
Terminus enables the discovery of data-driven, robust

transcript groups from RNA-seq data
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Abstract

Motivation: Advances in sequencing technology, inference algorithms and differential testing methodology have
enabled transcript-level analysis of RNA-seq data. Yet, the inherent inferential uncertainty in transcript-level abun-
dance estimation, even among the most accurate approaches, means that robust transcript-level analysis often
remains a challenge. Conversely, gene-level analysis remains a common and robust approach for understanding
RNA-seq data, but it coarsens the resulting analysis to the level of genes, even if the data strongly support specific
transcript-level effects.

Results: We introduce a new data-driven approach for grouping together transcripts in an experiment based on their
inferential uncertainty. Transcripts that share large numbers of ambiguously-mapping fragments with other tran-
scripts, in complex patterns, often cannot have their abundances confidently estimated. Yet, the total transcriptional
output of that group of transcripts will have greatly reduced inferential uncertainty, thus allowing more robust and
confident downstream analysis. Our approach, implemented in the tool terminus, groups together transcripts in a
data-driven manner allowing transcript-level analysis where it can be confidently supported, and deriving transcrip-
tional groups where the inferential uncertainty is too high to support a transcript-level result.

Availability and implementation: Terminus is implemented in Rust, and is freely available and open source. It can
be obtained from https://github.com/COMBINE-lab/Terminus.

Contact: rob@cs.umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing has become the de facto standard for analyzing
transcriptomes, and has found myriad applications from differential
expression analysis, to the discovery and assembly of rare isoforms.
Despite its widespread use, transcriptome analysis via RNA-seq
poses a number of computational challenges. For example, reliably
mapping or aligning short RNA-seq reads to the reference transcrip-
tome and quantifying the abundance of transcripts is central to most
typical RNA-seq analyses. Due to the nature of shared sequences in
the reference transcriptome and genome, the simple problem of find-
ing the locus of origin for a particular read sequence can be quite dif-
ficult. The complexity results both from alternative splicing, where
the isoforms of a single gene can share multiple identical exons, and
from very similar sequences arising in families of related genes.
These challenges make the read sequence alone insufficient to deter-
mine the origin of the sequencing read. In such a scenario, a single
read often maps equally well to multiple reference sequences. This
ambiguity in determining the exact target sequence propagates dir-
ectly to the process of quantification, where it becomes hard to

determine transcript-level expression when there is insufficient evi-
dence to choose some transcripts over others as the true origin of
sequencing reads.

To tackle these challenges, there has been tremendous growth in
the space of computational tools that can effectively align (Dobin
et al., 2013; Kim et al., 2015; Langmead and Salzberg, 2012) short
RNA-seq reads to transcriptome and tools that can quantify (Dao
et al., 2014; Glaus et al., 2012; Li and Dewey, 2011; Patro et al.,
2014, 2017; Turro et al., 2011) the abundance of transcripts.
However, the inherent uncertainty in transcript abundance that
results from ambiguous fragment alignment, even after attempting
to model this uncertainty in either a maximum likelihood or
Bayesian estimation framework, makes it difficult—and in some
cases impossible—to provide a single accurate estimate for the num-
ber of reads originating from a specific transcript in a given sample.
Gibbs sampling is a useful technique for estimating marginal or joint
statistics of complex posterior distributions, and has been used by
mmseq (Turro et al., 2011), BitSeq (Glaus et al., 2012), RSEM (Li
and Dewey, 2011) and Salmon (Patro et al., 2017) in uncertainty
quantification in expression estimation. This provides downstream
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tools with the ability to analyze the full posterior, instead of just
providing a point estimate.

Furthermore, different downstream tools such as mmdiff (Turro
et al., 2014), IsoDE (Al Seesi et al., 2014), sleuth (Pimentel et al.,
2017) and swish (Zhu et al., 2019) make use of these estimates in
order to estimate differentially expressed transcripts or genes with
higher accuracy and robustness. While taking samples from the pos-
terior probability distribution provides some insight about the valid-
ity of the point estimates for transcript abundances, and this
uncertainty can be propagated for the purposes of differential test-
ing, it is often possible for a particular transcript to not exhibit ex-
pression in the point estimate altogether, in which case it becomes
invisible to the analysis tools. Such cases were noted by Turro et al.
(2014), who further suggested grouping together transcripts whose
abundance could not be confidently estimated into transcriptional
groups. Specifically, it was demonstrated that there exist numerous
cases where the abundance of an individual isoform cannot be reli-
ably estimated, but the abundance of a small group of related iso-
forms can be determined accurately and robustly.

In a distinct context, but as a result of the same underlying cause
of fundamentally multimapping reads, Robert and Watson (2015)
note that these difficulties in mapping can lead to errors in quantifi-
cation that affect genes of relevance to human disease. Crucially,
they highlight that this issue occurs even at the level of genes, and is
of concern even if one is not performing a transcript-level analysis.
In addition to describing this issue, they identify specific groups of
disease-related 958 genes that are affected by this problem, and sug-
gest a gene-level analysis approach whereby groups of genes that
share multimapping reads are treated jointly for the purposes of ex-
pression estimation and differential analysis. While this approach is
quite robust, it is also very conservative, since it precludes
transcript-level analysis altogether. Furthermore, depending on the
set of all fragments sequenced in a sample, it may still be possible to
confidently assess the abundance of a gene, or even a single tran-
script, even if it shares a large number of mulitmapping reads with
other sequenced targets. There may then be utility in directly exam-
ining the posterior distributions of abundance estimates to deter-
mine when multimapping leads to a high degree of uncertainty in
estimating expression, and when, despite the presence of multimap-
ping reads, the abundance of a transcriptional target can be confi-
dently assessed.

The mmcollapse tool (Turro et al., 2014) exploits the posterior
samples generated by mmseq (Turro et al., 2011) to identify tran-
scripts with highly anti-correlated posterior distributions. Some of
the transcripts in these groups would otherwise not be properly esti-
mated (would have estimated abundances of 0), or would have such
variable posterior estimates that they could neither be quantified
confidently nor meaningfully tested for differential expression.
However, when the transcripts are treated as inferential groups
among the experimental samples, they can be robustly quantified
and the group can be assessed for differential expression.

One of the major caveats of this approach is the particular choice
of summary statistics used in order to identify similar groups.
Specifically, mmcollapse attempts to group transcripts such that the
minimum pairwise correlation is not too low. While this is a useful
feature to assess, we find that it does not always accord with intu-
ition about which transcripts should be grouped as it does not spe-
cifically account for inferential uncertainty would be reduced by
grouping a specific pair of transcripts. Furthermore, the approach
taken by mmcollapse is both extremely memory intensive (as all pos-
terior samples, for all expressed transcripts and for all samples in the
experiment, must be held in memory simultaneously) and quite time
consuming, as the posterior correlations are computed in every iter-
ation of the algorithm, even among completely unrelated transcripts
that have little chance of producing promising candidates for group-
ing. Finally, mmcollapse is, arguably, overly conservative in the con-
straints is places on transcripts that may be considered as candidates
for grouping. For example, only transcripts with no uniquely map-
ping reads are considered as potential candidates for collapse.
However, we observe that even transcripts with a few uniquely map-
ping reads may exhibit a large degree of uncertainty in their

quantification estimates depending on the total number of reads
mapping to such transcripts and the complexity of the patterns of
multimapping with related transcripts.

Terminus, the tool presented in this article, attempts to address
these shortcomings. It takes motivation from mmcollapse (Turro
et al., 2014) as well as from the method proposed in ‘Surface simpli-
fication using quadric error metrics’ (Garland and Heckbert, 1997),
a notable work in the field of computer graphics, in which densely
tessellated shapes are simplified by approximating (coarsening) the
mesh that represents the object. In ‘Surface simplification using
quadric error metrics’, Garland and Heckbert (1997) argue that one
way of achieving a visually appealing approximation is to start with
the equivalent network of the visual model and repeatedly contract
edges of the network in a manner that leads to minimal visual distor-
tion of the overall shape.

In the same spirit, terminus reformulates the problem of discov-
ering meaningful inferential groups as a graph simplification prob-
lem in which the (sparse) graph that defines what transcripts should
be considered as candidates for collapsing is constrained by the read
multimapping and conditional probability structure conveyed via
the range-factorized equivalence classes (Zakeri et al., 2017) pro-
duced by Salmon. This avoids the need to even consider the vast ma-
jority of possible collapses. Further, terminus uses the reduction in
inferential relative variance (Zhu et al., 2019)—the reduction in in-
ferential uncertainty that would result by grouping together pairs of
transcripts—directly as a metric for optimization. We show that this
approach is extremely computationally efficient, and that it leads to
groups of transcripts that are both biologically and inferentially
meaningful. In complex transcriptomes (like human or mouse), our
approach reduces the memory requirement by over two orders of
magnitude compared to mmcollapse, and is simultaneously two
orders of magnitude faster. We validate our results in both simulated
and experimental datasets, and present time and memory bench-
marks for running these tools.

2 Materials and methods

Numerous quantification tools, including mmseq and Salmon, en-
code the structure of mapping ambiguity in the form of equivalence
classes. Terminus makes use of a collection of range-factorized
equivalence classes (Zakeri et al., 2017) obtained from Salmon.

The overview of the mathematical model for Salmon is outlined
in Supplementary Section S1. Here we would discuss the data struc-
tures that are relevant for terminus. Given a set of transcripts T and
a set of read sequencesR, a set of equivalence classes E, is defined as
a function from the domain of set of transcripts t � T to a natural
number denoting the number of reads that are mapped to that group
of transcripts, formally E : PðT Þ !Nþ, where, PðT Þ is a power set
of all transcripts. In practice the size of the domain of E is much
smaller than 2jT j � 1. Furthermore Salmon extends the notion of
naive equivalence classes by adding the measure of mapping quality.
Range-factorized equivalence classes can be defined as,
E : PðT �NþÞ !Nþ. In effect each equivalence class consists of a
set of pairs (ti, wi) denoting transcript ti and a number wi 2 ð0;1�
representing the average conditional probability with which the
fragments in this equivalence class arose from transcript ti.
Depending on the granularity with which the range-factorized
equivalence classes are defined, the equivalence relation between
fragments is determined by the bin, within the range of conditional
probabilities, into which they fall with respect to each transcript to
which they map. Complete details of how this relation is defined can
be found in Zakeri et al. (2017). Along with these preliminary struc-
tures, Salmon also computes Gibbs chains G, providing samples
from the posterior distribution of the model. To be precise, each
element gi 2 G contains the estimated fragment counts for transcript
i, taken over all (possibly thinned) iterations of Gibbs sampling.

Our goal is to use the range-factorized equivalence classes E and
the posterior samples G to determine groups of transcripts that ex-
hibit high inferential uncertainty, and then to collect them together
into robust transcriptional groups for which the posterior
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uncertainty is considerably lower. To avoid the exponential space of
possible groups, we use the structure over transcripts induced by E
to guide our search, and further restrict each iteration of the algo-
rithm to perform a single pairwise collapse.

First, we collapse transcripts that appear in exactly the same set
of equivalence class labels and that have near-identical conditional
probability vectors. These are transcripts for which, even without
examining the posterior samples, it is clear that no inference algo-
rithm will have sufficient information to tell apart. Specifically, we
accomplish this collapse using a partition refinement algorithm
(Paige and Tarjan, 1987) where all transcripts start out within a sin-
gle partition P0. We then iterate over E and determine the partitions
that should be induced with respect to the current equivalence class
e 2 E. This is simply the subsets of transcripts that have nearly iden-
tical conditional probabilities with respect to e. For each such subset
r in e, we refine the current partitioning Pi into Piþ1 by replacing
each set Sj in Pi that contain elements from r with Sj [ r and Sjnr.
This process is performed iteratively until we have processed all of
the equivalence classes in E.

Next, we define a graph F ¼ ðV;EÞ, constructed over E designed
to encode the likely candidate transcripts for grouping. We define V
to be the set of transcripts quantified, where fvi; vjg is an edge in E if
the transcript vi and vj co-occur in some equivalence class, and either
of indication function hðviÞ or hðvjÞ is true, and sðvi; vjÞ � s. Here
hð�Þ is an indicator function that determines if a transcript is, when
considered in isolation, a good candidate for possible grouping. We
define hð�Þ as,

hðviÞ ¼ 1; if meanðgiÞ � 1 and
maxðgiÞ �minðgiÞ

meanðgiÞ
> k

0; otherwise;

8<
: (1)

where k is a user-defined parameter set to 0.1 by default. The score
function sðvi; vjÞ � s is designed to measure the improvement (de-
crease) in inferential uncertainty obtained by grouping vi and vj to-
gether. We define

sðvi; vjÞ ¼ infRVgiþgj
�

infRVgi
þ infRVgj

2
(2)

where,

infRVgi
¼ maxð0; varðgiÞ �meanðgiÞÞ

meanðgiÞ þ p
þ s (3)

Where p is a pseudocount (we use 5 in terminus) and s is a small
global shift (we use 0.01 in terminus). The infRV� function measures
the inferential relative variance, and the definition is taken from
Zhu et al. (2019). The motivation for dividing by the mean is to sta-
bilize the quantification of uncertainty across transcripts with low
or high expression. Here, a negative value of sð�; �Þ indicates that,
when we sum the posterior samples of the two transcriptional units,
the inferential relative variance is less than the average of the infer-
ential relative variance of the individual units. When the value of
sð�; �Þ is sufficiently low (see Fig. 1a), then grouping these units to-
gether results in a substantial reduction in uncertainty by treating
the pair of transcriptional units as a single group. A specific example
of such collapse for two transcripts from human is shown in
Figure 2. In practice, we set the threshold for grouping (s) in a data-
driven manner by constructing a ‘background’ distribution over the
values resulting from evaluating sð�; �Þ on a large number of random-
ly selected, expressed transcripts. We note that almost all pairs are
not good candidates for collapsing, and so these random draws
allow us to approximate sampling from the null distribution of
scores for transcripts that should not be grouped. We call this back-
ground distribution B.

Given a set of transcripts T , the possible number of transcript
pairs to consider for collapse can be OðjT j2Þ. For an organism with
a large number of annotated transcripts (such as human or mouse),
it is not computationally feasible to enumerate over such a large dis-
tribution. Therefore, for choosing a desirable threshold s, we use an
iterative sampling approach described in Algorithm 1. Specifically,

we exponentially increase the number of samples we draw until the
resulting threshold s that we would infer changes by less than some
small quantity (we use 0.1%). The convergence of Algorithm 1
(steps plotted in Fig. 1b) ensures that the final threshold captures a
close enough approximation to the true desired value. We set the
threshold as a quantile of the background distribution, and choose
2.5% by default. The choice of the percentile is empirical, and
chosen so that very few ‘independent’ transcripts might be mistaken-
ly grouped together. This parameter can be used to control sparsity
of the graph.

Figure 1a plots the relation between the scoring function s(i, j)
defined in Equation (2) and sum of the means of Gibbs samples gi

and gj, corresponding to individual transcripts i and j. The red line
shows where the empirical cut-off falls (which changes from one ex-
periment to another). The points below the red line are candidates
for grouping.

Given, a graph F, a set Gibbs samples G, and a threshold s, ter-
minus follows an iterative algorithm for collapsing transcripts. By
construction of F, an edge fvivjg 2 E has three different attributes:
(i) the score sðfvivjgÞ, (ii) a set of equivalence classes eqlistðfvivjgÞ
where vi and vj co-occur and (iii) the total number of reads cðfvivjgÞ
that are shared between transcripts corresponding to nodes vi and vj.
Terminus starts off by constructing a min-heap H (Cormen et al.,
2009) over the set of edges E where the key for each edge is by the
score function evaluated on the vertices sharing this edge. Terminus
then iterates over H until it becomes empty, at each step collapsing
the edge that was popped from the heap.

In each iteration t, starting with the current state of graph and the
Gibbs samples, ðFt;GtÞ, terminus pops an edge fvivjg from the heap
with the minimum score and collapse the corresponding end points of
the edge and produces a state ðFtþ1;Gtþ1Þ. The actual collapse process
has a number of cases, but in essence, after collapsing, nodes vi and vj

in the graph Ft becomes a single node in Ftþ1. Simultaneously, the cor-
responding vectors gi and gj from Gt are added to obtain gi (to make
collapsing more efficient, we associate the collapsed pair with some
node i from the original endpoints) in Gtþ1.

The collapsing algorithm involves updating the information of
the existing edges, and pushing appropriate edges on the heap. At
any iteration, given a graph Ft and the edge fvivjg that has to be col-
lapsed, terminus deletes the edge fvivjg and includes either of the

Algorithm 1: Threshold s selection algorithm
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two nodes, say vi (without loss of generality, in practice keeping the
smaller numeric index, i.e. i< j) in Ftþ1. Terminus updates Gtþ1 as
gi  gi þ gj.

The edge set of Ftþ1 is determined as follows: given the set of ad-
jacent nodes of vi and vj in Ft, denoted as adjtðviÞ and adjtðvjÞ, any
affected node x 2 adjðviÞ [ adjðvjÞ is handled in one of the three
cases (See Fig. 3) below:

Case 1: Given x 2 adjðviÞ and x 62 adjðvjÞ, an edge fxvig is added to Ftþ1,

terminus recalculates sðx; viÞ. If sðx; viÞ is smaller than s, then the edge

with the updated sðx; viÞ is pushed into the min heap H. The eqlist() and

corresponding counts for the pair remain unchanged as this edge already

existed in Ft.

Case 2: Given x 62 adjðviÞ and x 2 adjðvjÞ, a new edge fxvig is added to

Ftþ1, terminus calculates sðx; viÞ. If sðx; viÞ is smaller than s, then the

edge with the updated sðx; viÞ is pushed into the min heap H. The eqlist()

and corresponding counts for fxvjg are copied over to edge ðx; viÞ, since

in the new stated vi and vj are deemed to be identical.

Case 3: Given x 2 adjðviÞ and x 2 adjðvjÞ, then x, vi and vj forms a

triangle in Ft. From all three edges only the edge fxvig is added to Ftþ1.

Terminus calculates sðx; viÞ, if sðx; viÞ is smaller than s, then the

edge with the updated sðx; viÞ is pushed into the min heap H. The

equivalence class list for newly added edge fxvig is recalculated as:

eqlistðfxvigÞ ¼ eqlistðfxvigÞ [ eqlistðfxvjgÞ. The union of the equiva-

lence class ids saves the edge from over counting those equivalence

classes that are shared between all three transcripts x, vi and vj.

In the same fashion, the reads that are shared between x and vj are

transferred to the edge fxvig. The shared read counts are calculated as

follows

cðfxvigÞ ¼ cðfxvigÞ þ cðfxvjgÞ �
X

e2\i;jx

cðeÞ

Here, \i;jx signifies a set of shared equivalence classes.

All other nodes and edges remain unchanged in the iteration and
are simply ‘copied over’ to Ftþ1. Similarly, all elements of Gt would
be copied over to Gtþ1 except the changed element gi and removal of
the element gj. We observe that the cardinality of F and G monoton-
ically decreases, ensuring convergence.

Note that throughout the algorithm, the heap maintains the
property that any edge currently present in the heap has a score less
than empirical threshold s. However, when one endpoint of an edge
is modified, the corresponding score of the edge is not directly modi-
fied in the heap; such an edge is considered to be ‘stale’. In order to
keep the process of grouping efficient, terminus reuses the same
graph in all iterations, keeping state information (i.e. a ‘last modi-
fied’ timestamp) encoded as an attribute of the edge. When an edge
is updated terminus just updates the corresponding attribute. When
an edge is popped from the heap, we first check to ensure that it is
not stale before processing the collapse. If the edge is stale, then we

Fig. 1. The inferential gain versus the mean of the candidate pairs and the convergence of terminus algorithm. (a) The reduction in uncertainty, defined by the score metric in

Equation (2) versus the sum of the mean read counts for the individual transcripts of the pair. The cut-off is chosen in a data-driven manner. (b) The convergence of minimum

InfRV in consecutive iterations

Fig. 2. Demonstration of uncertainty reduction by collapsing. Individual transcripts

ENST00000344113.8 and ENST00000358025.7 are collapsed, and the correspond-

ing InfRV is also reduced
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recalculate its score and either perform the collapse or re-insert the
edge in the heap.

Most typical RNA-seq experiments are comprised of multiple
replicates. The process described above, however, is carried out indi-
vidually per-sample. Terminus takes a two-step approach in order to
find coherent groups across the multiple replicates that comprise an
experiment. It first groups the individual samples separately, and
writes the groups for each sample. This step can be trivially parallel-
ized. After obtaining individual groups, terminus follows a consen-
sus algorithm in order to find a set of groups to use across all
samples.

The consensus procedure starts with individual groups, and con-
structs a union graph by treating each of the groups as a complete
connected undirected graph (clique). For example: given two differ-
ent groups fvi; vj; vkg from one sample and fvi; vjg from another,
terminus first constructs a weighted triangle with end points vi, vj

and vk where each edge has a weight 1. While considering the se-
cond group, terminus increases the weight of edge fvi; vjg by 1. This
iterative procedure generates a weighted graph ensuring any edge in
the graph represents two transcripts that belong to the same group
in at least one sample. Terminus further prunes the union graph and
removes the edges that have a weight below a user-defined thresh-
old. The consensus mechanism ensures that a pair of transcripts
should at least co-occur in a specified number of samples to qualify
for the final grouping. Subsequently the final group that is common
for all the samples is extracted by writing the connected components
of the pruned graph. Note that these groups are deemed to be uni-
versal across samples and replicates. The default consensus thresh-
old is 1

4 �m where m is the number of samples in the experiment.

2.1 Datasets and evaluation
Different datasets, including both simulated and experimental data
and ranging across different organisms were used to demonstrate
the benefit of using collapsed groups and the ability of terminus to
determine meaningful and robust groups.

Simulated dataset on Human: We used polyester Frazee et al.
(2015)-generated simulated RNA-seq data, curated by Love et al.
(2018), to assess accurate estimation when the true expression is
known. The actual experiment was derived from a joint distribution
of mean and dispersion values from GEUVADIS samples
(Lappalainen et al., 2013). For the current experiment, we have
chosen a 4 versus 4 subset from the original set of 12 versus 12 sam-
ples. The experiments consist of paired-end 100 base pair reads [see
Love et al. (2018) for more details]. We refer to this dataset as simu-
lated 4 versus 4 human dataset.

Simulated dataset with diploid transcriptome from Mouse: The
presence of a fully diploid transcriptome exacerbates the challenges
caused by transcript sequence similarity. The mapping uncertainty
in such case can greatly impair the quantification estimates. To cap-
ture such an extreme scenario, we have produced a diploid tran-
scriptome following the same pipeline described by Raghupathy
et al. (2018). The diploid transcriptome (named as the N�P tran-
scriptome) combines a cross between NOD/ShiLtK (NOD) and
PWK/PhJ (PWK) strains of mice. The final transcriptome is obtained
by running prepare-rsem-reference on the hybrid gtf and
reference genome file. The hybrid gtf is produced by running
g2gtools and emase (Raghupathy et al., 2018). The full script for
producing such a transcriptome is provided in the repository. The
paired-end read files from N�P transcriptome are generated using
polyester with the true counts obtained from running Salmon on a
real mouse RNA-Seq experiment (accession number SRR207106).
We refer to this dataset as simulated allelic mouse dataset.

Experimental RNA-seq samples from Brooks et al. (2011): The
experiment widely known as pasilla (Brooks et al., 2011) is an en-
semble of 6 versus 6 RNA-seq experiment (with NCMI GEO acces-
sion numbers GSM461176 to GSM461181) that studies the effect
of RNAi knockdown of Pasilla, which is the ortholog in Drosophila
melanogaster of NOVA1 and NOVA2 mammalian genes. The same
experiment is also used by Turro et al. (2014) to demonstrate the ef-
fect of grouping.

Given the above mixture of simulated and real experiments, we
have run two sets of tools to produce groups: (i) terminus on the out-
put of Salmon and (ii) mmcollapse. There are different ways to pro-
duce input for mmcollapse. The mmcollapse run is preceded by a
run of mmseq, which takes BAM files as input. To make the com-
parison of mmcollapse and terminus as consistent as possible, we
have used Salmon-produced BAM files for running the mmcollapse
pipeline. For all experiments, Salmon is run with –
numGibbsSamples 100 option in order to generate Gibbs samples.
We used the –hardFilter parameter for producing the BAM files.
In case of hits with different mapping scores, –hardFilter keeps
only the hits with the best score. This parameter is chosen carefully
to follow the equivalent Bowtie (Langmead et al., 2009) parame-
ters mentioned in Turro et al. (2011, 2014).

Evaluation of the quality of the collapsed groups is inherently a
difficult task. Since there can be many possible groupings given a
transcriptome dataset, comparing one grouping versus another
requires biological validation. For simulated datasets, we validated
the results by using the Spearman correlation and mean absolute
relative difference (MARD) between the grouped estimates and cor-
responding true abundances. To be precise a given a grouping P is

Fig. 3. Different possible scenarios that can arise while collapsing a node in graph F. In cases 1 and 2, as the edge property either remains same or transferred to the new edge.

In case 3, the construction of edge explained in case 2 handles the problem of over counting already counted equivalence class (subtracting count of equivalence class e3,cðe3Þ).
The right most plot shows the distribution of the individual Gibbs samples in dotted line along with the Gibbs samples of the collapsed group with much lower uncertainty
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defined as a partition over the set of all transcripts, allowing single-
ton partitions, denoting the un-grouped transcripts form their own
groups. While assessing a particular grouping P, we induce the same
partitioning over the ground truth abundances. Given a set of true
read counts qtrue ¼ fq1; . . . ;qNg for N transcripts and the estimated
counts qest ¼ fq01; . . . ;q0Mg where M is the number of groups (includ-
ing singleton groups), we define a partition P induced on qtrue as,

qP
true ¼

X
tk2pi ; qtk

2qtrue

qtk
;8pi 2 P

( )

We use qP
true and qest for each of the two tools evaluated in the

current manuscript.

3 Results

3.1 Quantification comparison on simulated data
The two different simulated datasets that are used to demonstrate
the utility of the grouping algorithm implemented in terminus pose
challenges of distinct natures. While the simulated 4 versus 4 human
dataset is designed to capture aspects of real-world human transcript
expression, the simulated allelic dataset from mouse represents the
tremendous sequence ambiguity imposed by a diploid transcriptome
and its resulting effect on quantification. We demonstrated that, on
both the datasets, terminus improves the accuracy of quantification
results over Salmon and mmcollapse under diverse metrics.

The simulated 4 versus 4 human dataset contains realistic GC
bias estimated by alpine (Love et al., 2016) from experimental sam-
ples from the GEUVADIS study (Lappalainen et al., 2013). If these
realistic biases are not properly modeled, accurate quantification at
the transcript level is impaired. By virtue of the design matrix, this
experiment simulates differentially expressed transcripts and the
nontrivial variability between the samples can also pose challenging
problems to the collapsing algorithm. The global Spearman correl-
ation and MARD values presented in Table 1 summarizes those met-
rics across eight different samples and takes the average. While
Salmon itself performs fairly well in this dataset, we observe the
groups induced by terminus further improves the accuracy of abun-
dance estimates. The poor performance of mmcollapse is due to very
noisy low abundance values given to truly unexpressed transcripts.
The performance of mmcollapse improves substantially when only
considering truly expressed transcripts.

Figure 4 compares the quantification results at a more granular
level under different constraints on the true and estimated counts.
Among transcripts that are truly expressed, mmcollapse more often
mis-assigns reads compared to Salmon or terminus. The skewness of
histogram from mmcollapse suggests that it tends to underestimate
the true counts of transcripts. This effect is also visible in the corre-
sponding scatter plot at the top left corner. The spread of the red
points signify deviation from the true counts. The scatter plot from
terminus shrinks these mis-estimates toward the diagonal by putting
them into groups improving the overall correlation.

A similar plot for simulated allelic dataset from mouse is shown
in Figure 5. Owing to the diploid transcriptome, we see considerable
ambiguity in the underlying sequence. It reduces the overall correl-
ation for all the tools and further affects the convergence of the
mmcollapse collapsing algorithm. Terminus consistently produces

estimated counts closer to truth. The corresponding scatter plot cap-
ture the shrinkage of the transcripts groups toward the diagonal
which are otherwise mis-estimated by Salmon.

Allelic imbalance: Due to presence of highly similar pairs in a
diploid transcriptome, it is often a challenging task for a quantifica-
tion tool to assign reads to the correct allele, especially when both of
the alleles are equally likely in terms of the confidence of the align-
ment. The proportion of two different alleles present in an experi-
ment is often termed as the allelic imbalance. When the allelic
imbalance is close to 0.5—when both alleles are expressed equally—
accurate estimation becomes particularly difficult. The reason being
the fact that there is almost equal prior for assigning a read to either
of the candidates. In such cases, the maximum likelihood estimators
often prefer one allele over the another, mis-estimating the resulting
abundances. We pinpointed such cases by investigating cases where
the true allelic imbalance is restricted to an interval of 0.45–0.55,
focusing on the region where the uncertainly among the alleles is
highest.

Supplementary Figure S8 plots the allelic imbalance predicted by
Salmon (in y-axis ratio of the expression values for individual alleles
estimated by Salmon) versus the true allelic imbalance (ratio of true
expression of the alleles of a transcript). The color of the point is
determined by the fact if the transcript is grouped by terminus (here
blue when grouped and orange when not). To get a closer look at
the mis-estimation problem in these cases, Supplementary Figure S8
zooms the x-axis to the range 0.45–0.55. We observe for transcripts
with true allelic imbalance 0.5 Salmon either over-estimates or
under-estimates the true allelic imbalance, resulting in the spread
through the entire y-axis. Meanwhile, the cluster of the points near
the very end of x¼0.5 vertical line suggests that in those case all the
reads are assigned to one of the alleles leading to one allelic imbal-
ance estimates of 0 and 1. As the color (signifying grouped/non-
grouped status) suggests, in those cases, terminus correctly identifies
the present uncertainty and groups the alleles together.

To quantify the benefit of grouping in the context of allelic im-
balance, we have considered the cases of mis-estimated dominant
alleles. Specifically, such cases occur when the allelic imbalance ratio
is reversed and the allele that truly has higher expression is estimated
to have lower expression and vice versa. We measured the propor-
tion (rsal) of such cases versus the total number expressed alleles
(counting an allele pair only once). We also measured the same met-
ric after grouping. That is, we measured the ratio (rterm) where the
numerator is the number of mis-estimated dominant alleles that are
not grouped, and the denominator is the number of expressed alleles
where neither allele from the pairs was grouped. For the simulated
allelic dataset, we found rsal to be 0.1 and rterm to be 0.04, signifying
the fact that terminus is capable of preferentially grouping together
alleles whose allelic ratios are highly uncertain, and where the esti-
mates of Salmon are otherwise most likely to be incorrect.

3.2 Quantification on real datasets
The Pasilla dataset is an experimental RNA-seq experiment in
D.melanogaster. It comprises of both single-end and paired-end
RNA-seq reads. Owing to rapid alternative splicing (AS), prevalent
in Drosophila, the organism becomes specifically interesting in the
context of evaluating uncertainty induced by extensive AS. Almost
20–37% multi-exon genes are alternatively spliced (Gibilisco et al.,
2016). The isoforms within a gene that share one or multiple long
exons are often very hard to distinguish, resulting in low-confidence
estimates. As the dataset does not contain the true quantification
values, we measured other biological attributes to validate the
grouping.

From the 30 597 transcripts, terminus and mmcollapse grouped
7904 and 4388 transcripts respectively, distributed in 3025 and
1835 groups. As expected, most of the transcripts in the group ori-
ginate from the same gene. When groups contain transcripts from
multiple genes, these genes belong to either the same gene family or
to a closely related gene family.

Figure 6 depicts this phenomenon through a histogram plot. In
Figure 6a, the x-axis is the number of genes to which all the tran-
script within one group can be mapped. For example, for groups

Table 1. Spearman correlation and mean absolute relative differ-

ence ( MARD) are calculated with respect to ground truth under for

both the simulated 4 versus 4 human dataset (termed as Human),

and the simulated allelic dataset from mouse (termed as Mouse)

Datasets Correlation (Spearman) MARD

Salmon Mmcollapse Terminus Salmon mmcollapse Terminus

Human 0.94 0.78 0.96 0.11 0.15 0.09

Mouse 0.91 0.81 0.95 0.12 0.12 0.07
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Fig. 4. A comparative view of three different tools on the simulated 4 versus 4 human dataset. The scatter plot on the top right panel assesses the performance of estimates ver-

sus truth for three tools mmcollapse, Salmon and terminus. The histogram at the top right corner shows the frequency of mis-estimated transcripts which are not expressed in

the ground truth. Here only those transcripts for which the tools have at least assigned one read are considered. This helps to get rid of the noise introduced by mmcollapse

that leads to degenerate values. The histogram at the bottom right shows the frequency of lowly expressed transcripts. The rest of the transcripts (that are expressed) are shown

in bottom right plot. Here the x-axis (termed as residual) is the difference between the log transcriformed values of true and estimated expression. Negative residual values sig-

nify underestimation while the positive values signify overestimation

Fig. 5. Accuracy of Salmon with and without grouping and mmcollapse on the simulated allelic dataset is shown in the plot. The metrics are similar to that of Figure 4
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that belong to the bar corresponding to x¼1, all transcripts come
from a single gene; meaning that all the transcripts are isoforms of
each other. Similarly, Figure 6b shows another level of summariza-
tion, where the transcripts of a group are mapped back to their gene
families. We see in most of the cases that the groups can be mapped
back to a small number of gene families. This behavior is expected,
as gene families share considerable sequence information and are
likely to give rise to related and uncertain expression estimates.
Note that terminus is agnostic to the annotation of the underlying
organism, yet the data-driven partitions inherently identify the genes
and families annotated in the underlying reference.

We further observe the group sizes (defined by number of tran-
scripts in a group) generated by terminus (largest one being 54) tend
to be larger from that of mmcollapse (largest one being 18). Often
these large groups also identify gene families that share large numbers
of exons. One such example from the groups formed by terminus, con-
sisting 54 transcripts is from the para gene and from the same family
of parathyroid hormone-related protein. This group of proteins are
included in many other groups. Another such group comes from gene
slo or slowpoke that regulates the release of a neurotransmitter.

3.3 Computational performance
Table 2 shows the computational performance of terminus versus
mmcollapse terminus takes considerably less time to compute the
groups and requires much lower memory to run. This enhanced per-
formance derives from two key attributes of terminus. First, ter-
minus does not consider collapsing transcript pairs that do not
appear in any equivalence class. This results in the evaluation of
many fewer pairs. Second, terminus uses the underlying graph struc-
ture induced by the equivalence classes to order and prioritize the
collapses, avoiding the need to constantly recompute candidate
pairs. We observe that the performance of mmcollapse, both in
terms of running time and required memory, greatly varies from one
sample to another. One possible reason for such behavior could be
the variation in the number of non-unique transcripts. While, in the
case of the simulated allelic dataset, mmcollapse ran for a long time
(we terminated the run after 24 h), for Pasilla dataset it finishes rela-
tively quickly. However, we observe that the memory requirement
of the tool often made it very difficult to test it with multiple
threads. In those cases, the mmcollapse run had to be restricted to 1
thread (e.g. on the simulated allelic dataset, running mmcollapse
with even 1 thread required 	214G of RAM). The enormous speed
benefits of terminus suggest that it can be easily incorporated as a

part of standard lightweight RNA-seq workflow for finding out
groups, with very little computational overhead. We note that we
have not included the time and memory requirement for Salmon and
mmseq as mmcollapse is the tool compared with terminus.

4 Conclusion and future work

The presence of non-unique sequences can greatly affect the accur-
acy of transcript quantification. Careful analysis of the posterior
samples from the underlying probabilistic model not only provides a
measure of uncertainty around a point estimate of abundance, but
also indicates which groups of transcripts may have abundances that
are particularly difficult to distinguish individually but which have
estimable abundance as a group. Terminus demonstrates that Gibbs
samples can be used to identify groups of transcripts that exhibit
high inferential uncertainty on their own, but which exhibit much
lower uncertainty as a group. We show how terminus uses the infor-
mation encoded in range-factorized equivalence classes, readily
available after quantification with Salmon, to tremendously acceler-
ate the grouping process. Terminus writes the new expression esti-
mates and posterior samples with the group information in the same
exact format as that of Salmon, enabling any downstream pipeline
that accepts a similar format (Zhu et al., 2019) to directly run on
terminus output.

The groups computed by terminus represent abundance esti-
mates reported at the resolution that is actually supported by the
underlying experimental data. In a typical experiment, this is neither
at the gene level nor the transcript level. Some transcripts, even from
complex, multi-isoform genes, can have their abundances accurately
estimated and with low uncertainty, while other transcripts cannot.
Rather than pre-defining the resolution at which the analysis will be

Fig. 6. Biological significance of the groups produced by Terminus and mmcollapse. (a) The x-axis shows the number of genes that the transcript of the groups can be mapped

back to, and the y-axis shows number of such groups. (b) The x-axis shows the number of gene families that the transcripts can be mapped back to, and the y-axis is the fre-

quency of such mappings

Table 2. The table shows construction time and memory require-

ments for mmcollapse and terminus

Datasets Memory (MB) Time (h: m: s)

Mmcollapse Terminus mmcollapse Terminus

Human 370 675 2841 3:46:37 2:04

Mouse 225 457 485 38:55:44 0.12

Drosophila 4104 310 8:10 0:10
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performed, and subjecting the results to either overwhelming uncer-
tainty or to insufficient biological resolution, terminus allows the de-
termination of transcriptional groups whose abundance can be
confidently estimated in a given dataset, and represents, in this
sense, a data-driven approach to transcriptome analysis.

Further, we demonstrate that terminus creates biologically rele-
vant groups that reflect the underlying hierarchy of genes and gene
families. This shows the potential of terminus to be utilized for
applications of data-driven clustering of biological sequences, such
as clustering de novo contigs (where the annotation is not known)
or for clustering-related strains in metagenomic samples.

From a conceptual perspective, terminus provides a novel ap-
proach for grouping complex interactions between biological se-
quence without having the prior information about the annotation
itself. It first prunes the possible space of pairwise collapses by
examining the structure induced by the range-factorized equivalence
classes, and later, uses a iterative greedy technique to collapse tran-
scripts that locally maximize the objective being optimized (i.e. the
reduction in inferential relative variance). It is possible that this gen-
eric framework can be extended to other aspects of grouping and
clustering such as taxonomic classification.
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