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Boltzmann sampling from the Ising 
model using quantum heating of 
coupled nonlinear oscillators
Hayato Goto   1, Zhirong Lin2 & Yasunobu Nakamura   2,3

A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for 
solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation 
point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of 
dissipation. Our numerical study suggests that the output probability distribution of the dissipative 
QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost 
function of the optimization problem. We explain the Boltzmann distribution by generalizing the 
concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear 
oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks 
can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field 
of artificial intelligence.

Recently, hardware devices designed for combinatorial optimization have attracted much attention. The most 
well-known example is the quantum annealer developed by D-Wave Systems1. The machines are based on quan-
tum annealing or adiabatic quantum computation2–5 and are physically implemented with superconducting 
quantum bits (qubits). Classical annealers with semiconductor classical bits in CMOS devices have also been 
studied6. Both are designed to find the ground state of the Ising model. Such Ising machines are useful in the sense 
that many combinatorial optimization problems can be transformed into the Ising problem7.

Another approach to the physical implementation of Ising machines is based on parametric oscillations, 
where two stable oscillating states of each parametric oscillator correspond to up and down spins8–15. There are 
two major types of such Ising machines. The first type originally proposed in ref.8 uses a network of optical par-
ametric oscillators (OPOs). The threshold of an OPO is determined by one-photon loss and its oscillating states 
are stabilized by two-photon loss. The coupling between two OPOs is implemented by mutual injection8,9 or 
measurement feedback10,11, where the energy of the network is not conserved. Thus, dissipation is indispensable 
for the first type of Ising machines. The second type originally proposed in ref.13 uses a network of nondissipative 
Kerr-nonlinear parametric oscillators (KPOs). The threshold of a KPO is determined by one-photon detuning 
and its oscillating states are stabilized by the Kerr effect (resonance frequency shift depending on the oscillation 
power). The coupling between two KPOs is implemented by photon exchange, where the energy of the network 
is conserved. Thus, the second type of Ising machines can in principle be operated without dissipation, unlike 
the first type, and is based on quantum adiabatic evolution. Such machines can be implemented with supercon-
ducting circuits, as suggested in ref.13, and explicit circuit designs for all-to-all connectivity have recently been 
proposed in refs14,15.

In the present work, we numerically investigate the effects of dissipation on the second type of Ising machines 
with KPOs. Hereafter, we call this a quantum bifurcation machine, or QbM for short, because the operation prin-
ciple is based on a quantum-mechanical bifurcation of the KPO network and is called bifurcation-based adiabatic 
quantum computation13. (We do not use “QBM” because it is often used for quantum Boltzmann machine.) Our 
simulation results indicate that the probability distributions of the spin configurations in dissipative QbMs are 
Boltzmann-like with respect to the Ising energies.
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To explain the Boltzmann distributions of the spin configurations in dissipative QbMs, here we generalize the 
concept of quantum heating16–18 in a single driven dissipative nonlinear oscillator to the case of multiple coupled 
nonlinear oscillators. The quantum heating is the heating process induced by dissipation in quasienergy levels of 
driven dissipative quantum nonlinear systems, where the quasienergies are defined as eigenvalues of the system 
Hamiltonian in a rotating frame. Such phenomena have been studied with a parametrically driven Duffing oscil-
lator16,17,19 (essentially the same as a KPO), a driven Jaynes-Cummings model in cavity quantum electrodynam-
ics20,21, and an optomechanical system where a driven linear cavity is coupled to a mechanical linear resonator in a 
nonlinear manner22. (The terminology “quantum heating” was introduced in ref.17 and therefore is not used in the 
previous literature19–21.) In the previous studies, the Boltzmann distribution of quasienergies close to one of local 
minima of the Hamiltonian is derived analytically by deriving a local Hamiltonian by linearization around the 
chosen local minimum. (The quasienergy distribution deviates from the Boltzmann distribution near the top of 
the potential barrier19). In contrast, we use numerically evaluated eigenvalues and eigenstates of the global (exact) 
Hamiltonian, which is another difference from the previous studies. Our numerical results suggest that the qua-
sienergy distributions in the steady states are also Boltzmann-like. Using this result, we will explain that the gen-
eralized quantum heating results in the Boltzmann distributions of the spin configurations in dissipative QbMs.

Although quantum heating causes errors in solving optimization problems, the Boltzmann distribution of 
the spin configurations means that the QbMs are robust against dissipation, because good approximate solutions 
are obtained with high probability even in the presence of dissipation. (The robustness has been discussed from 
different points of view in refs14 and15.) The present result also suggests that such driven dissipative nonlinear 
oscillator networks can be applied to Boltzmann sampling from the Ising model. Recently, similar physical imple-
mentations of a Boltzmann sampler with Ising machines have also attracted much attention23–30 because it is 
useful for various purposes, such as Boltzmann machine learning in the field of artificial intelligence31.

Results
Quantum bifurcation machine for the Ising problem with local fields.  The QbM proposed in ref.13 
only applies to the Ising problem without local fields. In this paper, we extend the QbM to the Ising problem with 
local fields, which is to find the spin configuration that minimizes the following dimensionless Ising energy:
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where si is the i-th Ising spin, which takes +1 (up) or −1 (down), N is the total number of Ising spins, 
s s s s( )N1 2=   is the vector representation of a spin configuration, and {Ji,j} and {hi} are the dimensionless 
parameters corresponding to the coupling coefficients and local fields, respectively. Note that {Ji,j} satisfies Ji,j = Jj,i 
and Ji,i = 0. This extension is significant because many applications such as the traveling salesman problem and 
Boltzmann machine learning require local fields7,23,30,31.

For a given instance of the Ising problem, the extended QbM is defined by the following Hamiltonian in a 
frame rotating at half the pump frequency, ωp/2, of the parametric drive and in the rotating-wave approximation13:
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where †ai  and ai are the creation and annihilation operators for the i-th KPO, K is the Kerr coefficient, Δ is the 
detuning frequency defined by ω ωΔ = − /2pKPO  (ωKPO is the resonance frequency of the KPOs at low powers), 
p(t) is the time-dependent pump amplitude, and ξ0 is a constant parameter with the dimension of frequency. 
Here, we assume for simplicity that K, Δ, and ξ0 are positive. If K is negative, as in the case of superconducting 
Josephson parametric oscillators32, we set p(t), Δ, and ξ0 to negative values by flipping the signs. Then, we obtain 
the same result. The physical meaning of the third term in Eq. (2), which is added for the extension, is the external 
drive of KPOs at ωp/2, where ξ0A(t)hi is the time-dependent amplitude of the external drive for the i-th KPO and 
A(t) is a dimensionless positive parameter defined such that A ≈ 0 when p << Δ and α≈ = − ΔA p K( )/0  
when p >> Δ. Here, α0 is the magnitude of the amplitudes of the two stable oscillating states of each KPO13. This 
is derived by minimizing H K p[ /2 ( ) ]i

KPO
( ) 4 2α α α α= + Δ −  with respect to the amplitude, α, of the 

coherent state |α〉. (A coherent state |α〉 is defined as the eigenstate of an annihilation operator: α α α=ai
33).

To find the ground state of the Ising model via quantum adiabatic evolution, we initialize all the KPOs in the 
“vacuum” state and gradually increase the pump amplitude p(t) from zero to a sufficiently large value compared 
to Δ and ξ0. To satisfy the initial condition that the vacuum state is the ground state of the initial Hamiltonian, Δ 
is set such that the matrix M defined by Mi,i = Δ and Mi,j = − ξ0Ji,j (i ≠ j) is positive semidefinite13. If the variation 
of p(t) is sufficiently slow, the final state will become the ground state of the final Hamiltonian by the quantum 
adiabatic theorem. In the following, we explain that this final state provides the solution of the given problem, 
namely, the ground state of the given Ising model.

When p(t) becomes sufficiently large and ξ0 is sufficiently small, low energy states for the final Hamiltonian 
can be approximately expressed with the vectors s s s s: N1 0 2 0 0α α α= 

, where s 1i = ±  is the sign of the 
oscillation amplitude of the i-th KPO. (As mentioned above, 0α±  minimize the dominant term of the 
Hamiltonian, namely, the first term in Eq. (2).) Using the vectors |s〉, the Hamiltonian for low energy states is 
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expressed as a diagonal matrix (off-diagonal elements are dropped assuming that e 10 0
2 0

2
α α− 〉 = <<α− ) with 

the following diagonal elements (eigenenergies):
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where we have used A ≈ α0 (this holds for p >> Δ). Note that the first term is independent of {si} and the second 
term is proportional to the Ising energy EIsing(s) in Eq. (1). This directly shows that the ground state of the final 
Hamiltonian corresponds to the ground state of the given Ising model. Thus, we obtain the solution of the given 
problem by measuring the quadrature amplitude defined by = + †x a a( )/2i i i  of the final state and identifying the 
sign of xi with the Ising spin si

13.
To verify the validity of the above discussion, we numerically investigate an instance of two KPOs (N = 2), 

where the Schrödinger equation with the Hamiltonian in Eq. (2) is solved numerically. The time-dependent pump 
amplitude p(t) is increased linearly, as shown in Fig. 1a. The parameters of the instance are J J 11,2 2,1= = , 
h1 = −0.2, and h2 = 0, which are set such that two local minima exist in the energy landscape, as shown in Fig. 1b.

In the present numerical study, the Hilbert space is truncated at a “photon” number of 14 for each KPO 
and A(t) is set to the following form that satisfies the above conditions (A ≈ 0 when p << Δ and A ≈ α0 when 
p >> Δ):
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The other parameters are set to Δ = 2K and ξ0 = 0.5 K.
Figure 1c shows the time evolutions of the spin configuration probabilities sP ( )Ising  given by
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compose the positive-operator-valued measure for measuring the sign of the quadrature amplitude, xi, of the i-th 
KPO (|xi〉 is the eigenstate of xi). The probabilities PIsing(s) are calculated by the method presented in ref.13. As 
shown in Fig. 1c, the state of the two KPOs finally converges to ↑ ↑ , which is the ground state of the given Ising 
model, as expected.

Dissipative quantum bifurcation machine.  In the presence of dissipation, the time evolution of a QbM 
is modeled by the following quantum master equation16–18,34:
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where the dot denotes the time derivative, κ is the decay rate of the KPOs characterizing the dissipation, and 
¯ ω= − −n k T{exp[ ( /2)/( )] 1}Bp

1 is the Planck number at frequency ωp/2 and temperature T (kB is the Boltzmann 
constant). While the first term in Eq. (8) describes the unitary time evolution of the system, the other terms are 
for the non-unitary evolution. In the following, n is set to zero assuming a sufficiently low temperature.

Figure 1.  Nondissipative QbM. (a) Time-dependent pump amplitude. (b) Energy landscape of an instance of 
the two-spin Ising model. The parameters are J J 11,2 2,1= = , h 0 21 = − . , and =h 02 . The horizontal axis 
represents the Hamming distance DH defined as the number of spin flips with respect to the ground state ↑ ↑ . 
(c) Time evolutions of the spin configuration probabilities P s( )Ising  given by Eq. (6).
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We numerically solve the master equation for the same instance as above. In the simulations of dissipative 
QbMs, we use the following form of p(t):

τ=p t p t( ) tanh(3 / ) (9)f

where pf is the final value of p(t) and τ is the time at which p(t) closely approaches pf. The form of p(t) is chosen 
such that p(t) increases linearly with respect to t at the initial time and converges to its final value pf. The time τ is 
set to 100 K−1 in the present work.

The simulation results are summarized in Fig. 2. Figure 2a shows the time-dependent pump amplitude p(t) 
with pf = 4 K. The symbols in Fig. 2b shows the distribution of the spin configuration probabilities sP ( )Ising

ME  with 
respect to the Ising energy sE ( )Ising  at the final time ( = −t K1000 1), where the decay rate is set to K0 05κ = . . The 
line in Fig. 2b is obtained by fitting the Boltzmann distribution to the simulation results, where the 
Kullback-Leibler (KL) divergence DKL between the two distributions is minimized (see Methods for details). The 
Boltvzmann distribution is defined by s sP E Z( , ) exp[ ( )]/ ( )B Isingβ β β= − , where β is the inverse effective temper-
ature and β β= ∑ − sZ E( ) exp[ ( )]s Ising  is the partition function. In the fitting, β is a single fitting parameter. The 
good fits shown in Fig. 2b indicate that the probability distributions of the spin configurations in the dissipative 
QbM are Boltzmann-like.

Figures 2c and 2d show the time evolutions of the inverse effective temperature β and the minimized KL 
divergence DKL, respectively. Figure 2c shows that as pf increases, β increases, that is, the effective temperature 
decreases. Thus, the effective temperature can be controlled by the pump amplitude of the parametric drive. From 
Figs. 2c and 2d, it is also found that the convergence is slower for larger pf. This is because the potential barriers 
between different spin configurations are higher for larger pf (see the next subsection for the potential).

Figures 2e and 2f show similar results for different values of κ (pf = 4 K). Figure 2e shows that β converges to 
a single value independent of κ, and Fig. 2f supports that the probability distributions approach the Boltzmann 
distribution. From Figs. 2e and 2f, it is also found that the convergence is faster for larger κ, as expected.

To check that the probability distributions of the spin configurations are also Boltzmann-like for other 
instances, we perform similar numerical simulations for 1000 instances of the two-spin Ising problem, where 
their parameters, {Ji,j} and h{ }i , are chosen randomly from the interval (−1, 1). The other parameters are set to 
p K4f =  and κ = . K0 05 . The results for β and DKL are shown in Fig. 3, where the arrows indicate the results of 
the instance in Fig. 2. The averages and standard deviations are β = . ± .1 27 0 07 and = . ± . × −D (1 7 1 7) 10KL

3. 
The largest value of DKL is 6.5 × 10−3. On the other hand, when the spin configuration probabilities for each 
instance are set randomly by choosing four random numbers from the interval (0, 1) and normalizing them, we 

Figure 2.  Dissipative QbM. The parameters of the two-spin Ising model are the same as that in Fig. 1. (a) Time-
dependent pump amplitude p t( ) [Eq. (9) with p K4f = ]. (b) Probability distributions of the spin configurations. 
Symbols show the spin configuration probabilities, P s( )Ising

ME , at the final time ( = −t K1000 1), which are obtained 
with the numerical solution of the quantum master equation [Eq. (8)]. Circles, squares, and triangles 
correspond to =p K3f , 4 K, and 5 K, respectively. The decay rate is set to κ = . K0 05 . The lines show the 
Boltzmann distribution fitting to the simulation results. (c) Inverse effective temperature β for the three values 
of pf  determined by fitting to the instantaneous probability distribution. (d) Kullbak-Leibler (KL) divergence 
DKL minimized for the fitting in (c). (e and f) Time evolutions of β and DKL for various values of κ ( =p K4f ).
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obtain = . ± . × −D (2 0 2 3) 10KL
1. This comparison shows that the probability distributions of the spin configu-

rations in the thousand cases are Boltzmann-like compared to general distributions. Note also that the instance 
dependence of β is small in the sense that the standard deviation is much smaller than the average.

We also simulate an instance of the four-spin Ising problem to check the case with more than two spins 
(N > 2). Since it is computationally hard to solve the quantum master equation in the four-spin case, we use the 
quantum-jump approach34,35, which is a Monte-Carlo simulation using a state vector, instead of a density matrix, 
and can provide equivalent results to the quantum master equation. The probability distribution obtained is also 
Boltzmann-like. (See Supplementary Information for details.)

Quantum heating in dissipative QbMs.  In this subsection, we first generalize the quantum heating to the 
case of multiple coupled nonlinear oscillators, and then explain that the generalized quantum heating results in 
the above Boltzmann distributions of the spin configurations.

Quantum heating is the heating process induced by quantum jumps due to dissipation in quasienergy levels 
of driven dissipative quantum nonlinear systems. This is well described by the balance equation derived from the 
quantum master equation16,19. We apply the balance-equation approach to the case of multiple coupled nonlinear 
oscillators.

In the previous studies on quantum heating, the Boltzmann distribution of quasienergies close to one of 
local minima of the Hamiltonian is derived analytically by deriving a local Hamiltonian by linearization around 
the chosen local minimum. In general, the effective temperature depends on the choice of the local minimum. 
However, this approach may not be useful for explaining the above Boltzmann distributions of the spin configu-
rations, because each configuration corresponds to one of the local minima (see below) and therefore the expla-
nation may need global information of the Hamiltonian. Hence we use numerically evaluated eigenvalues and 
eigenstates of the global (exact) Hamiltonian.

To explain this point in more detail, here we introduce the effective potential. The Hamiltonian in Eq. (2) is 
rewritten with the quadrature amplitudes = +x a a( )/2i i i

†  and y a a i( )/2i i i
†= −  as follows:
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The quadrature amplitudes are related to the dimensionless coordinate Q and momentum P in the litera-
ture16,17,19 as λ=Q x2  and λ=P y2 , where λ is a dimensionless parameter introduced in the literature. The 
parameter λ and another dimensionless parameter μ in the literature16,17,19 are expressed with the present param-
eters as K p/(2 )λ =  and μ = − ΔK p( )/ . The effective potential V x( )eff  is defined by setting all the momenta to 
zero and dropping constant terms in the Hamiltonian:

Figure 3.  Simulation results of 1000 instances of the two-spin Ising problem. { }Ji j,  and h{ }i  are chosen randomly 
from the interval (−1, 1). The time-dependent pump amplitude p(t) is set as in Fig. 2a. The other parameters are 
set to p K4f =  and κ = . K0 05 . (a) Histogram of the inverse effective temperature β determined by fitting to the 
final probability distribution. (b) Histogram of the corresponding Kullbak-Leibler (KL) divergence DKL 
minimized for the fitting in (a). The arrows indicate the results in Fig. 2.
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Figure 4 shows the effective potential for the two-spin instance in Fig. 2. The four local minima correspond 
to the four spin configurations. Note that the potential wells are deeper for larger p. This qualitatively explains 
why the convergence is slower for larger pf. In the previous studies on quantum heating, intrawell states in a cho-
sen well have been used as the quasienergy states16,17,19. Instead, here we use the eigenstates of the global (exact) 
Hamiltonian as the quasienergy states.

Using the quasienergy states E{ }n  as an orthonormal basis, the quantum master equation [Eq. (8)] becomes 
a system of ordinary differential equations of the density matrix ρ ρ= E Em n m n, . Note that in the equations for 
the diagonal elements 


ρ{ }n n, , the terms for the unitary time evolution are cancelled out. Here the off-diagonal 

elements are disregarded assuming that the quasienergy separations, | − |E E /m n , are large compared to the 
decay rate κ, which is called the secular approximation36. Then we obtain the following balance equation with 
respect to the diagonal elements16,19:

∑ ∑ρ κ ρ ρ= | | − | |
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where a E a Em n
i

m i n,
( ) = . Note that the diagonal element n n,ρ  represents the probability that the system is in the 

quasienergy state En .
A physical interpretation of the balance equation [Eq. (13)] is as follows. Dissipation induces quantum jumps 

corresponding to one-photon loss34,35. A quantum jump induced by an annihilation operator ai changes En  into 
a Ei n , and consequently causes the transition from En  to Em  with probability proportional to am n

i
,

( ) 2
. Quantum 

heating is the heating process that originates from the transitions due to quantum jumps. Note that coherent 
states, which are often regarded as “most classical” states, are eigenstates of annihilation operators, and therefore 
the transitions due to quantum jumps do not occur for coherent states.

The steady-state solution, { }n n,
BEρ , of the balance equation is obtained by substituting 0n n,ρ =



 into Eq. (13) and 
solving the resultant equations under the constraint 1n n n,ρ∑ = . We numerically evaluate the steady-state solution 
for the instance in Fig. 2. We also numerically evaluate the steady-state solution, { }n n,

MEρ , of the master equation 
[Eq. (8)] with κ = . K0 05  by using the simulation results at the final time in Fig. 2. These results are shown in 
Figs. 5a–5c. In Figs. 5a–5c, the quasienergies E{ }n  are defined as follows:

ε= − ×
− ΔE K2 3 4
8 (14)n n 

where {εn} is the eigenvalues of the Hamiltonian in Eq. (2) and the constant term in Eq. (11) has been taken into 
account in order to compare the effective potential V x( )eff  in Eq. (12).

The good agreement between the two steady-state solutions in Figs. 5a–5c means that the secular approxima-
tion mentioned above is good. The probability distributions are clearly Boltzmann-like (at least for low quasiener-
gies). (The probabilities of higher quasienergies are lower bounded by numerical errors due to the truncation 
of the Hilbert space. See Supplementary Information for the details. However, this does not affect the following 
discussion because the probabilities of low quasienergies are dominant for the probabilities of the spin configu-
rations.) This result suggests that the quasienergies of coupled nonlinear oscillators obey the Boltzmann distri-
bution due to quantum heating. It is also remarkable that the Boltzmann distribution holds not only for negative 
quasienergies (near the bottoms of the potential wells) but also for positive quasienergies (above the potential 
barriers). This cannot be explained by the previous approach based on linearization around one of local min-
ima. (As mentioned above, the quasienergy distribution deviates from the Boltzmann distribution near the top 
of the potential barrier in the case of single nonlinear oscillators19.) The explanation of the numerical results is 

Figure 4.  Effective potential. (a–c) The effective potentials defined by Eq. (12) with p K3= , 4K, and 5K, 
respectively, for the instance of the two-spin Ising model in Figs 1 and 2.
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left as an interesting open problem. In the following, we simply assume that the quasienergy distributions are 
Boltzmann-like.

The spin configuration probabilities, sP ( )Ising
BE , for the steady-state solution of the balance equation are given by

s sP P( ) ( )
(15)n

n n
n

Ising
BE

,
BE

Ising
( )∑ρ=

where P s( )n
Ising
( )  represent the spin configuration probabilities for the quasienergy state En , that is,

sP E M s E( ) ( )
(16)

n
n

i

N
i

i nIsing
( )

1

( )∏=
=

The comparison between sP ( )Ising
BE  and sP ( )Ising

ME  in Fig. 2b ( K0 05κ = . ) is shown in Figs. 5d–5f. They are in 
excellent agreement with each other. Hence, the Boltzmann distribution of the spin configurations is well 
explained by the generalized quantum heating. This result can be understood under some approximations as 
follows. From the generalized quantum heating, the density operator of the steady state is approximately given by 
ρ β β= − ′ ′ ′H Zexp( )/ ( )SS , where β′ is the inverse effective temperature and β β′ ′ = − ′Z H( ) Tr[exp( )] is the corre-
sponding partition function. (The primes are used to distinguish them from the above ones for the spin configu-
rations.) When the dissipation is sufficiently small, the state is approximately one of the stable oscillating states 

α α α=s s s s: N1 0 2 0 0
 ( = ±s 1i ). By the classical approximation that the annihilation operator ai is replaced 

by the amplitude αsi 0, we obtain [also see Eq. (4)]

ρ ξ α β≈ | | ∝ 
− ′ 

⟨ ⟩s s s sP E( ) exp 2 ( ) (17)Ising
BE SS

0 0
2

Ising

Thus, the quantum heating leads to the Boltzmann distribution of the spin configurations. Moreover, this der-
ivation indicates that β ξ α β= ′2 0 0

2 . In the case of Figs. 5d–5f, the ratio ξ α β β′2 /0 0
2  is close to unity, as expected. 

(The values are 1.11, 1.11, and 1.02 for =p K K K3 , 4 , and 5 , respectively.) This supports the above explanation.
It is also notable that the steady-state solution of the balance equation [Eq. (13)] is independent of κ. This can 

explain why β in Fig. 2e converges to a single value independent of κ. The decay-rate-independent β is a feature 
of quantum heating17.

Figure 5.  Quantum heating of dissipative QbM. The parameters of the two-spin Ising model are the same as 
that in Figs 1 and 2. (a–c) Probability distributions of the quasienergies En defined by Eq. (14). n n,

MEρ  (circles) and 
ρn n,

BE  (crosses) correspond to the steady-state solutions of the master equation [Eq. (8)] with κ = . K0 05  and the 
balance equation [Eq. (13)], respectively. The lines show exponential fits to { }n n,

MEρ . (d–f) Probability 
distributions of the spin configurations. sP ( )Ising

ME  (circles) and sP ( )Ising
BE  (crosses) correspond to the steady-state 

solutions of the master equation with κ = . K0 05  and the balance equation, respectively. The lines show the 
Boltzmann distribution fitting to sP ( )Ising

ME .
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Discussion
We have found by numerical simulation that the probability distributions of the spin configurations in dissipative 
QbMs are Boltzmann-like. We have also explained that the Boltzmann distribution originates from the quantum 
heating generalized to multiple coupled nonlinear oscillators. The present work is based on numerical analysis. 
Further general and analytic treatment is desirable in future work. In particular, the Boltzmann distribution of 
quasienergies of the global Hamiltonian is remarkable from the viewpoint of the previous approach, and therefore 
detailed study on the quasienergy distribution is desirable.

It is expected to be feasible for current technologies to experimentally observe the quantum heating of a driven 
dissipative nonlinear oscillator network. The most promising physical system for this is superconducting circuits, 
because they have already been used for the experiments on quantum heating of a single nonlinear oscillator18, 
parametric oscillations32, and large Kerr effects37,38. It is also notable that the Boltzmann distributions of the spin 
configurations can be observed by the measurement of quadrature amplitudes with heterodyne detection32, which 
is easier than the direct measurement of quasienergy distributions.

The present result also broadens the potential applications of QbM, such as Boltzmann sampling. Since the 
simulation of Boltzmann sampling from the Ising model is computationally hard in general for current digital 
computers39, such a special-purpose machine for the Boltzmann sampling may be useful. In the case of Boltzmann 
machine learning, which is the most promising candidate among applications of the Boltzmann sampler, high 
connectivity between Ising spins is desirable because sparse connectivity degrades the performance of machine 
learning23. The implementation of high connectivity is one of the difficulties in experiments. The superconducting 
circuits proposed in refs14,15, which can be applied to the Ising problem with all-to-all connectivity, are promising 
approaches to this problem. The approach in ref.15 is based on the embedding technique proposed in ref.40, where 
a KPO does not directly correspond to an Ising spin and instead −N N( 1)/2 KPOs represent N logical Ising 
spins. It is an interesting open problem whether or not such logical Ising spins also obey the Boltzmann distribu-
tion in the presence of dissipation.

Although it is an important and intriguing question whether or not the Boltzmann sampling using the dissi-
pative QbM has some speedup over classical algorithms, this is beyond the scope of this paper. Nevertheless, our 
proposal is expected to open a new possibility for harnessing the behaviors of complex open quantum systems 
for practical applications. Thus, the present work is expected to trigger interdisciplinary research in the fields of 
quantum information science, nonequilibrium quantum systems, nonlinear dynamics, and artificial intelligence.

Methods
Fitting of the Boltzmann distribution to the simulation results.  In the present work, the Boltzmann 
distribution is fitted to the simulation results of spin configuration probabilities by minimizing the Kullback-
Leibler (KL) divergence DKL between them, where the KL divergence between two probability distributions P{ }n  
and Q{ }n  is defined as follows31:

∑|| =D P Q P P
Q

( ) ln
(18)n

n
n

n
KL

Note that the KL divergence is asymmetric with respect to the two distributions. In this paper, we choose the 
Boltzmann distribution as P{ }n  and the simulation results as Q{ }n .
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