Hu et al. Virology Journal (2016) 13:137
DOI 10.1186/512985-016-0592-5

Virology Journal

RESEARCH Open Access

Functional prediction of differentially

@ CrossMark

expressed IncRNAs in HSV-1 infected
human foreskin fibroblasts

Benxia Hu'?, Yongxia Huo', Guijun Chen’, Liping Yang', Dongdong Wu® and Jumin Zhou'"

Abstract

have not been analyzed.

signaling and RIG-I-like receptor signaling pathways.

Background: One of the most important functions of long noncoding RNAs (INcRNAS) is to control protein coding
gene transcription by acting locally in cis, or remotely in trans. Herpes Simplex Virus type | (HSV-1) latently infects
over 80 % of the population, its reactivation from latency usually results in productive infections in human epithelial
cells, and is responsible for the common cold sores and genital Herpes. HSV-1 productive infection leads to
profound changes in the host cells, including the host transcriptome. However, how genome wide IncRNAs
expressions are affected by the infection and how IncRNAs expression relates to protein coding gene expression

Methods: We analyzed differentially expressed IncRNAs and their potential targets from RNA-seq data in HSV-1
infected human foreskin fibroblast (HFF) cells. Based on correlations of expression patterns of differentially
expressed protein-coding genes and INcRNAs, we predicted that these INcRNAs may regulate, either in cis or in
trans, the expression of many cellular protein-coding genes.

Results: Here we analyzed HSV-1 infection induced, differentially expressed IncRNAs and predicted their target
genes. We detected 208 annotated and 206 novel differentially expressed IncRNAs. Gene Ontology and Pathway
enrichment analyses revealed potential INCRNA targets, including genes in chromatin assembly, genes in neuronal
development and neurodegenerative diseases and genes in the immune response, such as Toll-like receptor

Conclusions: We found that differentially expressed INncRNAs may regulate the expression of many cellular protein-
coding genes involved in pathways from native immunity to neuronal development, thus revealing important roles
of IncRNAs in the regulation of host transcriptional programs in HSV-1 infected human cells.

Keywords: RNA-seq, Long noncoding RNA, HSV-1, In cis, In trans

Background

Approximately 70 % of the human genome is transcribed,
but less than 2 % of which encodes proteins. The remain-
der, collectively referred to as noncoding RNAs, are one of
the most intensely investigated subjects in almost all areas
of biomedical science. Based on the size of their tran-
scripts, noncoding RNAs (ncRNAs) are classified into
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small noncoding RNAs (length <200 nt) and long noncod-
ing RNAs (IncRNAs, length > 200 nt). With their number
approaching 10 thousand in the human genome [1, 2],
IncRNAs have been shown to have diverse activities, ran-
ging from recruiting chromatin remodeling complexes to
transcriptional regulation and post transcriptional
processing of RNAs [3]. LncRNAs could cooperate with
DNA, other RNAs or proteins [4] to function in cell dif-
ferentiation, development to diseases [5]. One of the best
understood IncRNAs functioning in development,
HOTAIR, is located within the HoxC gene cluster on
chromosome 12, and represses the expression of genes in
the HoxD gene cluster on chromosome 2 [6]. The most

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12985-016-0592-5&domain=pdf
mailto:zhoujm@mail.kiz.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hu et al. Virology Journal (2016) 13:137

heavily investigated imprinted loci, IGF2/H19 encode a
IncRNA H19, and its depletion caused precocious muscle
differentiation [7]. Inc-DC, on the other hand, is a IncRNA
implicated in immune system development, its knock-
down impaired Dendritic Cell (DC) differentiation and re-
duced capacity of DCs to stimulate T cell activation [8].
LncRNA is also implicated in tumorigenesis, for example,
a IncRNA ceruloplasmin (NRCP) was highly up-regulated
in ovarian tumors, which significantly increased cancer
cell growth by altering glycolysis compared with normal
cells [9]. MALAT1 (metastasis associated lung adenocar-
cinoma transcript 1), one of the most abundant IncRNAs,
could regulate alternative splicing by modulating the
phosphorylation of the serine/arginine splicing factors
[10]. LncRNA is also implicated in pathogen-host inter-
action [11], for example, a cellular IncRNA, negative regu-
lator of antiviral response (NRAV), promoted influenza A
virus (IAV) replication and virulence.

An increasing amount of evidence suggests that
IncRNAs act either locally to regulate nearby genes in cis
or remotely, i.e. over one mega bases away or on a differ-
ent chromosome, in trans to control the transcription of
target genes [2, 4, 12, 13]. LncRNAs could directly silence
or activate gene expression, or by indirectly regulate chro-
matin states of their target genes [14]. For instance, Evf, a
cis-acting IncRNA, is required for the activation of Distal-
less homeobox (DIx) 5 and 6 genes and generation of
GABAergic interneurons in vivo [15]. HOTAIR, on the
other hand, binds to PRC2 and LSD1 complexes and cou-
ples H3K27 methylation and H3K4 demethylation activity
to hundreds of sites genome-wide [16].

Herpes Simplex Virus type I (HSV-1) is a double strand
DNA virus, with a 152 kb genome, encoding about 80
genes, which also include several small RNAs and a
IncRNA, latency associated transcript, or LAT [17, 18].
HSV-1 reactivation can cause diseases from the mild cold
sores to the crippling encephalitis [19]. During productive
HSV-1 infection, which is responsible for these diseases,
host cells activate native antiviral immunity [20, 21], apop-
tosis [22, 23], DNA damage response and other stress re-
sponses [24—27] to limit HSV-1 infection and growth [27].
However, many viral genes are designed to modify these
responses. For example, ICP4, ICP22 and ICP27 are nega-
tive regulators of the host apoptotic response, ICP34.5 in-
hibits the type I interferon response by inactivating
protein kinase R (PKR) [28-30], while ICP8 inhibits the
host DNA damage response by inactivating the ataxia-
telangiectasia and Rad3 related (ATR) kinase [31-34].

Although the molecular details of the HSV-1 Iytic infec-
tion process is well understood, many important questions
on virus-host interactions and host responses, especially
at the transcriptomic level still remain unanswered. Here
we analyzed RNA-seq data [35] of HSV-1 infected human
HEFF cells for differentially expressed IncRNAs, and found
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208 annotated and 206 novel IncRNAs in HSV-1 infected
cells. Using method described by Derrien et al. [2], we
found protein-coding genes (PCGs) that are either nega-
tively or positively correlated with IncRNAs expression.
These correlated IncRNAs exist both in cis and in trans
relative to their target PCGs, and are mostly involved in
chromatin assembly and metabolic process GO terms.
Pathway analysis showed that PCGs correlated with
IncRNAs in trans were enriched in B cell receptor signal-
ing pathway, Toll-like receptor signaling pathway and
RIG-I-like receptor signaling pathway. Pathway analysis of
PCGs associated with IncRNAs in cis included axon guid-
ance, focal adhesion, adherens junction and Neurotrophin
signaling pathways. Interestingly, genes in two neurodegen-
erative diseases, Huntington’s disease (HD) and Parkinson’s
disease (PD) are potentially regulated by IncRNAs, such as
PPP3CB-AS1, SNHGS8 and DARS-ASI. This analyses sug-
gested important roles of IncRNAs in HSV-1 infection, and
their regulation of cellular gene transcription.

Methods

Prediction of IncRNAs

We used FastQC software to filter low quality reads with
default argument.

Clean RNA-seq data were aligned to Human reference
genome (Homo_sapiens. GRCh38) with Tophat2. Cufflinks
and Cuffcompare were used to assemble and compare tran-
scripts with reference. Then we used to custome script to
extract the length of transcript > 200 nucleotides, the num-
ber of exon >2 and belonged to class code “”, “”, “0”, "u”
and “x”. We used CNCI software to predict the coding cap-
acity of candidate IncRNAs. Based on Sun et al. [36], we ob-
tained high quality assemblies and used it as final reference
annotation file. We counted differentially expressed genes
with Cuffdiff2, and used the following criterion to select dif-
ferentially expressed IncRNA genes: FDR < 0.05 and fold-
change >2 (Additional file 1: Figure S1).

Targets of IncRNAs

For gene regulation by IncRNA in cis, we extracted PCGs
located within a genomic window of 1 Mb as targets of
IncRNAs. For in trans regulation of PCGs by IncRNA, we
extracted PCGs far away with IncRNA about 1 Mb or lo-
cated in different chromosomes. Then we calculated the
correlation coefficient (r, Pearson, p value < 0.05) between
the targets and IncRNAs and selected |r| = 0.8 and |r| > 0.9
for cis and trans, respectively (Additional file 1: Figure S1).

Gene ontology and pathway analysis

We uploaded the targets of IncRNAs into The Database for
Annotation, Visualization and Integrated Discovery
(DAVID) v6.7 to do Gene Ontology analyses (biological
processes) and Pathway analyses (KEGG pathways). DAVID
calculated a p value for gene enrichment with a modified
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Fisher’s exact test, and a Benjamin-Hochberg multiple test
correction. We selected significant GO terms and pathways
with p value < 0.05.

Co-expressed modules analysis

We used STEM software to analyze co-expressed modules
of PCGs and IncRNAs, and we chose significant modules
with p value < 0.05.

Statistic analysis

We used R relative packages, such as pheatmap (pheatmap:
Pretty Heatmaps, Raivo Kolde, 2015) and VennDiagram
(VennDiagram: Generate High-Resolution Venn and Euler
Plots, Hanbo Chen, 2015), and functions, such as cor.test
to analyze data and draw figures.

Results

LncRNAs expressed in HSV-1 infected HFF cells

To determine how IncRNA expression is affected by
HSV-1 infection, we analyzed RNA-seq datasets from
NCBI GEO and filtered the low quality reads using
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/
) software, followed by aligning RNA-seq data onto hu-
man reference genome with Tophat2 [37], and subse-
quently using Culfflinks [38] and Cuffcompare [38] to
assemble and compare transcripts. In addition, we ex-
tracted the fasta sequences of candidate novel IncRNAs,
and used CNCI [39] software to distinguish noncoding
RNAs from coding RNAs. Finally, compared to Ensembl
database, we obtained 14,654 annotated IncRNAs and
3,050 novel IncRNAs consisted of 5,909 transcripts
(Additional file 1: Figure S1).

Previous studies in mammals showed that IncRNAs
are shorter in length, have fewer exons and expressed at
much lower levels than PCGs [1, 36, 40, 41]. To deter-
mine whether the novel IncRNAs we detected have the
same features, we calculated exon numbers in detected
novel IncRNAs and PCGs, and found that the exon
numbers of these novel IncRNAs are much smaller than
that of PCGs (p value < 0.05, Welch Two Sample t-test)
(Fig. 1a), and the exon length of novel IncRNAs is much
shorter than that of PCGs (p value < 0.05, Welch Two
Sample t-test) (Fig. 1b). We next calculated the expres-
sion level of PCGs and novel IncRNAs, and found that
the expression level of PCGs is much higher than that of
novel IncRNAs in all samples with the exception of 6hpi
and 8hpi samples (p value < 0.05, Welch Two Sample t-
test, Fig. 1c). The expression levels of PCGs from the
6hpi and 8hpi samples were slightly higher than that of
novel IncRNAs, which is likely due to the viral protein
VHS, which is known to degrade host mRNAs [42-46]
(p value <0.05, Welch Two Sample t-test). Thus, these
novel, de novo assembled IncRNAs are highly credible.

Page 3 of 12

We then used the high quality GTF file as reference an-
notation file for further analysis.

Differentially expressed IncRNAs due to HSV-1 infection
Cuffdiff2 [47] software was used to calculate differen-
tially expressed (DE) genes from 2hpi to 8hpi samples
compared to mock infected samples.

Overall, the number of DE IncRNAs increased with
time after virus infection. For example, there was no DE
IncRNAs at 2 hours after HSV-1 infection, but there
were 15 annotated and 17 novel DE IncRNAs expressed
at 4hpi sample (Fig. 2a and b). At 6hpi sample, 74 anno-
tated and 75 novel DE IncRNAs were found, respectively
(Fig. 2a and b), while in the 8hpi sample, many more DE
IncRNAs, including 193 annotated and 197 novel
IncRNAs were observed (Fig. 2a and b). We pooled all
DE IncRNAs from 4hpi to 8hpi samples, and obtained
414 DE IncRNAs, including 208 annotated and 206
novel IncRNAs (Fig. 2a and b).

Based on methods by Derrien et al. [2], we also classi-
fied the above DE IncRNAs into five types: antisense
RNA, long intronic non coding RNA (lincRNA), proc-
essed transcript, sense intronic transcript, and sense
overlapping transcript. We found that the number of
lincRNAs was most abundant among all IncRNAs. Previ-
ous study showed the expression of IncRNAs is very cell
type and tissues specific [2], we therefore determined
the temporal specificity of IncRNAs during the course of
infection. Indeed, these IncRNA expression patterns are
highly dynamic, for example, there were only 27 over-
lapped DE IncRNAs, including 11 annotated and 16
novel IncRNAs, when compared the 4hpi with 8hpi sam-
ples (Fig. 2a and d). This dynamic nature is consistent
with their regulatory roles.

Prediction of cis target genes of virus induced DE

IncRNAs

Based on previous studies describing in cis and in trans
regulation modes to predict target PCGs and functions of
IncRNAs at transcriptomic level [2, 48], we analyzed in cis
correlation coefficient (r) of expression of IncRNAs and
PCGs. Between PCGs and IncRNAs, we obtained 928 and
1,188 pairs of positive and negative regulatory modes, re-
spectively (Fig. 3a and b).

Using DAVID [49] software, Gene Ontology (GO) ana-
lysis of DE PCGs with positive cis correlation coefficients
with IncRNAs revealed genes enrichment for metabolic
processes and neuronal differentiation GO terms (Fig. 3c¢).
In contrast, PCGs negatively correlated with IncRNAs were
enriched in assembly of marco molecular complexes, such
as nucleosome and chromatin assembly. For example, two
PCGs, HIST1H2AB and HIST1H2AC, which were both
significantly down-regulated about 2.5 fold after HSV-1
infection, were negatively associated with one annotated
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Comparisons of transcript length, exon number and expression levels of HSV-1 infected transcriptome. a Comparison of exon number. The
novel IncRNAs represent smaller the number of exon than PCGs on average. b Comparison of transcript length. The novel IncRNAs show shorter

length on average than PCGs. ¢ The coding transcripts represent slightly higher expression level than the novel INcRNAs, but significantly higher

expression than the annotated IncRNAs. Wilcox.test, p value <0.05

IncRNA, ZNRD1-AS1 (significantly up-regulated about 4
fold by the infection) (Fig. 3d).

Pathway (KEGG) enrichment analysis revealed 9 path-
ways for DE PCGs positively affected by IncRNAs in cis,
and 10 pathways for DE PCGs negatively affected by
IncRNAs in cis (Fig. 3e and f), which include axon guid-
ance, focal adhesion, adherens junction and Neurotrophin
signaling pathways. These pathways are involved in differ-
entiation and survival of neural cells, and higher neuronal
function, such as learning and memory [50, 51]. As HSV-1
is a neurotropic virus, the regulation of these genes in cis
by HSV-1 induced IncRNAs is of biological significance.

One of the immediate early viral protein encoded by HSV-
1, ICPO is known to activate neuronal genes [25, 52-54],
and may contribute to the DE IncRNAs and correlated
PCGs. Interestingly, we also found PCGs with negative cor-
relation coefficients were enriched in Systemic lupus ery-
thematous, which is reported to be linked to HSV-1
infection [55].

To confirm the co-expression signature of PCGs and
IncRNAs by correlation analyses, we used STEM [56]
software to analyze co-expressed modules from the
above-mentioned expression of PCGs and IncRNAs. In
both positive and negative regulatory modules, we obtain
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Fig. 2 The number of differentially expressed IncRNAs at different time points after HSV-1 infection. a There are 15, 74 and 193 annotated differentially
expressed INcRNAs in 4hpi, 6hpi and 8hpi samples, respectively. b There are 11 common annotated IncRNAs among 4hpi, 6hpi and 8hpi samples. ¢ There
are 17,75 and 197 differentially expressed novel IncRNAs in 4hpi, 6hpi and 8hpi samples, respectively. d 16 common novel IncRNAs are found among
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5 and 4 specific profiles showed significant enrichment
for PCGs and IncRNAs (p value <0.05), respectively
(Additional file 1: Figure S2A and D). GO and Pathway
enrichment analysis for these PCGs from significant co-
expressed modes (Additional file 1: Figure S2A and C, E
and F) showed that the topl0 GO terms and pathways
were also enriched in chromatin assembly, metabolic
processes and neuronal differentiation, and Neurotro-
phin signaling and adherens junction, respectively. Thus,
these results are consistent with the results obtained
using correlation analysis.

Prediction of trans target genes of HSV-1 induced DE
IncRNAs

We then analyzed in trans correlations of expression
(defined as pairs consisting of IncRNAs and coding
genes separated by a distance of >1 mega base, or lo-
cated on different chromosomes), and found 2,072 and
1,803 pairs of positive and negative regulatory modes,
respectively (Fig. 4a and b).

GO analysis of genes with positive correlation coeffi-
cients enriched these genes in transcription, metabolic
processes, and development on the top 10 terms (Fig. 4c).
For example, one PCG, KDM5B, a lysine-specific histone
demethylase from the jumonji/ARID domain-containing
family with a role in the transcriptional repression [57],
was up-regulated after HSV-1 infection and showed
highly positive correlation (r>0.9, p value <0.01) with
one annotated IncRNA, KCNQ1OT1. KCNQIOT1 in-
teracts with chromatin and regulates transcription of
multiple target genes through epigenetic modifications
[58]. On the other hand, the coding gene, PRKAAI, a
member of Ser/Thr protein kinase family [59], positively
associated with one novel IncRNA (location of the novel
IncRNA in genome: Chr22: 38705722-38794198), which
was up-regulated after HSV-1 infection. Again from the
imprinted IGF2/H19 loci, IGF2 [60] was up-regulated by
HSV-1 infection, and showed highly positive correlation
with one antisense IncRNA, BZRAP1-AS1. These posi-
tive correlations strongly suggest regulatory connections
between IncRNAs and correlated PCGs in chromatin
and transcriptional regulation.

Interestingly, we also found genes positively affected by
IncRNAs through in trans were enriched in B cell receptor
signaling pathway, which resulted in the expression of im-
mediate early genes that further activated the expression of
other genes involved in B cell proliferation, differentiation
and Ig production as well as other processes [61]. For ex-
ample, B-cell linker, BLNK, encodes a cytoplasmic linker or
adaptor protein that plays a critical role in B cell
development [62], was induced after HSV-1 infected HFF
cells for 6 h. It exhibited highly positive correlation (r>
0.99, p value < 0.001) with two novel IncRNAs (located at
Chr12:220425-262873 and  Chr9:99297947-99319599).
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Another important enriched pathway is the Toll-like recep-
tor signaling pathway [63]. For example, IRF3, which was
significantly down-regulated by HSV-1 infection, associated
with one novel IncRNA (located at Chr7: 34,928,699-
35,038,271), while IRF5 and IRF7, significantly up-regulated
after HSV-1 infected for 8 h, were positively associated with
two annotated IncRNAs, ZNRD1-AS1 and MAMDC2-
AS], respectively. A third immunity related pathway is the
RIG-I-like receptor signaling pathway, which is responsible
for detecting viral pathogens and generating innate im-
mune responses [64, 65] (Fig. 4e). Besides immune genes,
we also found IncRNAs functioning in the DNA damage
response, for example, protein coding gene ATG5, which
was significantly down-regulated after HSV-1 infection,
showed positive association with one IncRNA, noncoding
RNA activated by DNA damage (NORAD), which is also
down-regulated after HSV-1 infection [11]. As HSV-1 in-
fection is known to activate the cellular DNA damage re-
sponse, the down regulation of NORAD could be due to
the active inhibition of one viral gene, ICP8, which inhibits
the host DNA damage response by inactivating the ATR
kinase [31-34].

In contrast, genes with negative correlation coeffi-
cients with IncRNAs were enriched in apoptosis and cell
proliferation by GO analysis (Fig. 4d), suggesting that
genes in these two processes are likely subject to inhib-
ition by virus induced IncRNAs. For example, CASP7, a
member of caspases functioning in apoptosis [66], was
down-regulated by HSV-1 infection, and showed nega-
tive correlation with three IncRNAs, PPP3CB-ASI,
SNHGS8 and DARS-AS1. TGFBR2, a member of the Ser/
Thr protein kinase family and the TGFB receptor sub-
family [67], was down-regulated after HSV-1 infection
and showed highly negative correlation (r<-0.9, p value
<0.01) with KCNQ1OT1, which can interact with chro-
matin and regulate transcription of multiple target genes
through epigenetic modifications [50].

Notably, two neurodegenerative diseases, Huntington’s
disease (HD) and Parkinson’s disease (PD) pathway
genes are negatively correlated with IncRNAs both in cis
and in trans (Fig. 3e and Fig. 4f). HD, a neurodegenera-
tive genetic disorder, can affect muscle coordination and
lead to mental decline and behavioral symptoms [68].
Previous studies found that REST (RE1-Silencing Tran-
scription Factor) is involved in HD and is considered a
hub in the co-ordinate regulation of the transcriptome
and epigenome in HD [69, 70]. Normally, REST represses
neuronal genes in non-neuronal tissues [71], but in HSV-1
infected HFF cells, it was significantly down-regulated,
leading to up-regulation of many neuronal genes, which is
believed to be caused by HSV-1 protein ICPO [25, 52-54].
PD is another important neurodegenerative disorder [72].
Here UCHL1 (Ubiquitin Carboxyl-Terminal Esterase L1),
a susceptibility gene for PD and a potential target for
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disease-modifying therapies [73], was significantly down-
regulated by HSV-1 infection, and a novel, HSV-1 induced
IncRNA  (located at 4:68282460-68285959), negatively
correlated with REST and UCHL1, thus could potentially
inhibit the expression of REST and UCHLI. Therefore,
HSV-1 induced IncRNAs could promote neural specific
programs.

We also analyzed co-expressed modules of PCGs and
IncRNA to check whether the correlation analysis is
right, we found 8 and 6 significant co-expressed modules
for positive and negative regulation (p value < 0.05), re-
spectively (Additional file 1: Figure S3A, D). Compared
to above mentioned GO terms, this method found that
PCGs, co-expressed with IncRNAs, were also enriched
in the similar GO terms, such as metabolic processes
and development. In addition, pathway enrichment ana-
lysis revealed that many PCGs were also enriched in the
pathways detected by correlation analysis. For instance,
we found that some PCGs, such as BLNK, REST and
UCHLL, were enriched in B cell receptor signaling path-
way, HD and PD, respectively (Additional file 1: Figure
S3B and C, E and F).

Discussion and conclusions

HSV-1 is an important and ubiquitous human pathogen.
Its lytic infection in cultured cells has been used as a
paradigm to investigate the basic mechanism of tran-
scription, molecular virology and virus-host interactions.
HSV-1 infection is known to profoundly alter the host
transcriptome, from differential gene expression, to RNA
splicing and RNA Pol II read through [29, 35, 74]. The
human genome encodes around ten thousand IncRNAs
[16, 17], which are involved in many different biological
processes [3, 5]. However, how IncRNA expression is af-
fected by HSV-1 infection and whether IncRNAs play
any roles in the transcriptomic response to viral infec-
tion are not understood. Here we analyzed the HSV-1
infected transcriptome to reveal how many IncRNAs are
expressed in HFF cells and how they are affected by the
infection, and found 14,654 annotated IncRNAs, and
3,050 novel IncRNAs when compared to the Ensemble
database. Among the 3,050 newly discovered IncRNAs,
789 were induced by HSV-1 infection. Then based on
criterion (FDR <0.05 and fold-change >2) of differential
expression analysis, we obtained 208 annotated DE
IncRNAs, including 166 up-regulated and 42 down-
regulated IncRNAs, and 206 novel DE IncRNAs, includ-
ing 171 up-regulated and 35 down-regulated IncRNAs,
after HSV-1 infection. Similar method of predicting
novel IncRNAs was used by Sun et al. [36], in order to
avoid genome contamination in RNA-seq samples, here
we set more strict cutoff that the number of exon of
candidate novel IncRNAs is more than 1. As a result,
our prediction may have excluded some positive genes.
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Next, we predicted the potential targets of the DE
IncRNAs by correlation of expression levels of PCGs and
IncRNAs. An important modus operandi of IncRNAs is to
act in cis to control the expression of PCGs that are posi-
tioned in the vicinity of their transcription sites [5]. By
correlation prediction of expression levels in cis mode, we
found many PCGs negatively associated with IncRNAs
were enriched in large marco molecular complex assem-
bly, including protein DNA complex assembly, nucleo-
some assembly and chromatin assembly, suggesting that
these IncRNAs may negatively regulate these PCGs. In
contrast, GO analysis showed that PCGs positively corre-
lated with IncRNAs were enriched in metabolic process,
differentiation and phosphorylation. These patterns of
correlations suggest that these IncRNAs might regulate
the correlated PCGs in these biological processes.

HSV-1 is well known to modulate host responses from
native immunity [29, 75] to apoptosis [17, 18] to benefit
viral transcription and replication. Pathway analysis showed
that some PCGs positively related with IncRNAs in trans
were enriched in B cell receptor signaling pathway, Toll-
like receptor signaling pathway and RIG-I-like receptor
signaling pathway. For instance, IRF5 and IRF7, positively
correlated with ZNRD1-AS1 and MAMDC2-AS1, may be
up-regulated by two IncRNAs, respectively. This analysis
suggests that IncRNA might play important roles in regulat-
ing immune response. In the list of genes that are predicted
to be in trans targets of IncRNAs, we found that PCGs
negatively associated with IncRNAs were enriched in apop-
tosis. For example, PIM2, reported to promote cell survival
and inhibit apoptosis [76], was up-regulated by HSV-1 in
HFF cells and was negatively correlated with IncRNA
DNM3O0S. Meanwhile, CASP7, a member of the apoptotic
pathway [61], was down-regulated by HSV-1 infection and
showed negative correlation with PPP3CB-AS1, SNHG8
and DARS-AS1. Thus, this analysis brings forward a
hypothesis that HSV-1 might modulate the host apoptotic
pathway by targeting IncRNAs, including DNM3OS,
PPP3CB-AS1, SNHGS8 and DARS-ASI.

The DNA damage response is another important cel-
lular response to HSV-1 infection. Here ATG5, which
functions as a potent molecular decoy for PUMILIO
proteins repress a program of genes necessary to
maintain genomic stability [11], was significantly down
regulated after HSV-1 infected in HFF cells. This expres-
sion pattern showed highly positive association with
NORAD [10]. HSV-1 infection induces DNA replication
stress and activates the DNA damage response [24—26].
At the same time, viral protein ICP8 inhibits the ATR
kinase activity to modulate the cellular DNA damage
response [31-34]. Thus it would be interesting to inves-
tigate whether HSV-1 actively inhibits the expression of
NORAD, for example by ICP8 to modulate host
response.
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In summary, we predicted potential target genes of
HSV-1 induced, differentially expressed IncRNAs in HFF
cells, and revealed a large number of target genes that
may participate in cellular pathway functions in response
to viral infection. Our analysis suggests that one IncRNA
might regulate many PCGs, while individual PCGs could
also be regulated by multiple IncRNAs. The two
methods we used, correlation analysis and co-expression
module analysis by and large produced similar results,
thus these potential IncRNAs target genes offer import-
ant clues to further study mechanism of viral-host inter-
action and the regulatory functions of IncRNAs.

Additional file

Additional file 1: Figure S1. Computational prediction of IncRNAs in
HSV-1 infected HFF cells. The computational strategy of predicting of
function of INcRNAs in HSV-1 infected HFF cells. Figure S2 The predicted
function of INcRNAs based on co-expressed modules in cis. a. there were 5
significant co-expressed modules in positive regulatory model, p value <
0.05. b-c. GO analysis and pathway analysis of PCGss co-expressed with
INCRNAs, p value < 0.05; d. there were 4 significant co-expressed modules in
negative regulatory model, p value < 0.05. e-f. GO analysis and pathway
analysis of PCGs co-expressed with INcRNAs, p value < 0.05. Figure S3 The
predicted function of INcRNAs based on co-expressed modules in trans. a.
there were 8 significant co-expressed modules in positive regulatory
model, p value < 0.05. b-c. GO analysis and pathway analysis of PCGss
co-expressed with IncRNAs, p value < 0.05; d. there were 6 significant
co-expressed modules in negative regulatory model, p value < 0.05. e-f.
GO analysis and pathway analysis of PCGs co-expressed with IncCRNAs,
p value £ 0.05. (DOCX 653 kb)
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