficiency) are not obvious targets,

the MIRA method was able to predict them. The literature on

the relation between autism and (i) glucuronation (Stein et al.,
2011), (ii) lysine degradation and carnitine metabolism

(Celestino-Soper et al., 2012; Frye et al., 2013) and (iii) glycine

cleavage (Yu et al., 2013) did not exist at the time of the gene
expression dataset was published. Hence, MIRA shows promis-

ing prospect for discovering new metabolic targets.

3.5 Empirically testing the significance of scoring

schemes used by MIRA and RA

To assess the significance of the scores calculated by both algo-

rithms and assess the reliability of the rankings, we used an

empirical significance testing using the following method. We

(i) shuffled the labels of the individuals in the autism dataset

100 times to obtain 100 random datasets, (ii) ran MIRA and

RA on these datasets, as well as on the original data, and (iii)

sorted and plotted the scores in descending order for all 101

instances. Figure 5A shows the scores for RA, and Figure 5B

shows the results for MIRA. Big red circles represent the results

found on the original dataset. Figures 5C and 5D show a close-

up for the first 50 metabolites in the ranking. MIRA’s results for

the original dataset dominate the random curves and, hence,

suggest an empirically significant result. On the other hand,

RA’s output for original data follows a similar pattern with

the random datasets.

4 CONCLUSION

Metabolic networks have received significant attention in the

past decade. This advancement has led to the investigation of

various genetic diseases and their metabolism with the use of the

reconstructed genome scale metabolic networks. One application

is to find the regulatory architecture of the metabolic network

using the underlying transcriptome. The RA finds the metabolic

hot spots around which transcriptional regulation is centered. In

this article, we developed a novel method, called MIRA, that

uses a combinatorial approach and mutual information to find

reporter metabolites. Our approach addresses the shortcomings

of the existing RA algorithm. More specifically, it is robust

against small sample sizes, uses a multivariate approach instead

of a univariate one and does not cancel out significant changes in

expression levels with non-significant ones. Our results show that

(i) MIRA has no bias on picking hub metabolites as reporter

metabolites, (ii) reporter metabolites found by MIRA are bio-

logically sound and are supported by literature even for a com-

plex disease like Autism, (iii) MIRA captures the effects of a

knockout of the Fnr gene in E.coli successfully and (iv) MIRA

provides empirically significant results, which supports the fact

that it captures the underlying biological phenomenon.

Fig. 5. Empirical testing of the significance of the scoring schemes. Panel (A) shows series of z-scores obtained for each random set, and for the original

dataset (shown as the red line with large circles) by RA. Scores are sorted in descending order. Panel (B) shows the Ims for the same data obtained by

MIRA. Panels (C) and (D) show close-ups for the first 50 metabolites for Panels (A) and (B), respectively
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