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Abstract

Plant species show different responses to the elevated temperatures that are resulting from global climate change,
depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between
the latitudes of 35uN and 35uS. According to current and future climate scenarios predicted by the CLIMEX model,
climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective
of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different
temperatures (22uC, 26uC and 30uC). We hypothesized that warming would facilitate the invasiveness of L. camara. In
response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and
enlarged their leaves more at 26uC and 30uC, which promoted light capture and assimilation. They did not appear to be
stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a
receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All
aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the
allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated
temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate
that global warming facilitates the invasion of L. camara.
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Introduction

Global average temperatures are increasing and are predicted to

do so further in the future [1]. Changes in temperature and

precipitation associated with rising concentrations of CO2 are

altering local environmental conditions, which may inhibit native

species [2,3]. At the same time, this may provide some non-native

species with emerging opportunities for population growth and

expansions [4]. The successful invasion of new areas by non-native

species can have serious ecological consequences for species

interactions and ecosystem structure and functioning [5]. There-

fore, it is essential to better understand the risk of invasion under

climate change scenarios for effective management of invasive

plants in the 21st century [6].

The abundance and distribution of plant species are tightly

regulated by both climatic factors [7] and biotic interactions [8], so

changes in climatic conditions are likely to cause major shifts in

their population dynamics and geographic ranges [2,3,9]. Apart

from changes in the potential distributions of native species,

climate change may also affect the spatial distribution of invasive

species [5,6,9]. Previous studies have shown that global warming

has enabled alien plants to expand into regions where they

previously could not survive and reproduce [9]. Any alterations of

plant community structure that are caused by climate change

result from underlying changes in the population dynamics of

species that make up the community [10]. Thus, understanding

responses to climate change at the species level is important to the

prediction of future ecosystem functioning [10].

The focal species of this study is Lantana camara (Verbena-

ceae), a small perennial shrub which can grow to around 2 m in

height and forms dense thickets in a variety of environments [11].

Its native range is Central America, the northern part of South

America and the Caribbean [11]. L. camara has been identified as

one of the 100 World’s Worst Invasive Alien Species [12]. Since

the sixteenth century, it has been subject to intense horticultural

improvement in Europe, and now it exists in many different forms

and varieties around the world [13]. Its global distribution includes

about 60 countries and islands between the latitudes of 35uN and

35uS [14]. L. camara has become a major problem in many of

these areas, causing reductions in native species diversity, declines

in soil fertility, allelopathic alteration of soil properties, and

alteration of ecosystem processes [11,14].

The model CLIMEX has been widely used to illustrate the

potential distribution of species under future climate scenarios

[15]. Based on CLIMEX simulations, the potential distribution of

L. camara will expand in some areas under current and future

climate scenarios [14,16,17,18], and in China specifically its

distribution could potentially expand further inland [11]. This is

consistent with field investigations in southern China, where L.
camara has recently become more prevalent [19]. Climate studies
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have shown that winter minimum temperatures in the region (i.e.,

Guangdong province) started to rise in the middle and later

periods of the 1960s, and it has become warmer since the 1980s

[20]. The observed increase in abundance is thus likely related to

elevated temperature. We hypothesized that warming leads to

positive effects on the fitness parameters of the invasive shrub L.
camara, further facilitating its invasiveness.

We planted branch cuttings of L. camara in different

temperature treatments (22, 26 and 30uC) in three experiments:

a growth experiment, a physiological experiment and a bioassay

experiment designed to assess the allelopathic potential of the

species. Our goal was to describe and compare the morphological,

physiological and biochemical responses of the species to future

climate scenarios. Specifically, we sought to address the following

questions: (1) How does the growth of L. camara respond to

elevated temperatures? (2) How are gas exchange rates and

photosynthesis affected by elevated temperatures? (3) Does the

allelopathic potential of L. camara change with increasing

temperature, as has been observed in some other plant species

[21]?

Methods

Growth and morphology experiment
We collected three-year-old branches of L. camara on March

10, 2008 in Guangzhou, China. The sampling site (23u029–

23u049N, 113u239–113u249E) was neither located on farmland nor

in a protected area. No specific permissions were required for

these locations/activities. No endangered or protected species

were involved in the sampling. The tops of the branches were cut

to keep them at least 20 cm long. The cuttings were planted at the

experimental field of Sun Yat-sen University, Guangzhou,

Guangdong province. After three weeks, we selected uniform

branch cuttings and transplanted them into plastic pots (20-cm

diameter, 15-cm height, with three branches per pot). The pots

were filled with equal proportions of nutrient-rich soil and

vermiculite for water retention. The plants were grown in different

greenhouses (14/10 h day/night cycle, 75%62% relative humid-

ity, photosynthetically active radiation (PAR) 400 mmol m22 s21)

at three constant temperatures (22, 26 and 30uC). There were 15

replicate pots per temperature treatment. All pots were randomly

placed once a week to avoid internal effects. They were watered

with diluted Hoagland solution (25% v/v) once a week, for a total

of 18 weeks.

Figure 1. Responses of Lantana camara plants to temperature treatments (mean ± SE, n = 15). Different letters indicate significant
differences (P,0.05) between means according to Tukey’s HSD tests (The same below). (A) TB, total biomass; (B) RMR, root mass ratio; (C) SMR,
support organ mass ratio; (D) LMR, leaf mass ratio; (E) LA, leaf area; (F) SL, stem length; (G) SLA, specific leaf area.
doi:10.1371/journal.pone.0105500.g001
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Then, at the end of the experiment, plants were harvested and

divided into leaf blades, petioles, stems and roots, and were dried

separately to a constant mass at 70uC. The total stem length was

measured. Leaf area was determined using an LA meter (CI-203

Area-meter, CID, USA). The raw data were used to calculate the

following growth parameters [22]: leaf mass ratio (leaves without

petioles, LMR), root mass ratio (RMR), support organ mass ratio

(stems and petioles, SMR), and specific leaf area (SLA). The mass

ratio was calculated by dividing the dry mass by total plant dry

mass.

Physiological experiment
Gas exchange. After potted plants had been allowed to grow

for 18 weeks at different temperatures, we measured the gas

exchange of L. camara on fully expanded leaves under controlled

optimal conditions, using an open system with a portable

photosynthesis measurement system (LI-6400, LI-COR, USA).

The measurements were made on 15 plants per treatment. We

found out that under greenhouse conditions, the net photosyn-

thetic rate (Pnet) of L. camara was greatest at 800–

1200 mmol m22 s21, so we maintained PAR at

1200 mmol m22 s21. We used an LI-6400 artificial light source

and maintained the temperature at 22, 26 and 30uC for each

treatment. In order to avoid the effect of midday photosynthetic

depression [23], we completed the measurements on two sunny

days from 08:00 to 11:30 and from 15:00 to 17:30. Pnet and

stomatal conductance (Cond) were also measured, while intrinsic

water use efficiency (WUE) was calculated by dividing Pnet by

Cond [23].

Chlorophyll (Chl) fluorescence. We used the saturation

pulse method [24] to measure the Chl fluorescence. Measurements

were taken from the upper surface of the same leaves used in the

previously described measurements, with a pulse-amplitude-

modulated fluorometer (PAM 2100, Walz, Effeltrich, Germany)

[25]. Before measurement, the leaves were placed in dark for at

least 30 min. The intensity and duration of the saturation pulses

was 4,000 mmol m22 s21 and 0.8 s, respectively. The ‘‘actinic

light’’ was 600 mmol m22 s21. We recorded the fluorescence

parameters Fv/Fm and WPSII. Fv/Fm is the maximum quantum

yield of photosystem II (PSII), which is assessed as (Fm - Fo)/Fm

[26], where Fo and Fm are the minimal and maximal fluorescence

values of a dark-adapted sample, respectively, with all of the PSII

reaction centers fully open. It was measured at predawn, when

plants were in the dark, to make sure that all the PSII reaction

centers were open. WPSII is the effective quantum yield of PSII. It

was calculated as WPSII = (Fm92Ft)/Fm9, where Fm9 is the

maximal fluorescence value reached in a pulse of saturating light

with an illuminated sample, and Ft is the fluorescence value of the

leaf at a given photosynthetically active radiation [27].

Bioassay experiment on allelopathic potential
After the potted L. camara plants had been growing for 18

weeks at three different temperatures (22, 26 and 30uC), we

collected fresh leaves (10 g) randomly from plants in each

greenhouse and soaked them in distilled water (100 mL) for

24 h in darkness at 22, 26 and 30uC, respectively. We then made

aqueous leachates with a concentration of 0.1 g mL21 from each

treatment. The pH value of all leachates was adjusted to 6.8 using

1 M NaOH or HCl, and distilled water was used as a control.

Twenty uniform lettuce (Lactuca sativa) seeds were selected,

surface-sterilised with 0.5% KMnO4 for 15 min, and then washed

with sterile water. The seeds were put on top of two layers of filter

paper (9-cm diameter) in a glass Petri dish (9-cm diameter). Each

dish contained 5 mL of aqueous leachate obtained from L. camara
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plants grown at different temperatures, while the controls

contained 5 mL distilled water. The Petri dishes were kept in

dark conditions at room temperature (,22uC). All of the

treatments were conducted with four independent replicates.

The germinated seeds (once radicle length was about 1–2 mm)

were counted every 12 h for the first day, and every 24 h

thereafter. Germination of L. sativa was recorded up to 5 days,

and seedling growth (root length and shoot length) was recorded at

the end of the experiment, on the seventh day. The effect of the

leachate on lettuce growth was evaluated using a response index

(RI) [28] as follows:

RI %ð Þ~ T=C-1ð Þ|100 ð1Þ

where C was the control value and T was the treatment value.

RI.0 indicates a stimulatory effect, while RI,0 indicates an

inhibitory effect.

Statistical analysis
The effect of different temperatures on growth, physiology and

allelopathy of L. camara was assessed by one-way ANOVA and

means were compared by Tukey tests. All statistical analyses were

performed using the software R 3.0.1 [29].

Results

Growth and morphology
The overall biomass of L. camara plants, and their allocation of

biomass to support organs (stem and petiole), were significantly

higher in high-temperature treatments than in the control (22uC),

while biomass allocation to roots (RMR) and leaves (LMR)

displayed the opposite pattern (Table 1, Fig. 1). The leaf area,

stem length and SLA of L. camara were also significantly higher at

the elevated temperatures (Table 1, Fig. 1). The stem length of

plants growing at 30uC was four times that of those at 22uC, while

their leaf area was double. SLA at the elevated temperature of

30uC was 22.1% higher than at 22uC.

Photosynthesis and chlorophyll fluorescence
Gas exchange. Plants growing at 30uC showed significantly

higher Pnet and Cond, yet lower WUE than those growing at

22uC (Table 2, Fig. 2 A–C). No significant differences in any gas

exchange parameters were found between seedlings growing at

22uC and 26uC, while seedlings growing at 26uC exhibited

significantly lower Cond and higher WUE than those growing at

30uC (Table 2, Fig. 2 B, C).

Chlorophyll fluorescence. No significant differences in Fv/

Fm and WPSII were found among seedlings of L. camara growing

at the three different temperatures (Table 2, Fig. 3 A, B).

Allelopathic potential
The allelopathic effects of aqueous leachate from L. camara

leaves on seed germination and seedling development of lettuce at

different temperatures were evaluated (Table 2, Fig. 4). The shoot

and root length of lettuce significantly decreased with an increase

in temperature, but there were no significant differences in

germination between different temperatures. The allelopathic

effects on shoot and root length were significantly greater at the

higher temperatures compared to at 22uC, with the highest effect

occurring at 26uC.

Discussion

Over the course of human history, people have intentionally or

unintentionally moved innumerable plant species outside of their

native ranges, and many of those alien plants become invasive [6].

Human activities are also partly responsible for the increase of

global surface temperatures [21,30,31]. A number of recent studies

on invasive plants and climate change have shown that increasing

temperatures and changing precipitation might either ‘‘help’’ or

‘‘hinder’’ invasive plants, depending on the species, location and

dominant forces causing changes in climate conditions [6,9,21,32].

Such variation makes it challenging to assess and understand the

mechanisms that might facilitate or constrain the success of

invasive species in the context of climate change [5].

As our findings illustrate, climate warming affects many aspects

of the invasive species L. camara’s biology and ecology. Firstly,

elevated temperature caused changes in the biomass allocation

and morphology of plants. Plant growth is directly influenced by

biomass allocation between leaves, stems, and other plant parts

[33]. With rising temperature, individuals exhibited a significant

increase in stem length, and biomass allocation to stems and

petioles at the expense of leaves and roots. These changes may

ensure greater structural support and an increased ability to

capture light. Although biomass allocation to leaves decreased as

in temperature increased, SLA and LA were greatest in the high-

temperature treatments. SLA is a plant trait that is important for

the regulation and control of functions such as carbon assimilation

and carbon allocation [34,35]. Generally, the combination of

Figure 2. Gas exchange of L. camara seedlings growing at different temperatures. Data are means 6 SE (n = 15). (A) Pnet, Net
photosynthetic rate; (B) Cond, stomatal conductance; (C) WUE, water use efficiency.
doi:10.1371/journal.pone.0105500.g002
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increased SLA and LA results in increased light absorption, and

shading of other species [36]. This may be a light utilization

strategy that could enhance the competitive ability of L. camara,

because this species cannot survive under the dense, continuous

canopies of taller native forest species due to the lack of light [14].

L. camara usually flowers in the first growing season after its

establishment and, if adequate moisture and light are available, it

can flower in all seasons [37]. If the mean global temperature will

rise by 1.4–5.8uC over the period of 1990–2100 as predicted [30],

L. camara may increase in height more rapidly than its

neighbours, and then suppress their growth by shading them. It

may also flower more often and for longer periods of time,

enabling it to produce more offspring, which could cause

substantial damage to other species and their ecosystems. The

responses to the increase in temperature observed in our study

suggest that warming may help L. camara to reach further into the

upper layer of the plant community, and expand its leaves as much

as possible for better light capture and assimilation so as to

facilitate its invasion.

Secondly, elevated temperature induced changes in the

physiological parameters of L. camara. We found that plants

exhibited a significantly higher photosynthetic capacity at higher

temperatures (26 and 30uC) than at 22uC, which may be ascribed

to a higher Pnet. High temperatures tended to increase stomatal

conductance (Fig. 2 B, [38]), which can augment water loss.

Consequently, the instantaneous water-use efficiency (WUE) of

plants decreased with increasing temperature (Fig. 2 C). This

response may explain why L. camara mostly invades wetter

habitats [14]. High temperatures can influence photosynthesis in

different ways, such as enhancing membrane fluidity and oxidative

stress [38], or by changing the activity of the Calvin cycle and

photorespiration [39]. High temperature may also inhibit the

repair of PSII [40]. In this study, there were no significant

differences in Fv/Fm and WPSII among different temperature

conditions, and L. camara showed optimal functioning of its PSII

with very low photoinhibition levels (Fv/Fm from ,0.750 to

0.870) after exposure to higher temperatures. This suggested that

higher temperature did not lead to stress in L. camara. Higher

photosynthesis can increase invasive plants’ growth rates and

biomass accumulation, which may enable invasive species to out-

compete slower growing species and hence facilitate their

colonization [41,42]. The responses we observed to elevated

temperatures can be viewed as positive effects of warming on the

physiological parameters of L. camara, i.e., increased rates of

photosynthesis at higher temperatures could facilitate its invasive

success. Of course, this enhancement of the plant’s growth is often

a ‘‘negative’’ effect at the ecosystem level.

Thirdly, elevated temperature induced changes in the allelo-

pathic effects of L. camara. Those effects have been well-

documented to cause severely reduced seedling recruitment in

almost all species exposed to L. camara, and a reduction in the

DBH growth of mature trees and shrubs [43,44]. The allelopathic

effects of L. camara may explain why it can survive secondary

succession and form monospecific thickets [14]. In our experi-

ment, we found that its phytotoxicity increased with temperature,

with respect to both seed germination and seedling growth of the

receptor plants (Table 2, Fig. 4). This result is consistent with

other research about how elevated temperature influences the

allelopathic effects of invasive plants [21,45]. Allelopathic

biochemicals produced by invasive plants function as their ‘‘novel

weapons’’ since they can inhibit the growth of native plants in the

invaded communities [46]. The increased phytotoxicity of L.
camara in higher temperatures may be a result of the plant

producing more allelochemicals, or of its allelochemicals becoming
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more phytotoxic under elevated temperatures [21]. As such, we

can conclude that warming also enhanced the allelopathic

potential of L. camara.

Biological invasions and climate change are key factors that are

currently affecting global biodiversity [9] and the relationship

between them is very complex [6]. In this study, we chose to study

temperature, one of the most important elements of climate

change, to understand its effects on plant invasion. The results

showed that elevated temperature resulted in significant increases

in biomass allocation and beneficial changes in morphology,

photosynthesis and allelopathic effects of L. camara, indicating

that global warming could facilitate the invasion of this plant.

Based on the predictions of climate models, a 1uC increase in

mean annual temperature could result in a pole-ward shift of each

of the world’s vegetation zones by approximately 200 km [2]. If

Figure 3. Chlorophyll fluorescence of L. camara seedlings growing at different temperatures. Data is means 6SE (n = 15). (A) Fv/Fm; (B)
WPSII.
doi:10.1371/journal.pone.0105500.g003

Figure 4. Allelopathic effects of aqueous leachate from fresh leaves of L. camara on seed germination, shoot length and root length
of Lactuca sativa, expressed as a response index at different temperatures. Each bar represents a mean 6 SE.
doi:10.1371/journal.pone.0105500.g004
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the global temperature increases by 1.4–5.8uC as predicted [30],

L. camara will likely migrate toward higher latitudes.

Our experiment was conducted in the absence of competition

from surrounding plants. In fact, competition with surrounding

native species is one of the most important factors that influence

the outcomes of invasion by alien plants. Under future climate

scenarios, both native and invasive species are likely to grow more

vigorously [42], which could affect competitive interactions in the

invaded habitats. Future studies should also address the biotic

factors that affect the invasiveness of L. camara.
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