
November 2017 | Volume 8 | Article 16401

PersPective
published: 24 November 2017

doi: 10.3389/fimmu.2017.01640

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Katy Rezvani,  

University of Texas MD Anderson 
Cancer Center, United States

Reviewed by: 
Niels Halama,  

National Center for  
Tumor Diseases, Germany  

Krithika Kodumudi,  
Moffitt Cancer Center,  

United States

*Correspondence:
To-Ha Thai  

tthai@bidmc.harvard.edu

Specialty section: 
This article was submitted  

to Cancer Immunity and 
Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 27 September 2017
Accepted: 09 November 2017
Published: 24 November 2017

Citation: 
Le TP and Thai TH (2017) The  

State of Cellular Adoptive 
Immunotherapy for Neuroblastoma 
and Other Pediatric Solid Tumors.  

Front. Immunol. 8:1640.  
doi: 10.3389/fimmu.2017.01640

the state of cellular Adoptive 
immunotherapy for Neuroblastoma 
and Other Pediatric solid tumors
Thanh-Phuong Le and To-Ha Thai*

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

Research on adult cancer immunotherapy is proceeding at a rapid pace resulting in 
an impressive success rate exemplified by a few high profile cases. However, this 
momentum is not readily extended to pediatric immunotherapy, and it is not for lack of 
trying. Though reasons for the slower advance are not apparent, some issues can be 
raised. Pediatric cancer patients represent a distinct demographic group whose immune 
system is inherently different from that of mature adults. Treating pediatric patients with 
immunotherapy designed for adults may not yield objective clinical responses. Here, we 
will present an update on adoptive T-cell and natural killer-cell therapies for neuroblas-
toma and other childhood solid tumors. Additionally, we will delineate key differences 
between human fetal/neonatal and adult immune systems. We hope this will generate 
interests leading to the discussion of potential future directions for improving adoptive 
cancer immunotherapy for children.

Keywords: pediatric solid tumors, recurrent/refractory/relapsed neuroblastoma, adoptive t-cell therapy, immune 
cell-based therapy, natural killer cells, Cbx3/HP1γ, cD4+ regulatory t cells, effector cD8+ t cells

iNtrODUctiON

In the past few decades, pivotal studies have yielded invaluable information on pediatric oncology 
leading to the formulation of standard therapies still being performed today (1–9). However, it 
is now evident that the majority of resistant, metastatic, recurrent/refractory tumors are non-
responsive to conventional therapies (10–20). In addition, current approaches often rely on 
non-specific, cytotoxic chemotherapy and/or radiotherapy that result in long lasting, debilitating 
toxicities, and in some instance morbidity (21–26). Therefore, there is a need to explore new 
avenues to eradicate pediatric cancers.

Two seminal reports, published by the surgeon and cancer researcher William Bradley Coley 
in the late 19th century, show sarcoma tumor regression in patients repeatedly immunized with 
live or killed streptococcus bacteria (27, 28). His observations suggest an active function for 
the immune system to control tumor growth, thus laying the foundation for modern cancer 
immunotherapy. Today, harnessing the immune system to control cancer is proven effective 
and garnering momentum. Currently, immunotherapy is largely classified into two functional 
treatment groups: (1) those that amplify/reactivate host existing innate and adaptive tumor 
immunity including check point inhibitors, dendritic cell (DC) vaccines and cytokines; (2) those 
that involve the adoptive transfer of genetically manipulated immune cells to target tumor cells 
in vivo such as chimeric antigen receptor (CAR) T cells, genetically enhanced effector T cells and 
natural killer (NK) cells. We will focus primarily on T- and NK-cell adoptive immunotherapy in 
this perspective.
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tAble 1 | Present and past adoptive immunotherapy trials for refractory/recurrent/relapsed neuroblastoma.

Approach status Nct# sponsor Year

Adoptive therapy of donor lymphocytes Completed/no results 00003887 Fred Hutchinson Cancer Research Center 1999–2011

Adoptive therapy of autologous lymphocytes Completed/no results 00006480 Fred Hutchinson Cancer Research Center 2000–2010

Adoptive therapy of autologous lymphocytes with EBV-lymphoblastoid 
vaccine

Unknown/no results 00101309 Milton S. Hershey Medical Center 2005–2007

Adoptive therapy of donor-derived tri-virus specific cytotoxic T cells Completed/no results 01460901 Children’s Mercy Hospital Kansas City 2011–2015

Adoptive therapy of activated autologous chimeric GD2-iCas9 CAR 
T cells

Ongoing/no results 01822652 Baylor College of Medicine 2013–present

Adoptive therapy of CAR T cells expressing anti-GD2 Completed/no results 02107963 National Cancer Institute 2014–2017

Adoptive therapy of CAR T cells expressing anti-CD171 Recruiting 02311621 Seattle children’s Hospital 2014–present

Adoptive therapy of activated bispecific GD2 CAR T cells Recruiting 02173093 Barbara Ann Karmanos Cancer Institute 2014–present

Infusion of haploidentical NK cells Terminated/no results 00698009 MD Anderson Cancer Center 2008–2012

Infusion of allogeneic NK cells, humanized anti-GD2, and standard 
chemotherapy

Ongoing/no results 00877110 Memorial Sloan Kettering Cancer Center 2009–present

Infusion of allogeneic NK cells, humanized anti-GD2, and standard 
chemotherapy

Ongoing/no results 01576692 St. Jude Children’s Research Hospital 2012–present

Infusion of in vitro-activated/expanded NK cells Completed/no results 01875601 National Cancer Institute (NCI) 2013–2016

Infusion of allogeneic NK cells from an acceptable parent Recruiting 01857934 St. Jude Children’s Research Hospital 2013–present

Infusion of donor NK cells following haploidentical hematopoietic cell 
transplant

Recruiting 02100891 Monica Thakar Medical College of 
Wisconsin

2014–present

Infusion of CD133+ autologous stem cells followed by haploidentical 
NK cells

Recruiting 02130869 St. Jude Children’s Research Hospital 2014–present

Infusion of autologous expanded NK cells and anti-GD2 Not yet recruiting 02573896 New Approaches to Neuroblastoma 
Therapy Consortium

2015–present

Infusion of allogeneic NK cells and humanized anti-GD2 Recruiting 02650648 Memorial Sloan Kettering Cancer Center 2016–present

Infusion of in vitro-activated/expanded haploidentical NK cells and 
anti-GD2-IL2

Not yet recruiting 03209869 University of Wisconsin, Madison 2017

EBV, Epstein–Barr virus; CAR, chimeric antigen receptor; GD2, glanglioside GD2; NK, natural killer; iCas9, inducible caspase 9.
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ADOPtive t-cell tHerAPY (Act)

Adoptive T-cell therapy represents an attractive viable option 
for the control of solid tumor growth for the following reasons: 
T cells can systemically home to tumor sites through the entire 
body and can cross the blood–brain barrier (BBB). By contrast, 
antibodies such as checkpoint inhibitors cannot effectively cross 
the BBB and are not consistently or adequately distributed deep 
inside solid tumors. To date, ACT with CAR T cells is the preva-
lent type of immunotherapy to treat solid tumors.

Neuroblastoma (Nb)
Neuroblastoma is the most common extracranial solid tumor 
of childhood and the third most common cause of pediatric 
cancer death (29–32). Despite conventional multimodal 
therapy, patients with high-risk NB have a poor prognosis due 
to high relapse rate (33). Since 1999, tremendous efforts and 
funds have been dedicated to discovering and testing various 
forms of immunotherapy to control refractory/recurrent NB 
(Table  1). To date the most studied NB-associated antigen 
(NBAA) identified is the ganglioside GD2 expressed on a 
subset of NB tumor cells (34). This discovery heralds in the 
era of GD2-based immunotherapy to treat human NB. The 
current standard of care for refractory/recurrent NB in human 
is anti-GD2 therapy, which recognizes and binds GD2 (34–39). 
However, because GD2 is also expressed on pain fibers, this 

therapy has side effects that include severe pain requiring 
continuous opiate infusions (34). Because of the paucity of 
identified NBAAs, all CAR clinical trials are GD2-based or 
variations thereof (38, 40–45) (Table 1). It is still early to know 
whether these GD2-dependent CAR trials will yield objective 
clinical responses.

The antigen 4Ig-B7-H3 (CD276), a member of the B7 family 
of immune regulators such as CD80, CD86, PD-L1, PD-L2 and 
ICOSL, is expressed in a subset of NB tumors (46–49). In mouse 
and human, 4Ig-B7-H3 is expressed on many normal tissues 
such as spleen, lymph nodes, thymus and fetal liver as well as 
other tumors. However, its expression is induced on DCs and 
macrophages by inflammatory cytokines. 4Ig-B7-H3 binds to 
a yet to be identified cognate receptor induced on activated  
T and NK  cells, and blockade of this interaction results in 
reduced interferon γ production and loss of cytotoxic activity 
of these cells. In mice, deficiency or blockade of B7-H3 leads to 
improved antitumor immunity suggesting that B7-H3 check-
point may serve as a novel target for immunotherapy against 
cancers (50). Indeed, a mouse mAb anti-B7-H3 conjugated to 
iodine 131 (131I-burtomab) has been designed to bind and 
directly kill NB  cells. 131I-burtomab is recently designated 
a breakthrough drug to treat metastatic NB by the Food 
and Drug Administration and a clinical trial has been filed 
(NCT03275402). The immune status of NB tumors treated with 
131I-burtomab has not been published. It would be interesting 
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to know whether the antitumor activity of burtomab results 
from direct killing of tumor cells or activated DCs thus reacti-
vating existing anti-NB immunity. Although no published data 
are available to show the feasibility of B7-H3 CAR T cells for the 
treatment of human NB, two patents have been filed for such an 
invention (US Application No. 14/779,586; US Application No. 
61/805,001; PCT Application No. PCT/US2014/031543 and 
PCT Application No. PCT/US2016/050887; US Application 
No. 62/216,447). It remains to be determined whether B7-H3 
CAR T  cells can inhibit NB tumor growth and whether the 
potential antitumor activity of B7-H3 CAR T  cells is due to 
killing of intratumoral suppressive DCs/macrophages or tumor 
cells or both.

The anaplastic lymphoma kinase (ALK or CD246) is a 
receptor protein tyrosine kinase predominantly expressed 
in the central nervous system (CNS) and peripheral nervous 
system in mouse and human suggesting its role in normal brain 
development and function (51). A series of studies show that 
Alk is frequently mutated (mainly ALKR1275Q and ALKF1174L) 
and duplicated in high-risk NB tumors (52–58). The ALKR1275Q 
mutation results in a constitutively active kinase suggesting a 
role for ALK in NB development. However, mice harboring 
human ALKR1275Q or ALKF1174L alone do not develop aggressive 
NB irrespective of genetic background (53, 57). In the contrary, 
animals having both MYCN amplification and ALKR1275Q or 
ALKF1174L mutation succumb to NB at a higher rate (53, 57). 
These findings suggest that mutations in Alk are necessary but 
not sufficient to drive aggressive NB development. Because ALK 
is a cell surface kinase, developing CAR T cells targeting ALK 
has been suggested. Indeed, in a xenogeneic NSG mouse model 
for NB, human ALK CAR T cells can eradicate ALK-positive 
tumors; both tumor antigen and receptor density governs the 
efficacy of these CAR T cells (59). Clinical trials have not been 
initiated.

Although CAR T-cell therapy is being propelled to the fore-
front, problems exist that need further investigation. Production 
of CAR T  cells requires the identification of tumor-associated 
antigen (TAA), generation of an antibody or T-cell receptor 
(TCR) capable of recognizing the TAA, cloning of genes encod-
ing the antibody or TCR to be introduced into isolated tumor-
infiltrating lymphocytes or haploidentical T  cells. For most 
pediatric solid tumors, the identity of TAAs is still unknown and 
neoantigen load is low thus limiting the use of CAR T cells for 
this group. In patients with solid tumors for which TAAs have 
been identified, the use of CAR T cells has proven less effective 
than in patients with fluid tumors. Recent data are showing a 
previously unpredicted phenomenon observed in patients 
treated with CAR T cells: the emergence of tumor cells that have 
lost expression of the TAA targeted by CAR T cells, undoubt-
edly due to negative selection imposed by CAR therapy (60–62). 
New evidence demonstrates that CAR T cells once in the tumor 
microenvironment (TME) may suffer from exhaustion caused 
by suppressor cells including myeloid-derived suppressor cells 
or CD4+ regulatory T (Treg) cells present in the TME (63–65). 
Perhaps a more dangerous issue arisen is the development of 
cytokine release syndrome (CRS) (66, 67) and neurologic toxic-
ity observed in patients undergoing CAR therapy (68).

To circumvent problems posed by CAR T cells, we propose 
that perhaps the most effective strategy to control solid tumor 
growth is one that does not require identifying TAAs and cor-
responding tumor-reactive CD8+ T cells, can enhance effector 
activity of CD8+ T  cells, and can simultaneously eliminate 
immune suppression within the TME. Our recent studies 
suggest that such an approach is attainable. We show that by 
targeting the histone reader Cbx3/HP1γ, we can enhance the 
tumor killing capacity of effector CD8+ T cells (69, 70). As a 
result, adoptive transfer of Cbx3/HP1γ-deficient CD8+ effector 
T cells alone into wild type (wt) tumor-bearing mice greatly 
reduces NB growth. Within the NB TME of Cbx3/HP1γ-
deficient mice or wt mice treated with Cbx3/HP1γ-deficient 
CD8+ T cells, we detect an increase of Klrk1/NKG2D+ infiltrat-
ing CD8+ effector T  cells and a decrease in CD4+ Treg cells. 
PD-1 and Pdl1 expression is not altered in CD8+ T cells or NB 
tumors, respectively. Moreover, Cbx3/HP1γ-deficient CD8+ 
T  cells appear to have overcome exhaustion. These findings 
suggest that targeting Cbx3/HP1γ can represent an alternative 
and rational therapeutic approach to control NB as well as 
other solid tumors.

Other Pediatric solid tumors (cNs 
tumors, sarcomas, and Nasopharyngeal 
sarcomas)
As for NB, there is a dearth of identified TAAs available for the 
formulation of CAR therapy to treat most pediatric solid tumors 
(71–73). Tumor immunity against pediatric solid tumors is 
not completely understood. The human epidermal growth 
factor receptor 2 (HER2) is expressed on pediatric as well as 
adult glioblastoma, glioma, and medulloblastoma tumors, 
and overexpression of HER2 has been associated with poorer 
prognosis. In animal models, HER2 CAR T  cells efficiently 
cause the regression of CNS tumors. These preclinical studies 
have paved the way for a few HER2-based CAR clinical trials 
(74–77) (Table 2); results of these trials are not yet available. 
It would be crucial to determine whether HER2-targeted CAR 
therapy will induce the emergence of HER2-negative tumors 
as has been shown in animal models and in patients receiving 
CD19 targeted CAR therapy (60, 61) or will cause CRS as in 
adults (67).

Pediatric nasopharyngeal carcinoma patients with local-
regional bulky and metastatic disease have a poor prognosis 
(78). It is a rare tumor that is almost always associated with 
Epstein–Barr virus (EBV) (78, 79), and EBV-specific cytotoxic 
T lymphocytes (CTLs) can be found in individuals infected with 
this ubiquitous virus. These findings lead to the design of EBV-
based T-cell therapy. In adults, ACT with EBV-specific CTLs is 
more effective in patients with low disease burden while results 
for pediatric trials are not available (80–83) (Table 2).

Prognosis for pediatric patients with recurrent/refractory  
sarcomas is poor, the survival rate ranges from 10 to 30% 
(73). For this group of children, few immunotherapy clinical 
trials are being tested, and past trials using autologous T cells 
(NCT00001566 and NCT 00001564) have not yielded much 
information to advance the field (Table 2).
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tAble 2 | Present and past adoptive immunotherapy for pediatric central nervous system tumors, sarcomas, and nasopharyngeal carcinomas.

Approach status Nct# sponsor Year

Adoptive therapy with autologous T cells following tumor vaccine Completed (Ref) 00001566 National Cancer Institute (NCI) 1999–2012

Adoptive therapy with autologous T cells followed by DC vaccine Completed/no results 00001564 National Cancer Institute (NCI) 1999–2014

Adoptive therapy with allogeneic EBV-specific T cells Recruiting 00002663 Atara Biotherapeutics 1999–present

Adoptive therapy with autologous EBV-specific CTLs Completed/no results 00516087 Baylor College of Medicine 2007–2017

Adoptive therapy with EBV-specific CTLs expressing HER2 CAR Ongoing 00889954 Baylor College of Medicine 2009–present

Adoptive therapy with HER2/CD28 CAR T cells Recruiting 00902044 Baylor College of Medicine 2009–present

Adoptive therapy with autologous EBV-specific CTLs Completed/no results 00953420 Baylor College of Medicine 2009–2017

Adoptive therapy with CMV-specific CTLs expressing HER2 CAR Ongoing 01109095 Baylor College of Medicine 2010–present

Adoptive therapy with haploidentical EBV-specific CTLs Ongoing 01447056 Baylor College of Medicine 2011–present

Adoptive therapy with CD22 CAR T cells Recruiting 02315612 National Cancer Institute (NCI) 2014–present

Adoptive therapy with glycan 3-specific autologous CAR T cells Not yet recruiting 02932956 Baylor College of Medicine 2016–present

Adoptive therapy with NY-ESO-1 TCR transduced PBMC and  
NY-ESO-1 DC vaccine

Recruiting 02775292 Jonsson Comprehensive Cancer  
Center

2016–present

Infusion of autologous NK cells following peripheral blood stem  
cell transplant

Ongoing/no results 01287104 National Cancer Institute (NCI) 2011–present

Infusion of in vitro-activated/expanded NK cells Completed/no results 01875601 National Cancer Institute (NCI) 2013–2016

Infusion of in vitro-activated/expanded NK cells Completed/no results 01875601 National Cancer Institute (NCI) 2013–2016

Infusion of CD133+ autologous stem cells followed by haploidentical 
NK cells

Recruiting 02130869 St. Jude Children’s Research Hospital 2014–present

Infusion of donor NK cells following haploidentical hematopoietic cell 
transplant

Recruiting 02100891 Monica Thakar Medical College of 
Wisconsin

2014–2016

EBV, Epstein–Barr virus; HER2, human epidermal growth factor receptor 2; CMV, cytomegalovirus.

4

Le and Thai Cell-Based Immunotherapy for Pediatric Solid Tumors

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1640

Some studies have shown that the cancer-testes antigen 
NY-ESO-1 is expressed on a subset of pediatric tumors, which lead 
to a trial using T cells engineered to express NY-ESO-1-specific 
TCR (NCT02775292) (84) (Table  2). HER2 CAR therapy has 
also been proposed to treat sarcomas (85). CAR T cells targeting 
glypican-3, a proteoglycan expressed on a small number of solid 
tumors (86), are being tested in clinical trials to treat pediatric 
solid tumors (87) (NCT02932956). Data are not yet available for 
these trials.

The lack of available immunotherapy for pediatric solid 
tumors may be due to the paucity of identified TAAs, and few 
basic studies designed to understand tumor immunity during 
development from infancy to young adulthood in either mouse 
or human. As a result, most of these trials are based on those that 
have been designed to treat adult solid tumors.

ADOPtive NK- AND NAtUrAl Killer  
t (NKt)-cell tHerAPY

Natural killer cells and NKT  cells have been shown to play 
crucial roles in antitumor immunity by directly killing tumor 
cells or indirectly through antibody-dependent cellular cyto-
toxicity. Based on results from preclinical studies (88–90), 
several clinical trials have been initiated to test the ability 
of in  vitro-activated/expanded or engineered NK  cells and 
NKT  cells to control pediatric solid tumors including NB 
(91, 92) (Tables  1 and 2). Results of these trials are not yet 
available to indicate whether NK- or NKT-cell therapy would 
be a viable option.

Nonetheless, clinical data have demonstrated that despite 
the large number of NK  cells infused, the antitumor effects 
of these cells have been modest in adults. NK and NKT cells 
express a number of inhibitory receptors that bind to MHC 
class I and other molecules. Additionally, NK and NKT cells are 
sensitive to various inhibitory molecules within the TME (93). 
Moreover, we show that the frequency of NK and NKT cells in 
NB tumors is low, and no differences are detected in tumors 
from wt or Cbx3/HP1γ-deficient mice yet NB tumor growth is 
greatly abrogated in Cbx3/HP1γ-deficient mice (70). Our find-
ings imply that NK or NKT cells may not play an important role 
in controlling NB tumor growth.

DiscUssiON AND FUtUre DirectiONs

In the past 40–50  years, pediatric oncologists have made sig-
nificant, basic advances toward our understanding of molecular 
pathways driving the development of tumors in children. This 
achievement hinges on the belief that cancer pediatric patients 
represent a distinct demographic group, and the biology of their 
tumors is fundamentally different from that of adults.

Adult cancer immunotherapy is experiencing a renaissance 
while that of children is still at its infancy. The momentum that 
drives adult cancer immunotherapy is built upon decades of 
basic research designed to understand how an adult immune 
system responses to tumors developing within an adult host. 
Thus, there is a need to recognize that pediatric cancer patients 
represent a distinct demographic group whose immune system 
is fundamentally different than that of mature adults.
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Fetal and adult T cells are distinct populations that arise from 
different hematopoietic stem cell populations present at different 
developmental stages (94), and human NK cells follow similar 
developmental evolution (95, 96). Notably, fetal CD4+ T  cells 
are poised to differentiate into CD4+ Treg cells upon allogeneic 
stimulation. Indeed, human fetus and cord blood (CB) contains 
an abundance of phenotypically naïve CD25+CD4+ Treg cells, 
but functionally mature, capable of suppressing T- and NK-cell 
proliferation and function (97–101). Similar suppressive 
mechanism is observed in the mouse fetus (102). Thus, T- and 
NK-cell lineages in the developing human or mouse are biased 
toward immune tolerance mediated by active suppression of 
early immunity; in some instances, this suppression persists 
at least until early adulthood (101). The tolerogenic tendency 
of fetal/neonatal immune system can be attributed to marked 
differences in response to alloantigens between human fetal 
and adult DCs. Fetal DCs strongly promote Treg-cell induction 
and inhibit T-cell tumor-necrosis factor-α production when 
cultured with alloantigens (103). This may explain why CAR 
T  cells once in the NB TME often suffer from exhaustion. In 
addition to functional disparities, neonatal and adult immune 
systems differ quantitatively. Overall, there is a greater number 
of circulating CD4+ T cells and a lower number of CD8+ T cells 
in neonates compared to adults (104). Consequently, the ratio 
of CD4:CD8 is higher in neonates than adults. Together these 
results suggest that for some children, the persistence of fetal 
immune suppression, mediated by fetal CD4+ Treg cells, and the 
lower number of CD8+ T cells may render their immune system 
incapable of surveilling and eradicating tumor. Therefore in the 
future, it might be essential to study the effects of persistent 
fetal immune suppression on tumor development and growth. 
If the persistence of fetal immune suppression does influence 
antitumor immunity in pediatric patients, it would be crucial to 
determine the developmental age at which intervention can be 
mounted to prevent tumorigenesis and growth without break-
ing tolerance. Clinically, it might be important to collect data on 
the immune status of children bearing solid tumors in addition 
to dissecting their tumor immune environment. Results from 

these studies might help direct the design of T- and NK-cell 
therapies that can circumvent suppression and prevent exhaus-
tion induction.

In adult tumors, mutation load appears to correlate with 
tumor immunity. However, the number of somatic mutations in 
pediatric solid tumors is low. In the future, it would be necessary 
to determine mechanisms controlling tumor immunity inde-
pendent of somatic mutation loads in pediatric patients.

For this demographic group, perhaps the most effective 
strategy to control solid tumor growth is one that does not 
require identifying TAAs or neoantigens and their corre-
sponding reactive CD8+ T cells, can enhance effector activity 
of CD8+ T cells, and can simultaneously eliminate immune 
suppression within the TME.

We believe these are crucial issues that need to be addressed 
in order to move the field of pediatric adoptive cancer immuno-
therapy to the fore. Until there is a will to allow for the funding  
of such studies and those that are outside traditional belief, chil-
dren with cancers will continue to be treated as adults, and may 
not benefit from the cancer immunotherapy renaissance.
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