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A B S T R A C T   

Purpose: Many studies have shown that patients with non-central nervous system (CNS) cancer can have brain 
abnormalities, such as reduced gray matter volume and cerebral microbleeds. These abnormalities can some-
times be present even before start of treatment, suggesting a potential detrimental effect of non-CNS cancer itself 
on the brain. In these previous studies, psychological factors associated with a cancer diagnosis and selection bias 
may have influenced results. To overcome these limitations, we investigated brain structure with magnetic 
resonance imaging (MRI) prior to cancer diagnosis. 
Patients and methods: Between 2005 and 2014, 4,622 participants from the prospective population-based Rot-
terdam Study who were free of cancer, dementia, and stroke, underwent brain MRI and were subsequently 
followed for incident cancer until January 1st, 2015. We investigated the association between brain MRI mea-
surements, including cerebral small vessel disease, volumes of global brain tissue, lobes, and subcortical struc-
tures, and global white matter microstructure, and the risk of non-CNS cancer using Cox proportional hazards 
models. Age was used as time scale. Models were corrected for e.g. sex, intracranial volume, educational level, 
body mass index, hypertension, diabetes mellitus, smoking status, alcohol use, and depression sum-score. 
Results: During a median (interquartile range) follow-up of 7.0 years (4.9–8.1), 353 participants were diagnosed 
with non-CNS cancer. Results indicated that persons who develop cancer do not have more brain abnormalities 
before clinical manifestation of the disease than persons who remain free of cancer. The largest effect estimates 
were found for the relation between presence of lacunar infarcts and the risk of cancer (hazard ratio [HR] 95% 
confidence interval [CI] = 1.39 [0.97–1.98]) and for total brain volume (HR [95%CI] per standard deviation 
increase in total brain volume = 0.76 [0.55–1.04]). 
Conclusion: We did not observe associations between small vessel disease, brain tissue volumes, and global white 
matter microstructure, and subsequent cancer risk in an unselected population. These findings deviate from 
previous studies indicating brain abnormalities among patients shortly after cancer diagnosis.   

1. Introduction 

Patients with non-central nervous system (CNS) cancer frequently 
report cognitive problems during and after cancer treatment. (Ahles 

et al., 2012; Koppelmans et al., 2012; Janelsins et al., 2014) Whereas 
most research has focused on the effects of cancer treatment (e.g. 
chemotherapy) on brain health and cognitive function, several studies 
have shown that cancer patients can have impaired cognitive function 
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even before start of cancer treatment. (Scherling et al., 2012; Menning 
et al., 2015; Kesler et al., 2017; Hermelink et al., 2007; Patel et al., 2015; 
Sinha et al., 2018; Bernstein et al., 2018; Hshieh et al., 2018; Simo et al., 
2015) This pretreatment cognitive impairment can sometimes persist 
after adjustment for psychological factors, suggesting that non-CNS 
cancer may impact the brain apart from cancer treatment, for instance 
through inflammatory or vascular processes. (Ahles et al., 2012; Patel 
et al., 2015; Lyon et al., 2016; van der Willik et al., 2018; Olson and 
Marks, 2019) This hypothesis has further been supported by preclinical 
studies showing that tumor-bearing, treatment-naïve rodents can have 
impaired memory function. (Pyter et al., 2010; Yang et al., 2014; Walker 
et al., 2018) 

Understanding the underlying causes of cognitive impairment in 
non-CNS cancer patients is pivotal to develop prevention and inter-
vention strategies. Several neuroimaging studies have performed brain 
magnetic resonance imaging (MRI) to investigate the neural un-
derpinnings of cognitive impairment in cancer patients from pre- to 
posttreatment. (McDonald and Saykin, 2013; Li and Caeyenberghs, 
2018; Lange et al., 2019) These studies have shown subtle changes in 
gray and white matter volumes and frontal lobe hyperactivation before 
start of treatment, and various brain abnormalities after treatment, 
including reductions in gray matter volume, cerebral microbleeds, and 
decreased white matter microstructure. (Simo et al., 2015; Li and 
Caeyenberghs, 2018; Menning et al., 2015, 2017, 2018; Kesler et al., 
2017; Hermelink et al., 2007; Koppelmans et al., 2012, 2015; Lepage 
et al., 2014; McDonald et al., 2012; Mzayek et al., 2020) 

However, these studies are challenged by the effects of psychological 
factors accompanying a cancer diagnosis, including stress, depression, 
and anxiety, which may influence brain structure. (Yoshii et al., 2017; 
Cwik et al., 2020) Also, the feasibility of a baseline assessment after 
diagnosis but before subsequent treatment is limited, resulting in high 
rates of non-participation and selection bias. (Jenkins et al., 2016) These 
limitations can be overcome by studying brain structure and function of 
cancer patients before cancer diagnosis, with the underlying assumption 
that cancer is already present, yet not diagnosed. 

Within the unique setting of the prospective population-based Rot-
terdam Study, we have previously shown that the trajectory of cognitive 
function prior to cancer diagnosis did not differ between participants 
who developed cancer and those who remained cancer-free during 
follow-up. (van der Willik et al., 2020) Since in general, changes in brain 
structure correlate only moderately with cognitive function, (Takeuchi 
et al., 2017) absence of accelerated change in cognitive function before 
cancer diagnosis does not preclude presence of abnormalities in brain 
structure. 

Here, we studied the association between brain MRI measurements 
of cerebral small vessel disease, brain tissue volumes, and white matter 
microstructure prior to the clinical manifestation of cancer, and the 
subsequent risk of different types of non-CNS cancer. Such associations 
may reflect whether there are differences in brain structure between 
participants who are diagnosed with cancer during follow-up and those 
who remain cancer-free. This study population is defined by the avail-
ability of brain MRI scans. Therefore, the study is conducted in a slightly 
different sample than the sample in which we found no indication of 
impaired cognitive function before cancer diagnosis. (van der Willik 
et al., 2020) For this reason, we also explored the association between 
cognitive function (self-reported and tested) and the risk of cancer in the 
current sample. 

2. Methods 

2.1. Setting 

This study was embedded in the Rotterdam Study, an ongoing 
population-based prospective cohort study that investigates de-
terminants and occurrence of chronic diseases in the middle-aged and 
elderly population. The design of the Rotterdam Study has been 

described in detail previously. (Ikram et al., 2020) Briefly, the initial 
cohort started in 1990 with 7,983 participants aged ≥ 55 years residing 
in the district Ommoord in Rotterdam, the Netherlands. The cohort was 
expanded with 3,011 participants in 2000, followed by an additional 
inclusion of 3,392 participants aged ≥ 45 years in 2006. From 2005 
onwards, brain MRI was implemented into the study protocol of the 
Rotterdam Study. (Ikram et al., 2015) 

Participants were interviewed at home by a trained research assis-
tant, followed by two visits to the research facility for different exami-
nations including laboratory assessments and imaging. Follow-up 
examinations take place every three to five years. 

The Rotterdam Study has been approved by the Medical Ethics 
Committee of the Erasmus Medical Center and by the Ministry of Health, 
Welfare and Sport of the Netherlands. Written informed consent was 
obtained from all participants. 

2.2. Study population 

Out of the 14,926 participants of the Rotterdam Study, 5,766 had at 
least one brain MRI scan acquired between 2005 and 2014. Of the 5,766 
participants, we excluded those without informed consent to access 
medical files during follow-up (n = 30), with a history of dementia (n =
57) or who were not sufficiently screened for history of dementia (n =
43), with a history of stroke (n = 198), with a history of cancer (n =
464), and those without any cognitive test result (n = 9), resulting in 
4,965 eligible participants. Subsequently, we excluded participants who 
had MRI scans with artifacts and unreliable tissue segmentation (n =
121), without FreeSurfer segmentation (n = 37), with poor FreeSurfer 
segmentation quality (n = 94) and with MRI-defined cortical infarcts (n 
= 91), ending up with 4,622 participants. For diffusion tensor imaging 
(DTI) analyses we additionally excluded participants who had MRI 
scans, but no available DTI data (n = 268), resulting in 4,354 partici-
pants for DTI analyses (Fig. 1). If a participant had multiple MRI scans, 
we included only the first obtained scan for analyses to avoid bias 
because of the prospective cohort design. 

2.3. MRI acquisition and processing 

Brain MRI was performed on a 1.5-tesla MRI scanner with a dedi-
cated 8-channel head coil (General Electric Healthcare, Milwaukee, 
USA). The scan protocol and sequence details have been described in 
detail previously and are summarized in Supplementary Table 1. (Ikram 
et al., 2015) Scans for brain volumetry included T1-weighted (voxel size 
0.49 × 0.49 × 1.6 mm3), proton density-weighted (voxel size 0.6 × 0.98 
× 1.6 mm3), and fluid-attenuated inversion recovery (FLAIR, voxel size 
0.78 × 1.12 × 2.5 mm3) sequences which were used for automated 
segmentation of supratentorial gray matter volume, white matter vol-
ume, cerebrospinal fluid, and white matter hyperintensities. (de Boer 
et al., 2009; Vrooman et al., 2007) Pre-processing included co- 
registration, correction of non-uniformity, and variance scaling. Before 
segmentations, the brain is extracted from the scan using a manually 
segmented brain mask that is non-rigidly registered to the T1-weighted 
image using Elastix. (Klein et al., 2010) We used the k-nearest neighbor 
segmentation to classify scans into brain tissue volumes and cerebro-
spinal fluid. (Anbeek et al., 2005) All segmentations were inspected and 
manually corrected if necessary using a dedicated tool that has been 
developed in MevisLab that can visualize the original scan with the 
image processing results. (Ikram et al., 2015) Editing tools were avail-
able to adjust segmentations if necessary. Manual editing of errors was 
needed in less than ten percent. 

Markers of cerebral small vessel disease included white matter 
hyperintensity volume (mL), presence of cerebral microbleeds, and 
presence of infarcts. Cerebral microbleeds were rated on a 3-dimen-
sional, T2*-weighted gradient-recalled echo MRI scan (voxel size 0.78 
× 1.12 × 1.6 mm3) as focal areas of very low signal intensity. Infarcts 
were categorized as cortical infarcts (infarcts with involvement of 
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cortical gray matter which were excluded for analyses for reliability of 
tissue segmentations) and lacunar infarcts (focal lesions between 3 and 
15 mm in non-cortical tissue with signal intensity similar to that of ce-
rebrospinal fluid on all sequences, and, when located supratentorially, 
with a hyperintense rim on the FLAIR sequence). (Vernooij et al., 2007, 
2008) 

Total brain volume (mL) was defined as the sum of gray matter 
volume (mL) and white matter volume (mL, sum of normal appearing 
white matter and white matter hyperintensity volume). Intracranial 
volume (mL) was the sum of total brain volume and cerebrospinal fluid. 
Although these volumes were restricted to the supratentorial region, we 
refer to these volumes as total brain volume and intracranial volume. 
Lobar volumes were segmented by using an atlas in which the lobes were 
manually outlined. (Bokde et al., 2005) This atlas was subsequently non- 
rigidly transformed to each brain to obtain the volume of each lobe. 
(Ikram et al., 2015) Lobar volumes included both gray matter and white 
matter. T1-weighted MR images were processed using FreeSurfer 
(version 6.0) to calculate cortical thickness (mm), cortical surface area 
(mm2), and subcortical volumes (mL) of the hippocampus, amygdala, 
caudate, putamen, thalamus, and pallidum (FreeSurfer is freely avail-
able for download online at http://surfer.nmr.mgh.harvard.edu/). For 
quality assessment, we have randomly selected a subset of scans that we 
visually inspected. Next, we identified a cut-off on our automated 
quality assessment metric which allowed us to exclude unusable 

FreeSurfer data. (White et al., 2018) This cut-off has subsequently been 
applied to the remaining data and all scans below this cut-off were 
excluded. We have confirmed that several metrics (e.g., cortical thick-
ness) have no significant correlation with the automated quality 
assessment metric after the exclusions have been performed. (Lambal-
lais et al., 2020). 

Measurements of white matter microstructure were obtained from 
DTI (supratentorially, voxel size 3.3 × 2.2 × 3.5 mm3), which was 
embedded in the protocol of the Rotterdam Study from March 2006 
onwards. (Vrooman et al., 2007; Koppelmans et al., 2014) Echo-planar 
imaging (EPI) was used as readout module. Normal appearing white 
matter was distinguished from white matter hyperintensities using an 
automatic post-processing step based on the FLAIR image and the tissue 
segmentation. (de Boer et al., 2009) Next, the segmentation of white 
matter hyperintensities was mapped into DTI image space using 
boundary-based registration performed on the white matter segmenta-
tion and the T1-weighted image. (Greve and Fischl, 2009) Co- 
registrations of the DTI to the T1-weighted image were visually 
inspected to ensure a good fit and that DTI measures did not include gray 
matter or cerebrospinal fluid partial volumes. This co-registration partly 
corrected potential non-linear changes induced by the EPI readout 
module. DTI data were pre-processed using a standardized pipeline that 
included correction for subject motion and Eddy currents, estimation of 
the diffusion tensor, and registration to tissue segmentation matter. 

Fig. 1. Flowchart of study population. DTI, diffusion tensor imaging; MRI, magnetic resonance imaging.  
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(Koppelmans et al., 2014) Diffusion tensors were estimated using a non- 
linear Levenberg-Marquardt estimator (available in Explore DTI), 
(Leemans et al.,2009) from which global mean fractional anisotropy 
(FA) and mean diffusivity (MD, 10− 3 mm2/s) in the normal appearing 
white matter were obtained. FA reflects the degree of diffusion direc-
tionality of water molecules. (Alexander et al., 2007) MD represents the 
average diffusion of water molecules. Lower FA and higher MD are in-
dications of lower white matter microstructure. DTI images were 
manually inspected for registration and segmentation and corrected 
where possible. Between February 2007 and May 2008, 1,169 partici-
pants were scanned with the phase and frequency encoding directions 
swapped for the diffusion acquisition due to a technical issue. We have 
therefore included phase encoding direction as covariate in the analyses 
(see statistical analysis). (de Groot et al., 2015) 

2.4. Cognitive function assessment 

Cognitive function was assessed by a neuropsychological test battery 
administered at the research center. Assessments took place between 
2002 and 2014. The cognitive assessment corresponding to the same 
visit round as the visit round of the MRI scan was used, with a median 
(interquartile range [IQR]) time between cognitive function assessment 
and MRI scan of − 0.13 years (-0.31 to − 0.08). Up to 2015, the following 
cognitive tests were administered: Mini-Mental State Examination 
(MMSE), Word Fluency Test (WFT), Letter-Digit Substitution Test 
(LDST), Stroop Test (reading, naming, interference), Purdue Pegboard 
Test (PPT, right, left, both hands), and 15-Word Learning Test (WLT, 
immediate recall, delayed recall, recognition). (Folstein et al., 1975; 
Houx et al., 1993; van der Elst et al., 2006; Tiffin and Asher, 1948; Van 
der Elst et al., 2006; Bleecker et al., 1988) 

Global cognitive function was assessed by the general cognitive 
factor based on WFT, LDST, Stroop Test: interference, sum-score of in-
dividual PPTs, and WLT: delayed recall and was identified as the first 
unrotated component of a principal component analysis, which 
explained at least 48.0% of the total variance in individual cognitive 
tests. (Hoogendam et al., 2014) The general cognitive factor was only 
computed if all five individual tests were completed. 

Self-reported memory complaints were measured with three yes/no 
questions: 1) Do you have more problems remembering things than 
before? 2) Has there been an increase in the times that you forgot what 
you were up to? 3) Do you have more word-finding problems than 
before? 

2.5. Ascertainment of cancer 

Diagnoses of cancer were based on medical records of general 
practitioners (including hospital discharge letters) and through linkage 
with Dutch Hospital Data, Netherlands Cancer Registry, and histology 
and cytopathology registries in the region. (Ikram et al., 2020) Incident 
cancer was defined as any primary malignant tumor, excluding non- 
melanoma skin cancer. Diagnoses were coded independently by two 
physicians according to the International Classification of Diseases, 
tenth revision (ICD-10). In case of discrepancy, consensus was sought 
through consultation with a physician specialized in internal medicine. 
Date of diagnosis was based on date of biopsy (solid tumors) and labo-
ratory assessment (hematologic tumors), or – if unavailable – date of 
hospital admission or discharge letter. Only pathology-confirmed can-
cers were included in the analysis. Follow-up of cancer registration was 
completed up to January 1st, 2015. 

2.6. Measurement of covariates 

During home interviews, participants provided information on 
educational level, smoking status, and alcohol use. Educational level 
was classified into primary, lower (lower or intermediate general edu-
cation, or lower vocational education), intermediate (intermediate 

vocational education or higher general education), or higher (higher 
vocational education or university). Smoking was categorized as never, 
current, or former. Alcohol use was classified into any use or no use of 
alcohol. At the research center, height and weight were measured from 
which the body mass index (BMI, kg/m2) was computed. Furthermore, 
systolic and diastolic blood pressures were measured twice on the right 
arm with a random-zero sphygmomanometer of which the mean was 
used for analyses. Hypertension was defined as a systolic blood pressure 
of ≥ 140 mm Hg, a diastolic blood pressure of ≥ 90 mm Hg, or use of 
antihypertensive medication. (Engberink et al., 2012) Diabetes mellitus 
was defined as fasting serum glucose level ≥ 7.1 mmol/L, a random 
serum glucose level ≥ 11.1 mmol/L, or use of glucose-lowering medi-
cation. ([58]) Symptoms of depression were evaluated with the Center 
for Epidemiologic Studies Depression scale (CES-D), which was con-
verted to a sum-score. (Mirza et al., 2014) 

2.7. Statistical analysis 

We investigated the association between brain MRI measurements 
including cerebral small vessel disease, brain tissue volumes, and white 
matter microstructure, and the risk of cancer using Cox proportional 
hazards models. (Cox and Oakes, 1984) Cox proportional hazards 
models are semiparametric regression models for survival data and can 
be used to obtain hazard ratios (HRs) and 95% confidence intervals 
(95%CIs). The hazard is the instantaneous risk of an event at time t, 
given that the event has not occurred until time t. In the current study, 
we are interested in cancer as the event. For interpretation purposes and 
to facilitate comparisons across different MRI measurements, we stan-
dardized continuous brain MRI measurements (i.e., white matter 
hyperintensity volume, brain tissue volumes, and white matter micro-
structure) by creating Z-scores (individual value minus population 
mean, divided by population standard deviation [SD]). Therefore, the 
HR for continuous variables indicates the change in the risk of cancer if 
the brain MRI measurement of interest rises by one SD. (Zwiener et al., 
2011) A HR above one indicates that the risk of cancer increases for 
every SD increase in the brain MRI measurement. For categorical vari-
ables (i.e., cerebral microbleeds and lacunar infarcts) the hazard ratio 
can be interpreted as the ratio of the hazard for cancer at time t for 
participants with microbleeds or infarcts to the hazard for cancer at t for 
those without microbleeds or infarcts. A HR above one indicates that 
participants with microbleeds or infarcts have a higher risk of cancer 
than participants without microbleeds or infarcts. 

White matter hyperintensity volume was transformed using the 
natural logarithm to reach a normal distribution. For volumes of the 
lobes and subcortical structures we used the average of the left and right 
hemisphere. We explored non-linear associations by categorizing global 
brain volumes into quantiles. For each MRI measurement, we con-
structed two nested models. Covariates were selected based on previous 
literature (VanderWeele, 2019) on the relation between cancer, brain 
abnormalities, and cognitive function. In Model I, the effect of each MRI 
measurement was adjusted for sex and intracranial volume. In a middle- 
aged to elderly population, correcting for intracranial volume is 
preferred over correcting for total brain volume to better estimate the 
extent of global atrophy or atrophy between different regions. (O’Brien 
et al., 2011; Voevodskaya et al., 2014) In addition to these adjustments 
for all MRI measurements, the effect of gray matter volume was adjusted 
for total white matter volume (i.e., normal appearing white matter 
volume plus white matter hyperintensity volume), and analyses for 
measurements of white matter microstructure were adjusted for normal 
appearing white matter volume, white matter hyperintensity volume, 
and phase encoding direction. Model II was Model I plus additional 
adjustment for educational level (primary, lower, intermediate, higher), 
BMI (continuous), hypertension (yes, no), diabetes mellitus (yes, no), 
smoking status (never, current, former), alcohol use (yes, no), and CES-D 
sum-score (continuous). An overview of the distributions of the 
continuous determinants and covariates used in the models is provided 
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in Supplementary Fig. 1. (Allen et al., 2019) Ethnicity was not used as a 
covariate since nearly all participants (97.0%) were of European 
descent. Age was used as the underlying time scale in all Cox models to 
control for the confounding effects of age and to allow a non-parametric 
age effect. (Lamarca et al., 1998; Canchola et al., 2003) Follow-up time 
was measured from the date of first MRI scan until the date of cancer 
diagnosis, death, loss to follow-up, or January 1st, 2015, whichever 
came first. Participants with CNS cancer were censored at date of 
diagnosis (i.e., follow-up was terminated at date of CNS cancer diag-
nosis), because mechanisms underlying brain abnormalities differ be-
tween non-CNS and CNS cancers, given that CNS cancer can cause direct 
damage to the brain. (Coomans et al., 2019) Multicollinearity was 
checked by calculating the Variance Inflation Factor (VIF). None of the 
covariates had a VIF above ten. (James et al., 2013) The proportional 
hazards assumption was checked by visual inspection of the Schoenfeld 
residuals. (Schoenfeld, 1982) 

Given that cortical gray matter volume is approximated by the 
product of cortical thickness and cortical surface area, we explored 
whether any association between gray matter volume and risk of cancer 
may be driven by one of these features. Cortical surface area is the main 
determinant of variation in cortical gray matter volumes between in-
dividuals. (Storsve et al., 2014) Cortical thickness and surface area 
decrease both during aging, but it has been shown that reduced cortical 
thickness is probably the main driver of decreasing cortical gray matter 
volume. 

Subsequently, to investigate the robustness of our findings, we con-
ducted sensitivity analyses in which we limited the analyses to a shorter 
follow-up time by censoring all participants two years after the MRI 
scan. Cancer might indirectly affect the brain through inflammatory or 
vascular processes. (Olson and Marks, 2019) Tumor progression has 
been associated with inflammation and vascular changes. (Coussens and 
Werb, 2002) We therefore hypothesized that if growing, yet undiag-
nosed cancer affects the brain, brain abnormalities will become more 
apparent closer to the date of cancer diagnosis. 

Next, we analyzed effects separately for the most frequent cancer 
types (breast, prostate, colorectal, lung) and cancer stage (local versus 
metastasized). In addition, we studied effect modification for sex by 
stratifying. We adjusted these models for the same covariates that were 
used in Model II. Participants were censored at time of cancer diagnosis 
if they were diagnosed with another type of cancer than the cancer type 
of interest. 

We subsequently investigated the relation between tested cognitive 
function and self-reported memory function, and the risk of cancer. A 
Cox model with a particular cognitive test result included also infor-
mation on sex, educational level, BMI, hypertension, diabetes mellitus, 
smoking status, alcohol use, and CES-D sum score. The cognitive test 
results were standardized by creating Z-scores to facilitate comparisons 
across the different measures. 

Lastly, we repeated analyses using the MRI scan closest to cancer 
diagnosis in a matched cohort design by matching each participant with 
cancer to three cancer-free participants based on age, sex, and follow-up 
time. These analyses provided similar findings to those obtained from 
the original cohort design using the first available MRI scan and are 
therefore not reported separately. 

Multiple imputation was used for missing covariates (maximum of 
0.9%) based on determinants, outcome, and covariates. The missing 
values were imputed five times, resulting in five datasets. Rubin’s 
method was used to estimate pooled HRs and 95%CIs from these five 
datasets. (Rubin, 1987) A two-sided P-value of < 0.05 was considered 
statistically significant. We did not correct for multiple testing, because 
the brain MRI measurements were not independent from each other and 
the analyses were exploratory. Correction for multiple testing may 
therefore be too conservative. (Gelman et al., 2012) In total, 36 Cox 
proportional hazards models were run for the main analyses, six to 
explore non-linear associations by categorizing global brain tissue vol-
umes, 18 for analyses stratified by sex, 90 for analyses stratified by 

cancer type, 18 for sensitivity analyses, and 14 for analyses on cognitive 
function. All analyses were performed using the ‘survival’ package from 
R software Version 3.4.1. (Therneau, 2005) 

3. Results 

Characteristics of participants at time of MRI scan are presented in 
Table 1. During a median (IQR) follow-up of 7.0 years (4.9–8.1), 353 out 
of 4,622 participants (7.6%) were diagnosed with cancer. The most 
frequently diagnosed cancer types were prostate (16.1%), female breast 
(13.0%), colorectal (17.8%), and lung (10.5%). The median time (IQR) 
between MRI scan and cancer diagnosis was 3.3 years (1.7–5.6), with a 
mean (SD) age of 70.6 years (9.0) at diagnosis. 

3.1. Cerebral small vessel disease 

No associations were found between white matter hyperintensity 
volume or presence of microbleeds and the risk of cancer (HR [95%CI] 
per SD increase in white matter hyperintensity volume = 0.98 
[0.87–1.09], P = .67 and for presence of microbleeds = 1.00 
[0.77–1.29], P = .98, Table 2). The largest HR for cerebral small vessel 
disease was observed for presence of lacunar infarcts and the risk of all 
cancers combined (HR [95%CI] = 1.39 [0.97–1.98], P = .07, Table 2). 
This effect estimate was more pronounced in sensitivity analyses when 
censoring the follow-up time after the first two years after the MRI scan 
(HR [95%CI] = 1.65 [0.95–2.86], P = .07, Supplementary Table 2). 

We found no differences in associations for different cancer types 
(Supplementary Table 4), nor between men and women (Supplementary 
Table 6). 

3.2. Brain tissue volumes 

Overall, we found no associations between global and lobar brain 
tissue volumes and the risk of cancer. The majority of the effect esti-
mates for brain tissue volumes were below one, with the most pro-
nounced HR for total brain volume and the risk of cancer (HR [95%CI] 
per SD increase in total brain volume = 0.76 [0.55–1.04], P = .09, 
Table 3). We did not observe a non-linear pattern when categorizing the 
volumes into quantiles (data not shown). No associations were found 
between cortical thickness and risk of cancer (HR [95%CI] per SD in-
crease in cortical thickness = 0.94 [0.84–1.06], P = .33), and cortical 
surface area and risk of cancer (HR [95%CI] per SD increase in cortical 
surface area = 0.93 [0.72–1.20], P = .58). Regarding subcortical 
structures, the most pronounced effect estimate was found for hippo-
campal volume and the risk of cancer (HR [95%CI] = 0.87 [0.75–1.01], 
P = .07, Table 3). 

When limiting the follow-up to two years after the MRI scan, effect 
estimates were more pronounced for the association between volumes of 
total brain and hippocampus with the risk of cancer (Supplementary 
Table 3, HR [95%CI] per SD increase in total brain volume = 0.63 
[0.35–1.12], P = .12 and per SD increase in hippocampal volume = 0.75 
[0.58–0.98], P = .04). 

Regarding cancer type, we found that higher volumes of total brain, 
gray matter, and hippocampus were associated with a statistically 
significantly lower risk of lung cancer (Fig. 2). In contrast, higher vol-
umes of total brain and gray matter were associated with a higher risk of 
colorectal cancer. No differences were observed for the other cancer 
types and for metastasized cancer, but small numbers led to wide con-
fidence intervals. Results for the remaining brain tissue volumes and risk 
of cancer stratified by cancer type are shown in Supplementary Table 5. 

Lastly, we found no evidence for effect modification by sex (Sup-
plementary Table 7). 

3.3. White matter microstructure 

Global measurements of white matter microstructure were not 
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Table 1 
Baseline characteristics of total study population.  

Characteristic All participants(N ¼ 4,622) 

Agea 61.6 years (55.5–71.7) 
Sex  
Women 2,574 (55.7) 
Men 2,048 (44.3) 
Education  
Primary 390 (8.4) 
Lower 1,743 (37.7) 
Intermediate 1,368 (29.6) 
Higher 1,080 (23.4) 
Body mass indexb 27.4 kg/m2 (4.1) 
Hypertension  
No 1,776 (38.4) 
Yes 2,823 (61.1) 
Diabetes mellitus  
No 4,292 (92.9) 
Yes 315 (6.8) 
Smoking  
Never 1,426 (30.9) 
Former 2,436 (52.7) 
Current 734 (15.9) 
Alcohol use  
No 525 (11.4) 
Yes 4,072 (88.1) 
CES-D sum scorea 4.0 (3.0–8.0) 
Cerebral small vessel disease  
White matter hyperintensity volumea 2.8 mL (1.6–5.7) 
Microbleeds 840 (18.2) 
Lacunar infarcts 283 (6.1) 
Global brain tissue volumeb  

Intracranial volume 1,138.9 mL (116.1) 
Total brain volume 939.9 mL (100.6) 
Gray matter 530.6 mL (55.4) 
Normal appearing white matter 403.8 mL (60.9) 
Lobar brain tissue volumeb  

Frontal 79.5 mL (8.2) 
Parietal 52.0 mL (5.6) 
Temporal 49.1 mL (5.3) 
Occipital 22.8 mL (2.8) 
Subcortical structure volumeb  

Hippocampus 3.9 mL (0.4) 
Amygdala 1.4 mL (0.2) 
Caudate 3.3 mL (0.5) 
Putamen 4.2 mL (0.5) 
Thalamus 6.6 mL (0.7) 
Pallidum 1.6 mL (0.2) 
White matter microstructureb,c  

Global fractional anisotropy 0.34 (0.02) 
Global mean diffusivity 0.74 * 10-3 mm2/s (0.03) 
Cognitive functiona,d  

Mini-Mental State Examination 28.0 (27.0–29.0) 
Word Fluency Testb 23.0 (5.9) 
Letter-Digit Substitution Testb 30.6 (6.9) 
Stroop Test: naming 16.4 (14.7–18.5) 
Stroop Test: reading 22.4 (20.0–25.4) 
Stroop Test: interference 44.3 (37.2–54.3) 
Purdue Pegboard Testb 36.2 (5.2) 
Word Learning Test: immediate recallb 7.8 (2.1) 
Word Learning Test: delayed recallb 7.8 (2.9) 
Word Learning Test: recognition 14.0 (13.0–15.0) 
General cognitive factorb 0.0 (1.0) 
Self-reported memory complaintse  

More problems remembering 2,082 (46.4) 
Forgetting (daily) pursuits 1,318 (29.4) 
Word-finding problems 1,182 (26.3) 

Data are presented as number (percentage) of participants unless otherwise 
indicated. 
Values are shown without imputation and therefore not always add up to 100%. 
CES-D, Center for Epidemiological Studies Depression Scale; N, number of 
participants. 

a Presented as median (interquartile range). b Presented as mean (standard 
deviation). c FA and MD were measured in 4,354 participants due to missing 
diffusion tensor imaging data. d Number of participants differed per cognitive 
test. e Self-reported memory complaints were measured in 4,486 participants. 

Table 2 
Association between markers of cerebral small vessel disease and risk of cancer.  

MRI measurement Cancer(n/N ¼ 353/4,622)  
Model IHR 
(95% CI) 

P- 
value 

Model IIHR 
(95% CI) 

P- 
value 

White matter 
hyperintensity volume, 
mLa,b 

0.99 
(0.88–1.10)  

0.81 0.98 
(0.87–1.09)  

0.67 

Microbleeds 1.01 
(0.78–1.31)  

0.96 1.00 
(0.77–1.29)  

0.98 

Lacunar infarcts 1.46 
(1.02–2.07)  

0.04 1.39 
(0.97–1.98)  

0.07 

Model I: adjusted for sex and total intracranial volume. Model II: model I plus 
adjusted for education, body mass index, hypertension, diabetes mellitus, 
smoking status, alcohol use, and CES-D sum score. 
CES-D, Center for Epidemiological Studies Depression Scale; CI, confidence in-
terval; HR, hazard ratio; MRI, magnetic resonance imaging; n, number of par-
ticipants with incident cancer; N, number of participants. 

a Expressed per standard deviation increase. b Transformed with a natural 
logarithm. 

Table 3 
Association between brain tissue volumes and microstructural brain measure-
ments and risk of cancer.  

MRI measurementa Cancer(n/N ¼ 353/4,622)  
Model IHR 
(95% CI) 

P- 
value 

Model IIHR 
(95% CI) 

P- 
value 

Global brain tissue volume, mL 
Total brain volume 0.74 

(0.54–1.01)  
0.06 0.76 

(0.55–1.04)  
0.09 

Gray matter 0.89 
(0.71–1.11)  

0.31 0.91 
(0.73–1.14)  

0.41 

Normal appearing white 
matter 

0.86 
(0.73–1.02)  

0.09 0.87 
(0.73–1.03)  

0.11 

Lobar brain tissue volume, mL 
Frontal 0.87 

(0.70–1.08)  
0.22 0.90 

(0.73–1.12)  
0.34 

Parietal 0.86 
(0.71–1.05)  

0.15 0.87 
(0.72–1.07)  

0.19 

Temporal 0.90 
(0.74–1.10)  

0.32 0.92 
(0.75–1.13)  

0.43 

Occipital 0.99 
(0.85–1.14)  

0.84 0.99 
(0.85–1.14)  

0.85 

Subcortical structure volume, mL 
Hippocampus 0.86 

(0.74–1.00)  
0.05 0.87 

(0.75–1.01)  
0.07 

Amygdala 0.99 
(0.86–1.15)  

0.94 1.00 
(0.86–1.15)  

0.95 

Caudate 1.04 
(0.92–1.17)  

0.55 1.03 
(0.92–1.16)  

0.61 

Putamen 0.91 
(0.79–1.03)  

0.15 0.90 
(0.79–1.03)  

0.13 

Thalamus 0.94 
(0.80–1.12)  

0.51 0.95 
(0.80–1.12)  

0.52 

Pallidum 0.97 
(0.85–1.10)  

0.63 0.97 
(0.85–1.11)  

0.68 

White matter microstructureb 

Global fractional 
anisotropy 

0.98 
(0.86–1.12)  

0.79 0.98 
(0.86–1.12)  

0.75 

Global mean 
diffusivity,10-3 mm2/s 

1.02 
(0.87–1.19)  

0.85 1.01 
(0.86–1.19)  

0.89 

Model I: adjusted for sex and total intracranial volume. For gray matter volume 
additionally adjustment for total white matter volume. For white matter 
microstructure additional adjustment for normal appearing white matter vol-
ume, white matter hyperintensity volume, and phase encoding direction. Model 
II: model I plus adjusted for education, body mass index, hypertension, diabetes 
mellitus, smoking status, alcohol use, and CES-D sum score. 
CES-D, Center for Epidemiological Studies Depression Scale; CI, confidence in-
terval; HR, hazard ratio; MRI, magnetic resonance imaging; n, number of par-
ticipants with incident cancer; N, number of participants. 

a Expressed per standard deviation increase. b Fractional anisotropy and mean 
diffusivity were measured in 4,354 participants due to missing diffusion tensor 
imaging data. 
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associated with the risk of cancer (HR [95%CI] per SD increase in global 
FA = 0.98 [0.86–1.12], P = .75 and in global MD = 1.01 [0.86–1.19], P 
= .89, Table 3 and Supplementary Table 3). 

Also no associations were found when stratifying by cancer type 
(Supplementary Table 5) and by sex (Supplementary Table 7). 

3.4. Cognitive function 

All effect estimates for the relation between individual cognitive tests 
and the risk of cancer were around 1.0, indicating that there are no 
associations between different cognitive test scores and the risk of 
cancer (Supplementary Table 8). Per SD increase in the general cogni-
tive factor as measurement of global cognitive function the HR for 
cancer was 1.03 [0.89–1.20], P = .66. Also no associations were found 
between self-reported memory function and the risk of cancer. 

4. Discussion 

In this population-based study, we aimed to obtain more insight into 
the impact of cancer on brain structure by investigating the presence of 
brain abnormalities in non-CNS cancer patients prior to the clinical 
manifestation of cancer. We found no meaningful associations between 
cerebral small vessel disease, brain tissue volumes, and white matter 
microstructure, and the risk of cancer. These findings suggest that per-
sons who develop cancer do not have more brain abnormalities before 
cancer diagnosis than persons who remain free of cancer. 

Our current findings obtained prior to cancer diagnosis deviate from 
previously observed brain changes after diagnosis but before treatment 
such as lower gray matter volume and white matter microstructure (i.e., 
lower FA and higher axial diffusivity). (Scherling et al., 2012; Simo 
et al., 2015; McDonald et al., 2013) Although we did not find any 

statistically significant associations, we observed that almost all effect 
estimates for brain tissues volumes were below one, suggesting that we 
cannot completely rule out a subtle effect of cancer on the brain. In 
addition, effect estimates for the association between presence of 
lacunar infarcts, total brain volume, hippocampal volume, and the risk 
of cancer were more pronounced when the study follow-up was limited 
to two years after MRI scan. This may indicate that brain changes (i.e., 
more lacunar infarcts and smaller brain volumes) become more 
apparent closer to the date of cancer diagnosis. Given that we did not 
observe this pattern for any of the cognitive tests, this might suggest that 
brain changes might arise before they become clinically apparent, as 
seen in dementia. (Ikram et al., 2010) This may also apply to cancer 
patients, with cognitive function first being preserved by compensation, 
followed by loss of compensatory activation, which results eventually in 
cognitive impairment. (Ahles et al., 2012) Different underlying mecha-
nisms by which non-CNS cancer may affect the brain have been pro-
posed, including peripheral inflammation triggering neurotoxic 
cytokine response, oxidative stress, or vascular changes (Ahles et al., 
2012; Patel et al., 2015; Lyon et al., 2016; van der Willik et al., 2018; 
Olson and Marks, 2019; Winocur et al., 2017). In addition, the associ-
ations were most pronounced for lung cancer, which is strongly asso-
ciated with inflammation and oxidative stress. (Pine et al., 2011; Filaire 
et al., 2013) Accordingly, we can conclude that if subclinical non-CNS 
cancer affects the brain, the effects are limited and may only result in 
subtle changes that are not evidently detected by measures of supra-
tentorial brain tissue volumes, subcortical brain structure volumes, 
white matter pathology, and white matter microstructure, or effects are 
restricted to certain types of non-CNS cancer, such as lung cancer. 

Our study has some limitations. First, measurement error in brain 
MRI volumes might have attenuated the association. For instance, it 
might have been possible that usage of a higher magnetic field strength 

Fig. 2. Adjusted hazard ratios for the association between global brain tissue volumes and hippocampus and risk of cancer at different organ sites and metastasized 
stage. Hazard ratios are expressed per standard deviation increase in volume. Hazard ratios are adjusted for total intracranial volume, sex, education, body mass 
index, hypertension, diabetes mellitus, smoking status, alcohol use, and CES-D sum score. For gray matter volume additionally adjustment for total white matter 
volume. The boxes represent the effect size and the horizontal lines indicate the corresponding 95% confidence intervals. CI, confidence interval; HR, hazard ratio. 
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or alternative imaging processing pipelines would have resulted in a 
more pronounced association between certain MRI measurements and 
the risk of cancer. (Mzayek et al., 2020; Ma et al., 2019) Second, 
although the statistical power in our main analysis was sufficient to 
detect a potential association (we were powered to detect a HR of 0.84 
for the relation between total brain volume and risk of cancer [α = 0.05, 
β = 0.80]), the power might have been too limited to find statistically 
significant associations when limiting the follow-up time to two years 
and when focusing on different cancer types. Therefore, replication of 
this study in a larger sample with MRI scans performed more closely to 
the clinical manifestation of cancer is desirable. (Menning et al., 2015) 
In addition, it would be interesting to investigate the change in MRI 
measurements from before to after cancer diagnosis. Third, we had no 
information on fatigue and frailty, which may be confounding factors 
that would have further attenuated the effect estimates. Fourth, with the 
current analyses we were not able to study interrelationships between 
different brain MRI measurements and therefore we might have missed 
more complex patterns of brain abnormalities related to the risk of 
cancer. 

Strengths of this study include the unique design by which we could 
assess brain MRI before clinical manifestation of cancer. Hereby, we 
excluded the effects of psychological factors associated with a cancer 
diagnosis on the brain and the potential effects of selection bias. (Yoshii 
et al., 2017; Cwik et al., 2020) Also, we have a larger sample size than 
that of other studies assessing brain MRI in cancer patients prior to 
treatment (number of patients ranging between 10 and 74, compared to 
353 patients in our study), and we included different cancer types as 
outcome whereas previous studies primarily focused on breast cancer. 

In conclusion, we found that persons who develop non-CNS cancer 
did not have more brain abnormalities before cancer diagnosis than 
persons who remained free of cancer. Our findings do not support that 
non-CNS cancer affects global brain structure measurements before 
clinical manifestation of cancer. 
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