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Abstract

Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse
functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for
drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided
into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that
can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the
prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone
like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ
cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN)
classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical
features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor,
and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets
derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test
were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level
predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely
accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can
contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is,
the shorter the time will usually be. All the program codes for NR-2L are available for non-commercial purpose upon
request.
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Introduction

Nuclear receptors (NRs) are key transcription factors that

regulate crucial gene networks important for cell growth, differen-

tiation and homeostasis [1,2]. They function as ligand-activated

transcription factors, thus providing a direct link between signaling

molecules that control these processes and transcriptional responses.

Many of these receptors are potential targets for the therapy of

diseases such as breast cancer, diabetes, inflammatory diseases or

osteoporosis. Nuclear receptors form a superfamily of phylogenet-

ically-related proteins, which share a common structural organiza-

tion. The N-terminal region (A/B domain) is highly variable, and

contains at least one constitutionally active transactivation region

(AT-1) and several autonomous transactivation domains (AD); A/B

domains are variable in length, from less than 50 to more than 500

amino acids. The most conserved region is the DNA binding

domain (DBD, C domain), which contains a short motif responsible

for DNA-binding specificity on sequences typically containing the

AGGTCT motif. A non-conserved hinge (D domain) is between the

DNA-binding and ligand-binding domain, and contains the nuclear

localization signal. The ligand-binding domain (LBD, E domain) is

the largest domain. It is responsible for many functions, such as

ligand induced, transactivation, and repression. The F domain is in

the C terminus of the E domain, whose sequence is extremely

variable and whose structure and function are unknown [3]. Not all

the NRs contain all the six domains.

The importance of nuclear receptors has prompted the

accumulation of rapidly increasing data from a great diversity of

fields of research: sequences, expression patterns, three-dimen-

sional structures, protein-protein interactions, target genes,

physiological roles, mutations, etc. These collected data are very

helpful for data mining and knowledge discovery. NR superfamily

has been classified and assigned seven subfamilies based on the

alignments of the conserved domains [3,4]. As a rising branch, the

recognition of subfamilies of novel nuclear receptors is crucial for

developing therapeutic strategies for the diseases mentioned above

because the function of a nuclear receptor is closely correlated with

its category.
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Although the sequence similarity search-based tools, such as

BLAST [5], are usually applied to conduct the prediction.

However, this kind of approach failed to work when the query

protein did not have significant sequence similarity to those of

known attributes. Thus, various discrete models were proposed.

The commonly used feature extraction methods are based on the

concept of pseudo amino acid composition (PseAAC), which was

proposed by Chou in studying protein subcellular location

prediction and membrane protein type prediction [6], where a

detailed description about PseAAC was elaborated.

In 2004, Bhasin and Raghava [7] have proposed a nuclear

receptor subfamilies predicting method with the predictor of SVM

and the input features of amino acid composition and dipeptide

composition. Recently, Gao et al. [8] reconstructed the NR

predicting dataset, and introduced the PseAAC [6] as the feature

expression, thus enhancing the predictive quality. However, the

existing predictors have the following shortcomings: (1) The

datasets constructed to train the predictors cover very limited NRs

subfamilies. For instance, the datasets constructed by these authors

[7,8] only cover four subfamilies. (2) The cutoff threshold set by

them to remove homologous sequences was 90%, meaning that

the benchmark dataset thus constructed would allow inclusion of

those proteins which have up to 90% pairwise sequence identity to

others. To avoid homology bias, a much more stringent cutoff

threshold should be adopted in constructing the benchmark

datasets. (3) The existing predictors could not filter the irrelevant

sequences, and all the input sequences would be assumed

belonging to NRs regardless and hence might generate meaning-

less outcome. (4) No web-server was provided by the existing

methods or the web-server provided by them is currently not

working, and hence their application value is quite limited.

The present study was initiated in an attempt to develop a new

predictor, called NR-2L, by addressing the above four shortcom-

ings. To extend the coverage scope for practical application and

reduce the homology bias, new benchmark datasets were

constructed and a two-level predictor was developed. The new

datasets cover seven subfamilies in which none of proteins

included has §60% pairwise sequence identity to any other in a

same subset. Included in the new benchmark datasets are also the

non-NR sequences for training the predictor to identify non-NR

proteins. To make the predictor more powerful, more sequence-

derived features were utilized. These features are capable of

capturing the key information through PseAAC [6] as well as

various physicochemical properties of proteins. The resulting

feature vectors are finally fed into a simple yet powerful

classification engine, called fuzzy K nearest neighbor algorithm,

to identify NRs and their subfamilies. For the convenience of users

and dealing with the situation that some link might be occasionally

down, the web-server for NR-2L has been established at both

http://icpr.jci.edu.cn/bioinfo/NR2L and http://www.jci-bioinfo.

cn/NR2L, by any of which Multi-Fasta protein sequences can be

input and handled in a batch mode. Furthermore, the source code

of the algorithm is available for educational purposes and basic

researches by e-mailing a request to the corresponding author.

To develop an effective method for identifying protein attributes

such as NRs and their subfamilies, the following five things are

indispensable [9]: (1) construct a valid benchmark dataset to train

and test the predictor; (2) formulate the protein samples with an

effective mathematical expression that can truly reflect their

intrinsic correlation with the attribute to be predicted; (3)

introduce or develop a powerful algorithm (or engine) to operate

the prediction; (4) properly perform cross-validation tests to

objectively evaluate the anticipated accuracy of the predictor; (5)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us elaborate how to deal with

these steps.

Materials and Methods

1. Benchmark Datasets
Protein sequences were collected from the nuclear receptor data

base (NucleaRDB release 5.0) at http://www.receptors.org/NR/,

which is a part of a project devoted to build Molecular Class-

Specific Information Systems (MCSIS) to provide, disseminate and

harvest heterogeneous data [4]. The database have collected and

harvested all the seven subfamilies of nuclear receptors marked

with (1) NR1: thyroid hormone like (thyroid hormone, retinoic

acid, RAR-related orphan receptor, peroxisome proliferator

activated, vitamin D3-like), (2) NR2: HNF4-like (hepatocyte

nuclear factor 4, retinoic acid X, tailless-like, COUP-TF-like,

USP), (3) NR3: estrogen like (estrogen, estrogen-related, gluco-

corticoid-like), (4) NR4: nerve growth factor IB-like (NGFI-B-like),

(5) NR5: fushi tarazu-F1 like (fushi tarazu-F1 like), (6) NR6: germ

cell nuclear factor like (germ cell nuclear factor), and (7) NR0:

knirps like (knirps, knirps-related, embryonic gonad protein,

ODR7, trithorax) and DAX like (DAX, SHP). For detailed

information about the database, refer to the NucleaRDB (http://

www.receptors.org/NR/). Because the NucleaRDB has not

provided the nuclear receptor sequences in FASTA format, we

read Web content at the specified URL and extract all entries by

the text-parsing method. The initial data set had 727 sequences

belonging to seven subfamilies of nuclear receptors. To avoid any

homology bias, a redundancy cutoff was imposed with the

program CD-HIT to winnow those sequences which have

§60% pairwise sequence identity to any other in a same subset

except for the subfamily NR6 because it contained only 5 nuclear

receptor protein sequences [10]. If the redundancy-cutoff

operation was also executed on this class, the samples left would

be too few to have any statistical significance. The final benchmark

dataset, SNR, thus obtained contains 159 sequences classified into

seven different subfamilies of NRs as shown in Table 1, where

500 non-NRs protein sequences were also collected in SnNRfor

training the predictor to identifying non-NRs. The protein

sequences in SnNRwere randomly collected from the UniProt at

http://www.uniprot.org/ according their annotations in the

‘‘Keyword’’ field, followed by undergoing the similar redundan-

cy-cutoff operation to assure that none of the proteins in SnNRhas

§60% pairwise sequence identity to any other. The accession

numbers and sequences for the benchmark dataset thus obtained

for SNR and SnNR are given in Supporting Information S1.

Meanwhile, for the purpose of demonstrating the practical

application of the current predictor, the corresponding indepen-

dent testing datasets S
NR
T and S

nNR
T were also constructed

(Table 1) in a way that none of proteins in the testing datasets

occurs in SNR and SnNR. The accession numbers and sequences

for the independent testing datasets S
NR
T and S

nNR
T are given in

Supporting Information S2. It is instructive to point out that the

results derived from such independent datasets are only a kind of

demonstration that cannot be used to objectively measure the

accuracy of a predictor; the real criterion for measuring the

accuracy of the predictor should be based on the jackknife test as

will be elaborated later.

2. Sequence-Derived Features
As pointed out in [9], to develop a predictor for identifying

protein attributes, one of the keys is to formulate the protein

samples with an effective mathematical expression that can truly

reflect their intrinsic correlation with the attribute to be predicted.

Identify Nuclear Receptor Subfamilies
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A protein sequence P with L amino acid residues can be

expressed as

P~R1R2R3R4R5R6 � � �RL ð1Þ

In order to capture as much useful information from a protein

sequence as possible, we are to approach this problem from four

different angles, followed by incorporating the feature elements

thus obtained into the general form of PseAAC [9].

2.1 Amino Acid Composition (AAC)
As mentioned in the introduction, AAC was widely used to

transform protein sequences into 20-D (dimensional) numerical

vectors (see, e.g., [11,12,13,14]). The AAC of a protein is defined

as the normalized occurrence frequencies of 20 amino acids in that

protein; i.e.,

AAC~ f1,f2, � � � ,f20½ �T ð2Þ

where fi~ni=L with each i(~1,2, � � � ,20) corresponding to one of

the 20 native amino acid types, and ni the number of type i amino

acids in the protein; while Tis the transpose operator.

2.2 Dipeptide Composition (DC)
Traditional dipeptide (amino acid pair) composition was used to

capture the local-order information of a protein sequence, which

gives a fixed pattern length of 400 (20620) [15]. The fraction of

each dipeptide was formulated as

Fraction of dip(u)~
Total number ofdip(u)

Total number of all possible dipeptides
ð3Þ

where dip(u) (u~1,2, � � � ,400)is the u-th dipeptide. In addition,

to express the interaction of the amino acid for a pair with higher

sequence gap than for the dipeptide pair (Fig.1), let us consider

the following general equation

Fractionofdipg(u)~

Total number of dipg (u)

Total number of all possible g�gap dipeptides ð4Þ

where g = 0, 1, 2, or larger, and dipg(u)(u~1,2, � � � ,400) is the

u-th dipeptide with g gap between the two residues. When g~0,

Eq.4 is reduced to Eq.3, the formulation for the conventional

dipeptide. Accordingly, the dipeptide compositions with different

gaps can be generally formulated as

DCg~ d
g
1 ,d

g
2 , � � � ,dg

400

� �T ð5Þ

where dg
u (u~1,2, � � � ,400)is theu-thnormalized occurrence fre-

Table 1. Breakdown of the learning dataset S and testing
dataset ST.

Attribute Training dataset S

Set Subfamily Subset Number

NR SNR NR1 SNR
1

50

NR2 SNR
2

36

NR3 S
NR
3

37

NR4 SNR
4

7

NR5 SNR
5

12

NR6 S
NR
6

5

NR0 SNR
0

12

Non-NR S
nNR N/A N/A 500

Independent testing dataset ST

NR SNR
T

NR1 SNR
T1

231

NR2 SNR
T2

127

NR3 S
NR
T3

148

NR4 SNR
T4

23

NR5 SNR
T5

33

NR6 S
NR
T6

0

NR0 S
NR
T0

6

Non-NR SnNR
T

N/A N/A 500

doi:10.1371/journal.pone.0023505.t001

Figure 1. Schematic drawing to show dipeptides with different gaps along a protein chain. (a) The traditional (0-gap) dipeptide, (b) the 1-
gap dipeptide, and (c) the 2-gaps dipeptide, where represents the amino acid residue at the sequence position 1, at position 2, and so forth. Adapted
with permission from Chou [6].
doi:10.1371/journal.pone.0023505.g001
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quency of the dipeptide of gapg. Since the couple effects among

the local residues are usually stronger than those among the distant

ones [16,17], here let us just consider the cases of g~0 and 1 as

denoted by DC(0) and DC(1) respectively. Thus, we obtain

400|2~800elements for using DC to formulate the protein

sample, in which 400 elements are from DC(0) and 400 from

DC(1).

2.3 Complexity Factor (CF)
A protein sequence is actually a symbolic sequence for which

the complexity measure factor can be used to reflect its sequence

feature or pattern and has been successfully used in some protein

attribute prediction [18]. Among the known measures of

complexity, the Lempel-Ziv (LZ) complexity [19] reflects the

order that is retained in the sequence, and hence was adopted in

this study.

The LZ complexity of a sequence P can be measured by the

minimal number of steps required for its synthesis in a certain

process. For each step only two operations were allowed in the

process: either generating an additional symbol that ensures the

uniqueness of each component P½ik{1 : ik�, or copying the longest

fragment from the part of a synthesized sequence. Its substring is

expressed by

P½i : j�~RiRiz1Riz2 � � �Rj(1ƒivjƒL) ð6Þ

The complexity measure factor, CF(P), of a nonempty sequence

synthesized according to the following procedure is defined by

Syn(P)~P½1 : i1�.P½i1z1 : i2�. � � � .P½im{1z1 : L� ð7Þ

Let us assume that P~R1R2R3R4R5R6 � � �RL has been

reconstructed by the program up to the residueRr, and Rr has

been newly inserted. The string up to Rr will be denoted

byP½1 : r�., where the dot denotes that Rr is newly inserted to

check whether the rest of the string P½rz1 : L� can be

reconstructed by a simple copying. First, suppose q~Rrz1, and

see whether q is reproducible from P½1 : r�qp, which means

deleting the last character from the string P½1 : r�q. If the answer is

‘‘no,’’ then we insert q into the sequence followed by a dot. Thus,

it could not be obtained by the copying operation. If the answer is

‘‘yes,’’ then no new symbol is needed and we can go on to proceed

with q~Rrz1Rrz2 and repeat the same procedure. The LZ

complexity is the number of dots (plus one if the string is not

terminated by a dot). For example, for the sequence

P~TMPPPETPSEGRQPSPSPSPTT, the LZ schema of syn-

thesis generates the following components Syn(P)and the

corresponding complexity CF(P):

Syn(P)~T.M.P.PPE.TP.S.EG.R.Q.PSP.SPSPT.T

CF(P)~12

�
ð8Þ

2.4 Fourier Spectrum Components (FSC)
Given a protein sequence P, suppose H(R1)is the certain

physicochemical property value of the 1st residueR1, H(R2) that

of the 2nd residueR2, and so forth. In terms of these property

values the protein sequence can be converted to a digit

signal H(R1),H(R2), � � � ,H(RL)½ �, for which we implement the

discrete Fourier transform, obtaining the frequency-domain

values,

X ½k�~
XL

l~1

H(Ri) exp {j
2pl

L

� �
k

� �
, (k~1,2, � � � ,L) ð9Þ

where j represents the imaginary number. For each X ½k� we can

calculate its amplitude components Fk and phase components Wk

Fk~abs(X ½k�) ð10Þ

Wk~angle(X ½k�) ð11Þ

Where abs gets the complex magnitude and angle gets the phase

angle. Thus we can generate 2L discrete Fourier spectrum

numbers as given below:

F1,F2, � � � ,FL,W1,W2, � � � ,WLf g ð12Þ

The 2L Fourier spectrum numbers contain substantial information

about the digit signal, and thereby can also be used to reflect

characters of the sequence order of a protein. Furthermore, in the

L phase components W1,W2, � � � ,WLf g, the high-frequency

components are noisier and hence only the low-frequency

components are more important. This is just like the case of

protein internal motions where the low-frequency components are

functionally more important [20]. For certain physicochemical

property, accordingly, we only need to consider the 1st 10 phase

components as well as their corresponding amplitudes, i.e.

Figure 2. Flowchart to show the operation process of NR-2L. T1
represents the data taken from the Supporting Information S1 for
training the 1st level prediction; T2 represents those from the
Supporting Information S1 for training the 2nd level prediction. See
the text for further explanation.
doi:10.1371/journal.pone.0023505.g002
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FSC~ F1,F2, � � � ,F10,W1,W2, � � � ,W10½ �T ð13Þ

As for the physicochemical property values, we adopted the

hydrophobicity of each constituent amino acid, and its hydrophi-

licity and side-chain mass as done in [6]. These values can be

obtained from the web-site at http://www.csbio.sjtu.edu.cn/

bioinf/PseAAC/PseAAReadme.htm. Thus, we can obtain the

60 Fourier spectrum components.

2.5 Features Fusion into Pseudo Amino Acid
Composition (PseAAC)

Finally, we obtained a total of 881 feature elements, of which 20

are from AAC, 800 from DC, 1 from CF, and 60 from FSC. Thus,

according to the general formulation of PseAAC (cf. Eq.6 of [9]), a

protein sample can be formulated as an 881-D vector given by

P~½y1,y2,:::,y881�
T ð14Þ

Figure 3. 3D graph to show the jackknife success rates with the different parameters. (a) The results obtained by the 1st level prediction,
and (b) the results obtained by the 2nd level prediction, where the parameters and are defined in Eq.16.
doi:10.1371/journal.pone.0023505.g003

Table 2. Prediction success rate and MCC index in identifying NR and non-NR by the jackknife test and independent dataset test.

Attribute Jackknife test Independent dataset test

ACC MCC ACC MCC

NR 156

159
~98:11%

0.83 566

568
~99:65%

0.96

Non-NR 454

500
~90:80%

0.83 481

500
~96:20%

0.96

Overall 610

659
~92:56%

1047

1068
~98:03%

doi:10.1371/journal.pone.0023505.t002
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where

yk~

fkX20

i~1

fiz
X861

j~1

wjpj

,(1ƒkƒ20)

w
(k{20)p(k{20)

X20

i~1

fiz
X861

j~1

wjpj

,(21ƒkƒ881)

8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

where fi(i~1,2, � � � ,20) are the amino acid composition,

pj(j~1,2, � � � ,861) are the remaining 861 ( = 881-20) feature

elements from dipeptide composition, complexity factor and

Fourier spectrum components; wj are the weight factors. In this

study, the weight factor was set at 20 for all the feature elements

from DC, 10{3for those from CF, and 10{4for those from FSC.

2.6 The Fuzzy K Nearest Neighbor (FKNN) Classifier
The K-nearest neighbor (K-NN) rule [21] is one of the simplest

but quite powerful methods for performing nonparametric

classification. The main idea of K-NN can be stated as following:

Given a test sample with unknown label, its label is assigned

according to the labels of its K nearest neighbors in the training set.

Recently, the K-NN classifier has been successfully used to predict

protein subcellular localization [22], membrane protein type,

protease type, among many other protein attributes (see a long list

of papers cited in a recent review [9]). For an intuitive illustration

of how K-NN classifier works, see Fig.5 of [9].

Fuzzy K-NN classification method [23] is a special variation of

the K-NN classification family. Instead of roughly assigning the

label based on a voting from the K nearest neighbors, it attempts to

estimate the membership values that indicate how much degree

the query sample belongs to the classes concerned, Obviously, it is

impossible for any characteristic description to contain complete

information, which would make the classification ambiguous. In

view of this, the fuzzy principle is very reasonable and particularly

useful under such a circumstance.

Suppose P1,P1, � � � ,PNf g is a set of vectors representing N

proteins in the training set which has been classified into M

classes: C1,C2, � � � ,CMf g, where Ci denotes the i-th class. Thus,

for a query protein P, its fuzzy membership value for the i-th class

is given by:

mi(P)~

PK
j~1 mi(Pj)d(P,Pj)

{2=(Q{1)

PK
j~1 d(P,Pj)

{2=(Q{1)
ð16Þ

where K is the number of the nearest neighbors counted; mi(Pj)is

the fuzzy membership value of the protein Pj to the i-th class (it is

set to 1 if the real label of Pj is Ci; otherwise, 0); d(P,Pj) is the

distance between the query protein P and its j-th nearest protein

Pj in the training dataset; and Q(w1) is the fuzzy coefficient for

determining how heavily the distance is weighted when calculating

each nearest neighbor’s contribution to the membership value.

Various metrics can be chosen for d(P,Pj), such as Euclidean

distance, Hamming distance, and Mahalanobis distance [11,24].

In this paper, the Euclidean metric was used. The values of Q and

K will be mentioned later. After calculating all the memberships

for a query protein, it is assigned to the class with which it has the

highest membership value; i.e., the predicted class for the query

protein P should be

Cu~argmaxi mi(P)f g ð17Þ

where u is the argument of i that maximizes mi(P).

The predictor thus established is called NR-2L, where ‘‘2L’’

means the prediction consisting of two layers. The 1st layer is to

identify a query protein as NR or not; if it is a NR, the 2nd layer

will be automatically continued to further identify the NR among

the seven subfamilies. To provide an intuitive picture, a flowchart

to show the process of how the classifier works is given in Fig.2.

Table 3. Prediction success rate and MCC index in identifying
NR subfamilies by the jackknife test and independent test.

NR subfamily Jackknife test Independent dataset test

ACC MCC ACC MCC

NR1 43

50
~86:00%

0.88 229

231
~99:13%

0.99

NR2 31

36
~86:11%

0.85 127

127
~100%

1.00

NR3 37

37
~100%

0.86 148

148
~100%

1.00

NR4 6

7
~85:71%

0.70 23

23
~100%

0.98

NR5 10

12
~83:33%

0.86 33

33
~100%

0.98

NR6 5

5
~100%

1 N/A N/A

NR0 9

12
~75:00%

0.86 6

6
~100%

1.00

Overall 141

159
~88:68%

566

568
~99:65%

doi:10.1371/journal.pone.0023505.t003

Figure 4. Distribution of predicted results in four quadrants. (I)
TP, the true positive quadrant (green) for correct prediction of positive
dataset, (II) FP, the false positive quadrant (red) for incorrect prediction
of negative dataset; (III) TN, the true negative quadrant (blue) for correct
prediction of negative dataset; and (IV) FN, the false negative quadrant
(pink) for incorrect prediction of positive dataset.
doi:10.1371/journal.pone.0023505.g004
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Results and Discussion

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [25]. However, as elucidated and demonstrated

by Eqs.28-32 of [9], among the three cross-validation methods, the

jackknife test has the least arbitrary that can always yield a unique

result for a given benchmark dataset, and hence has been

increasingly and widely used by investigators to examine the

accuracy of various predictors (see, e.g., [26,27,28,29,30,31,32]).

Accordingly, the jackknife test was also adopted here to examine

the quality of the present predictor.’’

The values of parameter Q and K in Eq.16 were determined by

optimizing the overall jackknife success rate thru a 2-D search

(Fig.3). It was found that the highest overall jackknife rate was

obtained when Q~1:11 andK~9 in the first level, while Q~1:11
andK~3 in the second level. Thus, with the optimized

parameters, predictions were further made for proteins in the

independent data set. The success rates obtained by the jackknife

test and independent test are given in Table 2 and Table 3 for

the first and second level, respectively. The prediction result by the

jackknife test for each of the proteins in the benchmark dataset

S~SNRzSnNR is given in Supporting Information S3, and the

prediction result for each of the proteins in the independent test set

ST~SNR
T zSnNR

T is given in Supporting Information S4.

As can be seen from the Table 2 and Table 3, the success rates

in identifying NRs and their subfamilies by both jackknife test and

independent dataset test are very high, indicating that the NR-2L
predictor is quite promising in generating reliable results for both

basic research and drug development.

To further evaluate the performance of NR-2L, the Matthew’s

correlation coefficient (MCC) index, another widely used criterion

in statistics, was also used. The definition of MCC index is given

by

MCC~
(TP)(TN)� (FP)(FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½TPzFP�½TPzFN�½TNzFP�½TNzFN�
p ð18Þ

where TP represents the true positive; TN, the true negative; FP,

the false positive; and FN, the false negative (see Fig.4). The

corresponding MCC values thus obtained are also given in Table 2

and Table 3, from which we can see that NR-2L not only possess

high accuracy but also quite stable even though the subset sizes are

very different.

Also, it is instructive to see the results in Table 4, where the

success rates obtained by using different features are separately

listed. It can be seen from the table that, among the five feature

combinations, the contribution from AAC+DC(0) is the highest to

the successful prediction.

The results listed in Tables 2, 3, and 4 were obtained for the

benchmark dataset with 60% cutoff threshold to exclude those

protein sequences that have §60%pairwise sequence identity to

any other in a same subset. To show the impact of such threshold

values to the predicted results, an extensive study was performed

on the datasets constructed by following exactly the same

procedures as described in the ‘‘Benchmark Datasets’’ section

with, however, cutoff thresholds 40%, 50%, 60%, 70%,

respectively. The results thus obtained are given in Table 5, from

which we can see that the larger the cutoff threshold value, the less

stringent the benchmark dataset, and the higher the overall success

rate by the jackknife test, fully in consistency with the elucidation

as elaborated in [9].

Table 5. The jackknifing success rates obtained in identifying NR subfamilies with different redundancy reduction cutoff
thresholdsa.

Redundan
cy
Subfamily 40% 50% 60% 70%

NR1 22

30
~73:33%

31

37
~83:78%

43

50
~86%

60

65
~92:31%

NR2 11

21
~52:38%

24

29
~82:76%

31

36
~86:11%

42

46
~91:30%

NR3 13

16
~81:25%

22

22
~100%

37

37
~100%

48

48
~100%

NR4 1

4
~25%

1

4
~25%

6

7
~85:71%

7

8
~87:50%

NR5 4

7
~57:14%

7

9
~77:78%

10

12
~83:33%

12

14
~85:71%

NR6 5

5
~100%

5

5
~100%

5

5
~100%

5

5
~100%

NR0 3

9
~33:33%

5

10
~50%

9

12
~75%

11

14
~78:57%

Overall 59

92
~64:13%

95

116
~81:90%

141

159
~88:68%

185

200
~92:50%

aWe did not eliminate the redundancy of NR6 subfamily because it contained only 5 nuclear receptors. If the redundancy-cutoff operation was also executed on this
class, the samples left would be too few to have any statistical significance.

Table 4. The jackknife success rates obtained in identifying
the NR subfamilies by separately using different features on
the benchmark dataset of Supporting Information S1.

Feature
mode AAC AAC+DC(0) AAC+DC(1) AAC+CF AAC+FSC

Success rate 66.67% 81.76% 80.50% 72.33% 73.58%

doi:10.1371/journal.pone.0023505.t004

—————–––
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Owing to the functional importance of NRs and the rapid

increasing of their sequences, it is important and feasible to

develop a reliable predictor for identifying NRs and their

subfamilies based on the sequence information. The NR-2L

predictor developed in this study can be used to address this kind

of problems. The high success rates achieved by NR-2L have once

again indicated that it is indeed an effective approach by fussing

several different kinds of sequence-derived features into PseAAC

to formulate protein samples for identifying their attributes. It is

anticipated that NR-2L may become a useful tool in speeding up

the pace of characterizing newly found nuclear receptor proteins

or at least may play an important complementary role to the other

methods in this regard. For the convenience of biologists and

pharmacologists in using NR-2L, a user-friendly web-server for

NR-2L has been established at http://icpr.jci.edu.cn/bioinfo/

NR2L, by which users can easily obtain the desired results in a

short period of time even for a large number of query protein

sequences. Furthermore, as a backup, the web-server for NR-2L

can also be accessed at http://www.jci-bioinfo.cn/NR2L in case

the former link is down. All the program codes for NR-2L are

available for non-commercial purpose upon request.

Supporting Information

Supporting Information S1 The training dataset S contains

500 non-NR proteins and 159 NR proteins classified into the

following 7 main subfamilies according to NucleaRDB (http://

www.receptors.org/NR/): (1) NR1: thyroid hormone like; (2)

NR2: HNF4-like; (3) NR3: estrogen like; (4) NR4: nerve growth

factor IB-like; (5) NR5: fushi tarazu-F1 like; (6) NR6: germ cell

nuclear factor like; and (7) NR0: knirps and DAX like. Both the

accession numbers and sequences are given. None of the proteins

included has $60% pairwise sequence identity to any other in the

same subset except the NR6 subfamily.

(PDF)

Supporting Information S2 The independent testing dataset

ST contains 500 non-NR proteins and 568 NR proteins

classified into the following 7 main subfamilies according to

NucleaRDB (http://www.receptors.org/NR/): (1) NR1:thyroid

hormone like; (2) NR2: HNF4-like; (3) NR3: estrogen like; (4)

NR4: nerve growth factor IB-like; (5) NR5: fushi tarazu-F1 like;

(6) NR6: germ cell nuclear factor like; and (7) NR0: knirps and

DAX like. Both the accession numbers and sequences are given.

None of the proteins included here occurs in the training

dataset S.

(PDF)

Supporting Information S3 List of the jackknifing results

obtained by NR-2L on the 159 NRs and 500 non-NRs in the

dataset S (cf. Supporting Information S1), and the corresponding

observed results as annotated in NucleaRDB or UniProt.

(PDF)

Supporting Information S4 List of the results obtained by NR-

2L on the 568 NRsand 500 non-NRs in the independent testing

dataset ST (cf. Supporting Information S2), and the corresponding

observed results as annotated in NucleaRDB or UniProt.

(PDF)
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