
INTRODUCTION

Mitral annular dilatation has been regarded as one of impor-
tant geometric factors causing ischemic mitral regurgitation
(MR) (1). Accordingly, the reduction of annular size by annu-
loplasty has been the conventional surgical treatment for
ischemic MR (2-5). Several studies have demonstrated annu-
lar dilatation after left circumflex artery (LCX) occlusion (6,
7). With the use of 3D imaging techniques, the appreciation
of the non-planar geometry of the mitral annulus and its
accurate measurement has been achieved (8, 9). Several pre-
vious studies by fluoroscopy of radiopaque markers or trans-
esophageal echocardiography with a rotating transducer have
revealed dilatation of the mitral annulus after LCX occlusion
(10-13). However, acute geometric alterations including non-
planarity of the mitral annulus after LCX occlusion compared
to left anterior descending artery (LAD) occlusion have not
been described in detail. Real-time 3 dimensional echocar-
diography (RT3DE) has been validated for its quantitative
accuracy of geometric measurement of cardiac structures (14).

The present study, therefore, was conducted to detail and
to compare the geometric changes in the mitral annulus imme-
diately after LAD and LCX occlusion using RT3DE. 

MATERIALS AND METHODS

Surgical preparation

Sixteen juvenile sheep weighing 43±8 kg (range 28 to
56) were studied. All of them had pre-existing apical aneurysm
developed by chronic ligation of the distal LAD. The mid
portion of LAD was ligated in 8 sheep and the proximal LCX
in the other 8 sheep.

During the acquisition of volumetric images using RT3DE,
the sheep were anesthetized with intravenous sodium pen-
tobarbital (25 mg/kg) and maintained with 1-2% isoflu-
rane with oxygen. The animals were ventilated via an endo-
tracheal tube using a volume-cycled ventilator. A median
sternotomy was performed. Bleeding, insensible fluid loss
and associated electrolyte disturbances were monitored fre-
quently and corrected by continuous infusion of lactated
Ringer’s solution and 5% dextrose in water supplemented
with potassium, if necessary. All operative and animal man-
agement procedures were approved by the Animal Care and
Use Committee of the National Heart, Lung and Blood Ins-
titute (15).
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Acute Geometric Changes of the Mitral Annulus after Coronary
Occlusion: A Real-Time 3D Echocardiographic Study

We performed real-time 3D echocardiography in sixteen sheep to compare acute
geometric changes in the mitral annulus after left anterior descending coronary
artery (LAD, n=8) ligation and those after left circumflex coronary artery (LCX, n=8)
ligation. The mitral regurgitation (MR) was quantified by regurgitant volume (RV)
using the proximal isovelocity surface area method. The mitral annulus was recon-
structed through the hinge points of the annulus traced on 9 rotational apical planes
(angle increment=20°). Mitral annular area (MAA) and the ratio of antero-posterior
(AP) to commissure-commissure (CC) dimension of the annulus were calculated.
Non-planar angle (NPA) representing non-planarity of the annulus was measured.
After LCX occlusion, there were significant increases of the MAA during both early
and late systole (p<0.01) with significant MR (RV: 30±14 mL), while there was
neither a significant increase of MAA, nor a significant MR (RV: 4±5 mL) after LAD
occlusion. AP/CC ratio (p<0.01) and NPA (p<0.01) also significantly increased after
LCX occlusion during both early and late systole. The mitral annulus was significantly
enlarged in the antero-posterior direction with significant decrease of non-planarity
compared to LAD occlusion immediately after LCX occlusion. 
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Volumetric image acquisition using real-time 3D echocar-
diography

A RT3DE imaging system with a 2.5 or 3.5 MHz hand
held transducer was used to image the mitral annulus (Vol-
umetric Medical Imaging Inc., Durham, NC, U.S.A.). The
volumetric frame rate was 17-22 volumes/second with an
imaging depth of 12-16 cm. For all subjects, volumetric
images were obtained epicardially using the apical view before
and after the coronary occlusion. For comparison of the geo-
metric changes in the mitral annulus, we acquired images
at specific phases of the cardiac cycle: in early systole/the
image of the frame immediately after the closure of the mitral
valve, and in late systole/the image of the frame just before
the mitral valve opening. Care was taken to include the entire
mitral annulus in the volumetric data set during each car-
diac cycle. All volumetric images were digitally stored on
magnetic optical disks for off-line analysis.

3D reconstruction of the mitral annulus

Volumetric data were digitally transferred to a PC in which
the 3D data were segmented into 9 rotational apical planes
(angle increment=20°) around the rotational axis from the
left ventrical (LV) apex through the center of the mitral annulus
(Fig. 1) using commercially available software (3D Echo-
Tech, Lafayette, Co., U.S.A.). A series of digital still images
were generated and imported into a custom software pack-
age programmed in our laboratory in the LabVIEW envi-
ronment (National Instruments, Austin, TX, U.S.A.). The
mitral leaflet hinge points in each plane were identified dur-
ing early and late systole. All these locations were converted

into a Cartesian coordinate system with x, y and z axes. The
mitral annulus was then reconstructed from fitting, interpo-
lation and Fourier transformation. 

2D echocardiography

For all subjects, 2D echocardiography (Toshiba Co., Tokyo,
Japan) was done before and after coronary occlusion. LV end-
diastolic volumes (EDV), end-systolic volumes (ESV) and
ejection fractions (EF) were measured by the biapical planes
Simpson disk method (16). For quantification of the severi-
ty of mitral regurgitation (MR), regurgitant volumes (RV)
were calculated using the proximal isovelocity surface area
(PISA) method (17). 

Measurements of Mitral annular perimeter (MAP) and
area (MAA)

The hinge points of the mitral annulus traced on each rotat-
ing apical plane were transformed into a common 3D coor-
dinate system. To fit a smooth curve representing the mitral
annulus, Fourier series approximations in each of the spatial
coordinates (x, y, z) were constructed. The 3D mitral annular
perimeter (MAP) was automatically calculated from those
fitted data. The mitral annular area (MAA) was computed
as the area projected onto the least-squares plane fitted to
the annular curve. 

Commissure-commissure and antero-posterior dimension 

Using the TomTec system (Echoscan, TomTec, Boulder,
Co., Germany), an apical, commissure to commissure (CC)
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Fig. 1. Nine rotational apical planes were used to trace 18 hinge points (white dots) of the mitral annulus (A). 3D shape of the mitral annulus
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plane crossing two commissures on the cross-sectional plane
at the level of the mitral valve, simultaneously viewed from
LV, was obtained. Another orthogonal plane, antero-posteri-
or (AP) perpendicularly crossing the center of the commis-
sure to commissure axis was acquired (Fig. 2). CC and the
AP dimensions defined by the distances between the two
hinge points of the annulus on those two planes were then
measured during early and late systole. 

For estimation of circularization of the mitral annulus asso-
ciated with its dilatation, the ratio of these two dimensions
(AP/CC dimension) were calculated. 

Non-planarity

According to several previous reports defining the shape
of the mitral annulus as ‘‘saddle’’ shaped with two cephalad
portions at the anteroseptal and posterior portions of the
annulus (18, 19), we assumed that the mid portion of the
anterior and the posterior annulus would be the most cepha-
lad portion of each annulus. For evaluation of the non-pla-
narity of the ‘‘saddle’’ shaped mitral annulus, the non-planar
angle (NPA), the angle between the two vectors from the
two hinge points of the annulus in the AP plane to the cen-
ter of the CC axis was measured using 3D computer software
(TomTec, Co.) (Fig. 2).

Statistic analysis

Data are expressed as mean±SD. The fractional change
of the measurements was defined as the percentage change

of the measurements from early to late systole. Student’s t-
test was used to compare all data between the two groups,
before and after coronary occlusion. The relationship between
two parameters was evaluated by linear regression analysis.
A value of p<0.05 was considered to be significant.

RESULTS

2D echocardiographic measurements 

Before coronary occlusion, there was no significant differ-
ence of LV volumes (EDV: 75±25 vs. 76±23 mL, ESV: 49
±25 vs. 50±23 mL, p>0.05) and global LV systolic func-
tion (EF: 36±17 vs. 36±14%, p>0.05) between the LAD
and LCX groups. After coronary occlusion, there were sta-
tistically insignificant increases of LV volume in the both
LAD (EDV: 92±29 mL, ESV: 73±28 mL, p>0.05) and
LCX groups (EDV: 92±25 mL, ESV: 74±23 mL, p>0.05),
but significant decreases of global LV systolic function (EF)
in both groups to 23±6% and 20±6% (p<0.05). Before
coronary occlusion there was no significant MR in either
the LAD or the LCX group. After coronary occlusion, all
subjects in the LCX group developed substantial MR with
RV of 30±14 mL, while no subjects developed significant
MR in the LAD group with RV of 4±5 mL.

Geometric changes in the mitral annulus 

Changes of all measurements of the mitral annulus in both
two groups after coronary occlusion are shown in Table 1.
There was no significant difference in all the mitral annular
measurements between the LAD and LCX groups before
coronary occlusion. After LAD occlusion, no significant

Fig. 2. Volumetric image showing how the non-planar angle (NPA)
of the annulus was measured. Using 3D computer software (Tom-
Tec), we measured the angle between two vectors from two hinge
points of the annulus (white dots) in the antero-posterior (AP) plane
to the center of the axis connecting two commssures (white dot)
in the commissure-commissure (CC) plane. AML, anterior mitral
leaflet; MV, mitral valve; PML, posterior mitral leaflet.

AP, antero-posterior dimension; CC, commissure-commissure dimen-
sion; MAA, mitral annular area; MAP, mitral annular perimeter; NPA, non-
planar angle. *p<0.01 vs. pre-occlusion.

Pre-occlusion

LAD LCX

Post-occlusion

LAD LCX

Early systole
MAP (cm) 9.0±0.3 8.7±0.3 9.4±0.3 9.7±0.6*
MAA (cm2) 6.3±0.5 6.2±0.4 6.8±0.4 7.4±0.7*
CC (cm) 3.0±0.1 2.9±0.1 3.1±0.1 3.0±0.1
AP (cm) 2.5±0.04 2.4±0.1 2.6±0.1 2.9±0.2*
AP/CC 0.84±0.02 0.83±0.04 0.86±0.03 0.97±0.04*
NPA (°) 128±5 128±6 131±5 137±4*

Late Systole
MAP (cm) 9.2±0.2 9.0±0.3 9.6±0.3 9.9±0.5*
MAA (cm2) 6.5±0.3 6.4±0.4 6.9±0.4 7.6±0.7*
CC(cm) 3.0±0.1 2.9±0.1 3.1±0.1 3.0±0.1
AP(cm) 2.6±0.1 2.6±0.1 2.7±0.1 3.0±0.2*
AP/CC 0.87±0.03 0.87±0.04 0.89±0.02 0.99±0.02*
NPA (°) 137±3 138±4 140±4 142±4

Table 1. Geometric measurements of the mitral annulus
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changes in MAP, MAA, CC dimension or AP dimension
were observed during early and late systole. However, after
LCX occlusion, there were significant increases in all of these
measurements except for the CC dimension. The ratio of AP
to CC dimension, reflecting the degree of circularization of
the mitral annulus, significantly increased from 0.83±0.04
to 0.97±0.04 (p<0.01) during early systole and from 0.87
±0.04 to 0.99±0.02 (p<0.01) during late systole after
LCX occlusion, while it showed no significant change after
LAD occlusion (Table 1). 

NPA, representing the non-planarity of the mitral annu-
lus, showed no significant change after LAD occlusion dur-

ing early (128±5° vs. 131±5°, p>0.05) and late (137±3°

vs. 140±4°, p>0.05) systole. After LCX occlusion, there was
a significant increase in NPA during early systole (128±6°

vs. 137±4°, p<0.01), but an insignificant increase during
late systole (138±4° vs. 142±4°, p>0.05) (Fig. 3) resulting
in a significant decrease inthe fractional change of NPA dur-
ing systole (Table 2). 

Relationships between the changes of geometric mea-
surements 

In the LCX group, the percentage changes ( ) in the geo-
metric measurements after coronary occlusion were calculat-
ed: NPA showed significant positive correlations (p<0.01)
with MAA and AP dimension during both early (r=0.78,
r=0.89) and late systole (r=0.82, r=0.84) (Fig. 4). However,

MAA and NPA during late systole showed a weak but
statistically insignificant relationship with RV, the degree of
MR (r=0.56, r=0.53, p>0.05) (Fig. 5). 

DISCUSSION

Three dimensional reconstruction of the mitral annulus

AP, antero-posterior dimension; CC, commissure-commissure dimen-
sion; MAA, mitral annular area; NPA, non-planar angle. 
*p<0.01 vs. pre-occlusion.

Pre-occlusion

LAD LCX

Post-occlusion

LAD LCX

MAA (%) 2.2±2.7 3.0±2.1 2.1±3.8 1.2±2.3
CC (%) 1.3±1.5 1.4±1.0 1.3±1.7 0.9±1.7
AP (%) 4.2±1.7 6.0±1.5 5.1±1.0 3.5±1.1*
NPA (%) 6.7±2.0 7.4±1.7 6.6±2.1 3.9±1.2*

Table 2. Fractional changes of annular measurements during
systole
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Fig. 3. Change of the non-planar angle (NPA) of the mitral annulus after coronary occlusion.
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by fitting, interpolation and Fourier transformation of 3D
volumetric data enabled us to image the 3D shape of annu-
lus before and after coronary occlusion.

Previous echocardiographic studies have utilized rotational
acquisition of apical views using either transthoracic or trans-
esophageal probes to measure or to reconstruct the mitral
annulus. These methods required ECG and respiratory gating
over multiple cardiac cycles to collect the 3D data sets. MRI
also has been used for analyzing mitral annular geometry.
Despite its high spatial resolution, it is limited with lengthy
acquisition time and poor temporal resolution. To the con-
trary, RT3DE does not require ECG or respiratory gating for
acquisition of 3D volumetric data. The data are obtained by
electronic scanning of the ultrasound beam in three dimen-
sions with temporal resolution of about 50 msec (20 Hz). In
addition, we could eliminate errors in measuring annular
parameters by reconstructing the shape of the annulus using
a Fourier fitting model instead of the original raw data.

The mitral annulus consists of two components, an ante-
rior fibrous component and a posterior muscular component.
According to the current study, there was enlargement (18-
20%) and circularization of the mitral annulus after LCX
occlusion compared to LAD occlusion. This probably resulted

from the annular dilatation being confined to the posterior
part of annulus, the muscular component, which was affect-
ed by the posterior wall infarction caused by LCX occlusion.
This finding is consistent with the observations from previ-
ous animal studies (6, 20). Glasson et al. (6) suggested that
the enlargement and subsequent circularization of the mitral
annulus might augment the extent of incomplete leaflet clo-
sure. However, considering that the valve tolerance to annu-
lar dilatation in normal papillary muscle position was 1.8-2.0
times normal (21-25), an annular enlargement of 18-20%
might not be enough to produce incomplete leaflet closure
causing significant MR. Moreover, we observed weak rela-
tionships between the geometric changes of the mitral annu-
lus and MR severity even though, the number of the popu-
lation in the present study was too small (n=8) to interpret
them with statistical significance. On the other hand, the
annular size has been reported to be related to MR severity.
in several previous studies (26, 27). The inconsistency might
be resulted from that the populations of those studies usually
consisted of patients with chronic functional MR, in whom
the annulus were chronically enlarged probably in excess of
18-20%. Nevertheless, MV tenting area defined mainly by
leaflet tethering was suggested as the strongest determinant
of MR severity rather than the annular size by multivariate
regression analysis in those studies. Therefore, an annular
enlargement of 18-20% alone immediately after LCX occlu-
sion does not seem to play a primary role in generating enough
incomplete leaflet closure to cause substantial MR. Instead,
it may play an augmentative role to other geometric changes
such as leaflet tethering by displaced papillary muscles, as has
been suggested as a main cause for ischemic MR (12, 13).

Non-planarity of the mitral annulus has been assessed by
other 3D echocardiographic studies (18, 28). In the present
study, we estimated non-planarity of the mitral annulus by
measuring the angle between two vectors from two hinge
points of the annulus in the antero-posterior plane to the
center of the commissure to commissure axis on the assump-
tion that two most cephalad portion of the annulus would
be located at the mid portion of the annulus. We observed
that the non-planarity of the mitral annulus significantly
decreased after LCX occlusion compared to LAD occlusion,
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Fig. 5. Graphs showing weak but statistically insignificant correlations (p>0.05) of percent change ( ) of the mitral annular area (MAA)
and the non-planar angle (NPA) with regurgitant volume (RV).
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especially during early systole with subsequent reduction of
its fractional change during systole. The degree of change in
the NPA after LCX occlusion showed a good relationship
with that of annular size in the antero-posterior direction.
The reduction of the fractional change in the NPA during
systole after LCX occlusion might have resulted from decreased
apical movement of the posterior annulus due to impaired
contractility of the infarcted posterior myocardium (Fig. 6)
as suggested in the previous study (29).

In the present study there were several limitations. Firstly,
we did not estimate mitral regurgitant volume by electro-
magnetic flow probes but by the PISA method, because of
the concern that the geometry of the mitral annulus would
be affected by the implanted electromagnetic flow probe. In
addition, good relationships between the degree of MR esti-
mated by PISA and that by electromagnetic flow probe has
been previously demonstrated (30, 31).

Secondly, compared with conventional 2D images, the
spatial resolution of the volumetric images is limited due to
the frequency of the transducer. However, the mitral annu-
lar hinge points have strong signal intensities, which make
it relatively easy to identify them. In the present study, we
defined two specific phases, early and late systole, not by
ECG but by valvular motion. Nevertheless, there may be
image/phases mismatches because of the low frame rates of
20 frame/sec. 

Finally population number was too small to explore the
geometric factor determining of MR severity immediately
after coronary arterial occlusion. In addition, the change in
the annular geometry was not explored in association with
the degree of the papillary muscle displacement which can
be as a determinant of ischemic MR.

According to the results of the present study, the mitral
annulus was significantly enlarged and circularized imme-
diately after LCX occlusion compared to LAD occlusion. And
the non-planarity of the annulus significantly decreased, espe-
cially during early systole, after LCX occlusion with conse-
quent reduction of its fractional change during systole. 
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