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Advances in big data analytics have created an opportunity for a step change in

unraveling mechanisms underlying the development of complex diseases such as

asthma, providing valuable insights that drive better diagnostic decision-making in

clinical practice, and opening up paths to individualized treatment plans. However,

translating findings from data-driven analyses into meaningful insights and actionable

solutions requires approaches and tools which move beyond mining and patterning

longitudinal data. The purpose of this review is to summarize recent advances in

phenotyping of asthma, to discuss key hurdles currently hampering the translation

of phenotypic variation into mechanistic insights and clinical setting, and to suggest

potential solutions that may address these limitations and accelerate moving discoveries

into practice. In order to advance the field of phenotypic discovery, greater focus should

be placed on investigating the extent of within-phenotype variation. We advocate a more

cautious modeling approach by “supervising” the findings to delineate more precisely the

characteristics of the individual trajectories assigned to each phenotype. Furthermore, it

is important to employ different methods within a study to compare the stability of derived

phenotypes, and to assess the immutability of individual assignments to phenotypes. If

we are to make a step change toward precision (stratified or personalized) medicine and

capitalize on the available big data assets, we have to develop genuine cross-disciplinary

collaborations, wherein data scientists who turn data into information using algorithms

and machine learning, team up with medical professionals who provide deep insights on

specific subjects from a clinical perspective.
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INTRODUCTION

Asthma is a term describing a heterogeneous medical condition characterized by variable
symptom expression, airway inflammation and therapeutic responses, making the clinical diagnosis
challenging and long-term prognosis uncertain (1). Identifying genetic risk factors, environmental
associates and pathophysiological mechanisms of asthma is further complicated by the fact that
there is no uniform definition of this condition (2–4). In research settings, different studies use
different definitions, which may lead to the under- or over-estimation of cases, and any signal in
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genetic of environmental association studies may be diluted
as a consequence of the heterogeneity of the primary outcome
measure (5). For example, Van Wonderen et al. reviewed
122 published articles and reported a staggering 60 different
definitions of childhood asthma used in cohort studies (4).
After selecting four common definitions used in the literature
and applying them to a single cohort, the authors found
that prevalence estimates varied from 15.1 to 51.1% (4). For
the clinical setting, the UK National Institute of Health and
Care Excellence (NICE) guidance recommends algorithm for
diagnosing childhood asthma which is based on sequential
assessment of four objective tests of lung function/airway
inflammation (spirometry, bronchodilator reversibility,
fractional exhaled nitric oxide, and peak flow variability;
https://www.nice.org.uk/guidance). However, a recent study has
found a poor agreement between the proposed algorithm and a
strict epidemiological definition of asthma (physician diagnosis,
current symptoms, and regular use of inhaled corticosteroids) in
a birth cohort study (6). The authors suggested that the proposed
NICE guidance on asthma diagnosis in children should not be
implemented, emphasizing the uncertainties of how to accurately
diagnose asthma, and which objective tests are useful (6).

There is increasing recognition that asthma is not a single
disease, but a collective noun used to describe a set of clinical
symptoms and features which may arise through different
pathophysiological mechanisms (7, 8). While the subtypes of
asthma sharing similar observable characteristics are often
labeled as “phenotypes,” “asthma endotypes” are defined on the
basis of pathophysiological mechanisms associated with discrete
subtypes. There is a general consensus in the medical community
that different endotypes of asthma do exist, however, there is
no consensus as to what these endotypes are, or how to define
them (9). One approach to endotype discovery capitalizes on
the advances in computer sciences and software engineering
and uses unbiased, data-driven approaches in an attempt to
uncover different “phenotypes” of asthma, with the assumption
that patterns of clinical symptoms are a reflection of specific
underlying pathophysiological mechanisms (9). It is important
to emphasize that disease subtypes discovered using data-driven
approaches are not observed, but latent (i.e., hidden) by nature,
and ideally should not be referred to as “phenotypes” (i.e.,
observable characteristics). However, as the term “phenotype”
has been used in this context for more than a decade (10), we will
maintain this nomenclature in this review. A thorough review
of the implementation of data-driven methods for phenotype
discovery in pediatric asthma has been conducted recently, with
a particular focus on childhood wheezing illness and different
“wheezing phenotypes” at a population level (11, 12). We
will expand the discussion beyond the existing approaches to
understanding phenotypic complexity in asthma, and highlight
the role of clinical context and clinical experience in linking
latent “phenotypes” to underlying biological mechanisms and
tailored treatment approaches. We start by highlighting the
heterogeneity of asthma and its phenotypic expression, and
then discuss potential solutions to maximize the gain from
different sources of data, and their clinical utility in asthma
research.

DISENTANGLING ASTHMA
HETEROGENEITY: FROM SUBJECTIVE TO
DATA-DRIVEN APPROACHES

The idea of characterizing asthma subtypes based on the
temporal pattern of symptoms through the life-course is not
new (13), but has gained momentum in recent years with
emerging of data-driven analytic approaches. Over the past two
decades, subtyping approaches have progressed from subjective
sub-typing to statistical classification techniques. Table 1

summarizes different approaches for discovering pediatric
asthma phenotypes. In subjective sub-typing, phenotypes are
identified using predefined or hypothesized criteria based on
investigators’ insights about clinical features, symptoms, age of
onset, and progression rate (14, 23). The main limitation of this
approach is that less obvious or rare patterns may be missed. A
risk of artificially limiting the set of inputs or imposing a structure
on the data is that it may limit the predictive ability of a model
by missing associations which do, in fact, exist (9). In contrast,
data-driven classification relies on techniques and algorithms
that mine the large data sets to uncover the underlying structures
and patterns “hidden” in the data. Statistical methods such as
cluster analysis and latent class analysis (LCA) (11, 24–26),
principal component analysis (20, 27), and exploratory factor
analysis (21), have been widely applied to discover homogeneous
subtypes of asthma. These procedures ranged from univariate
approaches (a single symptom measured over time) to more
sophisticated, multivariate approaches that simultaneously
model several variables, including symptoms and other clinical
and environmental characteristics. By incorporating the
longitudinal structure of data, the latter has enabled investigators
to capture the multidimensionality of the disease and to
characterize phenotypic heterogeneity across the life-course (28).

Nowadays, big data set containing many thousands of
variables (such as clinical variables, objective tests, various
biomarkers, genome-wide genotyping, proteomics etc.), are
extensively used in medical research. In particular, the concept of
“big” is difficult to pin down and relative to each field. Big data in
healthcare refers to the large volumes of data accumulated from
numerous sources, patients and populations that can no longer be
easily handled by traditional statistical analysis methods due to its
complexity. One of the advantages of big data in medicine is its
capacity to examine heterogeneity between diverse populations,
build better predictive models around individual patients and
deliver more personalized and effective care. As an example,
big data could be used to develop analytical tools that can help
identify at-risk asthma patients before an attack occurs1, to
identify patients with exacerbations and inadequately controlled
asthma (29) and to understand how variations in environmental
factors influence childhood asthma hospitalization (30).

In the context of “big data analytics,” it is not possible to
define a priori all possible causal and associational mechanisms
(9). By allowing algorithms to model a large number of potential
associations in an unsupervised way, patterns can be identified

1http://www.propellerhealth.com
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TABLE 1 | Different approaches for phenotypic discovery with the associated advantages and disadvantages.

References Age (years) Sample size Methodology Strengths Limitations

(13) 1–6 54 Subjective sub-typing - Phenotypes are observable expressions

- Choice of cutoff guided by investigator

expertise

- Simple

- Predefined or hypothesized criteria needed

- Rare patterns may be missed

- Risk of over- or under- fitting as there are no

objective statistical criteria for judging fit

- Subjective cut-offs need to be recalibrated

when new data becomes available

- Un-validated cut-offs pose challenge for

comparing findings across studies(14) 1–6 826

(15) 1–6 6265 Latent class analysis - Probabilistic class allocation.

- No prior knowledge is needed.

- Hidden patterns may be uncovered that

could not be a priori.

- Hypothesis generating

- Objective statistical criteria for judging

whether phenotypes represent true variation

- Discovered sub-types are latent and

retrospective by nature

- Within-class heterogeneity arising from

individuals whose patterns do not exemplify

any phenotype

- Meaningful clinical interpretation required to

explain the patterns

- Number of derived phenotypesmay be related

to the frequency and timing of data collection

- Unclear to what extent established

phenotype labels convey temporal patterns

(10) 1–7 689

(16) 1–9 953

(17) 1–8 5760

1–8 2810

(18) 1–8 1184

(19) 8–12 3890

(20) 3–5 946 Principal component

analysis

- Accounts for

- coexisting symptoms

- Reduces the variable dimensions in complex

diseases

- Difficult clinical interpretation

- Not useful for categorical and longitudinal

data unless properly specified(21) 7–35 925 Exploratory factor

analysis

(22) 6–18 613 Hierarchical clustering - No a priori info about the number of classes

required

- Risk of misclassifying distinct phenotypes

that are present at low frequency

that could not have been predicted in advance, even by experts
in the field. As such, data is allowed to speak for itself, often
without relying on any prior knowledge. However, a danger of
this approach is that it may become divorced from rigorous
scientific scrutiny and meaningful clinical interpretation (9),
since big data can only explain part of the picture (31).
In the absence of guidance about the clinical plausibility of
findings, there is a risk of identifying false positive associations
as the number of relationships being tested increases (32).
To be genuinely successful, the “data-driven” approach should
encompass making decisions based on both data analysis and
interpretation (Figure 1), which can only be achieved through a
true synergy between the expertise in data science and clinical
domain (22).

LATENT VARIABLE MODELING
PARADIGMS FOR “PHENOTYPE”
IDENTIFICATION

One way to address the complexity of asthma is to derive asthma
phenotypes that differentiate groups of patients presenting with
similar combinations of symptoms, and to understand how
biological factors shape each of these disease “phenotypes” (5).
One such approach is latent class trajectory modeling, a class
of probabilistic models in which repeated measurements of
observable symptoms are modeled to identify homogeneous sub-
populations within the larger heterogeneous population. Over

the last few decades, latent modeling approaches [reviewed in
(9, 11, 12)] have been extensively used to identify longitudinal
trajectories of childhood wheeze (10, 17, 33, 34), atopy (34–
37), and asthma (11, 12, 19), and to evaluate their associations
with early life risk factors. For example, recent studies which
used data from several population-based birth cohort studies
have described four discrete trajectories of lung function from
early childhood to young adulthood (38, 39), providing evidence
that early life influences might be crucial not only for childhood
asthma, but also for the pathogenesis of COPD in adulthood (28).

However, despite the increasing utilization of (and reliance
on) latent class methods to stratify asthma and allergic diseases,
there is a striking lack of enquiry into the extent of between-
individual variation within the supposedly homogeneous
“phenotypes.” Latent class methods use posterior probabilities
which provide researchers with an objective basis for assigning
individuals to classes (phenotypes) that best typify their pattern
of symptom development. As these probabilities collectively
measure specific individual’s likelihood of belonging to each
of the classes discovered by a model, a class (or “phenotype”)
membership is not fixed, and all individuals are assigned
a non-zero probability of belonging to each class. It is a
common practice to then assign individuals to one of the latent
classes according to the maximum posterior probability for
an individual belonging to a particular class. Once classified
in such way, the individuals are often considered as members
of a single class, despite occasionally a considerable variations
in posterior probabilities and marginal class assignments.

Frontiers in Pediatrics | www.frontiersin.org 3 September 2018 | Volume 6 | Article 258

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Oksel et al. Phenotypes of Pediatric Asthma

FIGURE 1 | From phenotype discovery to clinical utility.

However, in some cases, there may be subjects who have low
posterior probabilities for all classes, and/or whose patterns
do not exemplify any phenotype. As an example, an individual
may have a 0.5 probability of belonging to “phenotype 1,” 0.30

probability of belonging to “phenotype 2,” and 0.20 probability
of being in “phenotype 3,” yet such classification would assign a
person into “phenotype 1,” ignoring the underlying uncertainty
in class assignment. An implication of this is that the latent
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classes may not, in fact, reflect homogeneous patterns. If we
are to understand pathophysiological processes underpinning
different phenotypes, then each phenotype should include only
individuals whose patterns fit well within the assigned class with
a high probability (close to 1), and with a very low probability of
belonging to other classes.

Furthermore, it is unclear to what extent the phenotypic
nomenclature adequately conveys the temporal characteristics
of individuals assigned to the classes, for example, whether
“persistent” wheeze means long and/or uninterrupted spells of
wheeze, and/or whether “early transient” means absolutely no
recurrence of wheeze later in life. Also, one has to be careful
not to assume that a persistence of symptoms (such as wheeze)
necessarily reflects a persistence of the same pathophysiological
process. For example, children with “persistent wheeze” may
develop symptoms in early life due to impaired anti-virus
responses (40), while the cause of the wheezing later in the
school age may be related to other mechanisms such as IgE-
mediated sensitisation (41). We would also like to highlight
that phenotypes derived from different birth cohort studies
often share the same nomenclature (such as “transient early,”
“late-onset” and “persistent”), but phenotypes with the same
assignment often differ substantially in terms of their age of
onset, temporal trajectory and distributions within a population.
Although common labels are frequently ascribed to latent classes
(phenotypes) across studies, it has not been established whether
individuals with similar longitudinal profiles are classified to
the “same” phenotype in different cohorts sharing similar time
points (or even within the same cohort). Moreover, classifications
derived from latent class methods appear to be based on a
combination of the timing of onset of symptoms and their
frequency, but there has been a lack of research into whether
there are different levels of disease “severity” within each
phenotype, and how would the addition of information on
severity impact classification.

A recent review of childhood wheeze phenotypes discovered
using data-drivenmethods found a lack of consistent associations
with risk factors and associates across different studies (18).
We propose that within-class heterogeneity may be a in part
responsible for these discrepancies, and may mask potentially
important and consistent associations. Given that the optimal
solution for the number of phenotypes may be an artifact of the
underlying assumptions of the methods employed, idiosyncrasies
particular to a cohort, and within-class heterogeneity, we
encourage researchers to investigate the characteristics of the
individual trajectories assigned to the phenotypes, and in doing
so, question whether the model assumptions are appropriate
for the data at hand. In order to reduce misclassification and
derive more holistic phenotypes which reflect a” real life” and
clinical practice, we would also suggest that rather than focusing
on a single symptom (e.g., wheeze), we should employ methods
that can incorporate a more comprehensive set of symptoms
and/or comorbidities (for example, rhinitis, atopic dermatitis)
(42). Thus, in order to achieve more consistency in phenotype
discovery (in particular with respect to the role of different risk
factors), it may be necessary to move beyond LCA and employ
other methods for phenotype discovery.

ADVANCING PHENOTYPE DISCOVERY:
THE CASE FOR A MORE REFINED
APPROACH

As outlined above, the identification of asthma phenotypes
and their underlying distinct pathophysiological mechanisms is
crucial for the development of targeted therapeutic strategies
(1, 5, 8, 9). In order to achieve this goal, it is imperative that
researchers derive asthma phenotypes that are truly homogenous.
Whilst data-driven approaches have provided a framework for
unearthing a structure within large datasets, there is a risk of
assuming that the results represent the “truth,” in particular
when this assumption is based on a reliance on objective
statistical criteria, such as the Bayesian information criterion
(BIC), Akaike information criterion (AIC), etc. For the clinical
community, the proliferation of machine learning techniques
and their associated language inventory of “new” terms [hidden
Markovmodels (34), random forest (42), Bayesian networks (42),
latent variable modeling (42), clustering (22), etc.,] are complex
to comprehend, even by the statistically literate. Rigorous
scientific assessment, reproducibility and transparency of models
are increasingly challenging with the availability of diverse
programming languages (R, Python, Stata, MATLAB, Infer.Net,
MPlus, etc.,). The density of code underlying some algorithms
makes it difficult to replicate and validate models (43). Although
performance measures to compare the predictive adequacy of
various machine learning techniques (area under the curve
[AUC], sensitivity, specificity, positive and negative predictive
values [PPV andNPV respectively], etc.,) are routinely published,
studies rarely demonstrate how numeric improvements in
prediction translate into better outcomes for patients. Hence,
there is a pressing need for big data research to include data’s
relationship to improved outcomes at its core. In addition, steps
need to be taken to improve the statistical literacy of healthcare
professionals through greater education to bridge the divide with
the big data “industry.” It is essential that clinicians embrace
new findings and engage in debates surrounding big data and
healthcare.

Birth cohorts have been instrumental in shedding light
on asthma heterogeneity, but they alone cannot address all
important questions, particularly in relation to severe disease,
and the pathophysiological mechanisms underlying different
phenotypes. Patient cohorts contain data which complement the
information from birth cohorts, and bringing together these data
assets may be essential to disaggregate asthma. Such a multi-
cohort approach would enhance the credibility, reproducibility
and generalizability of phenotyping results, while maximizing
the benefits of accumulated and readily available evidence, but
methodological challenge of how best to co-analyse the data from
different contexts remains unanswered.

THE CLINICAL UTILITY OF DATA-DRIVEN
PHENOTYPES

To date, numerous asthma classifications have been proposed
based on observable clinical characteristics, disease severity,
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triggers, age of onset and inflammatory markers. For example,
various atopic phenotypes (pollen sensitization with severe
exacerbations, multiple allergies with severe asthma, house
dust mite, multiple early/late, and late mixed inhalant) were
defined based on asthma severity and allergic sensitization in
pediatric populations from the TAP (44), MAAS (45), and
CAPS (37) cohorts. Similarly, several inflammatory phenotypes
(46) such as eosinophilic asthma, neutrophilic asthma, pauci-
granulocytic asthma (24, 47–50), and Th2-high asthma (51),
and trigger-induced asthma phenotypes such as cigarette smoke-
induced asthma (52), air pollution-induced asthma (53), and
exercise-induced asthma (54) have been identified in different
populations. Although the long-term goal of the phenotype-
driven approach is to broaden the personalized management of
asthma, translation into clinically actionable endotypes is not
readily apparent. This may, in part, be due to the limited ability
to identify causative pathophysiological mechanisms of distinct
subgroups of childhood asthma. The clinical utility of phenotype
classification and their use in everyday clinical practice requires
an improved understanding of pathophysiological mechanisms
that underlie each asthma subgroup.

One way of bridging the findings from data-driven analytics
into day-to-day clinical practice is by linking identified
phenotypes to a specific underlying pathology, and tailoring
treatment choices based on pathophysiologic mechanisms.
Recent advances in molecular techniques offer promising
opportunities to link phenotypes with underlying pathological
mechanisms. For example, by employing machine learning, a
recent study has described an architecture of multiple cytokine
responses by human blood mononuclear cells to rhinovirus
stimulation comprising six response profiles, and observed major
differences in trajectories of asthma, allergic sensitization and
lower respiratory tract infections during childhood between
these profiles, suggesting that impaired anti-virus immunity
may contribute to the development of a specific phenotype
of troublesome childhood asthma (41). In another study,
Bønnelykke et al (45). identified a novel gene (CDHR3) that
was associated with a specific phenotype of early onset asthma
with severe exacerbations. In subsequent studies, the risk variant
in CDHR3 has been reported to facilitate rhinovirus-C binding
and replication (55), suggesting that the CDHR3 may pose
a risk to early-onset asthma with severe exacerbations and
hospitalisations through an interaction with RV-C infection (56).
Collectively, these findings highlight how the use of umbrella
term “asthma” masks the complexity of disease heterogenity, and
that the derivation of more precise and internally-homogenous
phenotypes may be useful for providing more accurate
assessment of underlying pathophysiology. Several recent studies
which used machine learning-based methodologies applied to a
large amount of data generated by multiplex arrays measuring
IgE to more than 100 individual allergenic proteins suggest that
it may be possible to develop better diagnostic algorithms to help
practicing physicians differentiate between benign and clinically
important allergic sensitisation to help asthma diagnosis (57–59).

In short term, the continued validation and replication of
asthma phenotypes in different populations, and the integration
of novel approaches such as whole genome sequencing and

omics profiling to tease out pathological mechanisms underlying
different phenotypes are needed to help deliver personalized
medicine in clinical practice. In the longer-term, findings from
large-scale data have the potential for the development of non-
invasive and quick diagnostic assessments for use in clinics
(57, 60).

FUTURE POTENTIAL FOR REFINING
PHENOTYPES: INTEGRATING TEXT
MINING APPROACHES INTO ASTHMA
RESEARCH

The exponential growth in the amount of data which is being
generated in healthcare setting often makes it difficult to extract
knowledge and value from a vast amount of unstructured data,
or to understand whether these insights are relevant to the
clinical setting (9). To date, over 119,200 scientific articles are
indexed in the PubMed database under the “asthma” label, with a
publication rate of more than 3,000 asthma-related papers each
year (https://www.ncbi.nlm.nih.gov/pubmed/). Methodologies
such as text mining are usually seen as a specialization of the
broader data-mining field, with the ultimate aim of extracting
useful information from unstructured data and unlocking full
insight contained in huge volumes of data. They commonly
rely on Natural Language Processing (NLP) methods, a key
component of many Artificial Intelligence systems, dedicated
to the automatic treatment of written, typed or spoken
resources. The biomedical field has extended NLP solutions
to biological and medical domain (also known as bioNLP)
(61, 62), and demonstrated its potential use for performing
extraction of asthma candidate genes (63, 64), biological and
clinical concepts (65), protein-protein interactions (66), and
gene-disease associations (67). Earlier applications of bioNLP
in asthma research were limited to text-searching from clinical
notes to characterize patients with asthma exacerbation (68), and
asthma as a principal diagnosis (69). More recent studies have
extended their use to include classification components of NLP
which help to classify asthma status at a patient level (70).

The application of NLP to clinical problems holds out
great promise of extracting biomedical relations from
scientific literature and clinical narratives, and unlocking
clinical information from various medical documents such as
consultation notes, patient narratives or medical admission
and discharge records. However, such clinical information is
commonly omitted in phenotyping studies, mostly due to the
unstructured nature of the data. While the integration of bioNLP
methodologies with machine learning tools may help tackle
the inconsistency in asthma ascertainment over many studies,
one of the key limitation of bio-text mining approaches is that
they still require manual curation and shared annotated datasets
which are currently very limited in asthma research (71). The
collaborative efforts of biomedical community toward shared
objectives and tasks (72), may help overcome the current limits
in BioNLP, unlock its full potential for deciphering complex
disease, and provide solutions to medical problems that are too
complex for a single discipline or method to resolve.
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CONCLUSION

Despite a significant contribution of recent phenotyping studies
to our understanding of asthma heterogeneity, the translation
of findings to clinical practice is hampered by a number
of methodological challenges. The promise of data-driven
“revolution” to support clinical decision making will not be
fulfilled by technological and methodological advances alone,
but by a fundamental change in medical culture, and the
advancement of a team science approach (5). If we are to make
a step change toward personalized medicine and capitalize on
the available big data assets, we have to develop genuine cross-
disciplinary collaborations, wherein data scientists who turn
data into information using algorithms and machine learning,
team up with medical professionals who provide deep insights
on specific subjects from a clinical perspective, and prioritize

which problems to solve. This may facilitate more meaningful
and robust disease classification through, for example, a more

informed choice of prognostic indicators, and inform the clinical

decision-making process. Bringing together diverse disciplines
and skill sets is a challenge for medical science in general, and

complex heterogeneous long-term conditions such as asthma

may offer an example ofs how targeting a particular health

problem by looking at it from multiple perspectives can achieve
insights that translate to patient benefit through the delivery of
personalized medicine.
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