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Abstract 

Because deterioration in overall metabolic health underlies multiple complications of Type 2 Diabetes Mellitus, a 
substantial overlap among risk factors for the complications exists, and this makes the outcomes difficult to 
distinguish. We hypothesized each risk factor had two roles: describing the extent of deteriorating overall metabolic 
health and signaling a particular complication the patient is progressing towards. We aimed to examine feasibility 
of our proposed methodology that separates these two roles, thereby, improving interpretation of predictions and 
helping prioritize which complication to target first. To separate these two roles, we built models for six 
complications utilizing Multi-Task Learning—a machine learning technique for modeling multiple related outcomes 
by exploiting their commonality—in 80% of EHR data (N=9,793) from a university hospital and validated them in 
remaining 20% of the data. Additionally, we externally validated the models in claims and EHR data from the 
OptumLabs™ Data Warehouse (N=72,720). Our methodology successfully separated the two roles, revealing 
distinguishing outcome-specific risk factors without compromising predictive performance. We believe that our 
methodology has a great potential to generate more understandable thus actionable clinical information to make a 
more accurate and timely prognosis for the patients. 

 

Introduction 

Type 2 Diabetes Mellitus (T2DM) is an irreversible chronic disease. It is associated with the metabolic syndrome, a 
cluster of interrelated conditions that include high blood pressure (BP), chronically elevated fasting plasma glucose 
(FPG), abdominal obesity, and lipids imbalance including elevated triglycerides (TG), and low high-density 
lipoprotein (HDL)1. Since complicated interactions among these conditions exist, even a minor adjustment on a 
single risk factor can dramatically influence the patient’s health status and clinical outcomes2–4. Hence, a 
comprehensive understanding of the effects of these risk factors on various complications is necessary for the 
successful long-term management of T2DM patients. 

Studies that identify risk factors for complications of T2DM abound5–7, however they fail to paint an accurate 
picture of the patient’s health status and progression to the most likely next complication. In these studies, regardless 
of which complication they focus on, the risk factors tend to be largely the same (e.g., BP, FPG, lipids, and kidney 
function). The reason for this large overlap is that the above risk factors capture the effect of deteriorating overall 
metabolic health that underlies all these outcomes rather than capturing the effects that differentiate among the 
outcomes. This suggests that the risk factors have two roles: first, they describe the extent to which the patient’s 
overall metabolic health has deteriorated and second, they signal a particular complication that the patient is 
progressing to. Given that existing studies have focused on a single or occasionally a few complications and 
modeled them independently, they have not separated these two roles. Hence, it is difficult to know whether a risk 
factor is significant in progression to a particular complication or whether it merely describes the deterioration of 
overall metabolic health. To understand the direction of progression, namely, which of the many possible 
complications the patient is most likely to develop next, separating these two roles is critical. 

The deterioration of underlying metabolic health is a commonality across all the complications. If we identify the 
commonality and remove it from the entirety of a risk factor’s effect, all that remains is outcome-specific effect. To 
model this, we had two challenges. First, to correctly capture the commonality, we needed to examine a wide range 
of complications using sufficient amounts of patient data. Because, if we study a single complication, the 
commonality is not identifiable so the distinction is lost. In this study, we used two independent datasets. As the 
primary, we had EHR data (N=9,793) collected from the University of Minnesota Medical Center (UMMC) and 
used them for model training and internal validation. As the secondary, we had claims and EHR data from the 
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OptumLabs Data Warehouse (OLDW) (N=72,720)8 and used them for external validation. Because these datasets 
contained years of medical history of a large number of patients, they offered sufficient amounts of patient data and 
allowed us to examine multiple complications simultaneously. 

Second, it was methodologically challenging to isolate the commonality from the entirety of a risk factor’s effect 
because, it is not distinguishable. Multi-Task Learning (MTL) is a technique to model multiple related outcomes by 
exploiting their commonality9,10. In our case, modeling progression to each individual complication is a modeling 
task, and these tasks are related because deterioration in overall metabolic health underlies them all. We used MTL 
to integrate these tasks and identify the commonality among them. This approach is tantamount to applying MTL in 
reverse: rather than exploiting the commonality across the outcomes towards improved predictive performance, we 
discard the commonality to reveal differential markers, risk factors that are specific to each complication. 

Considering that an accurate and timely prognosis for the patients often remains unsatisfactory11 and there is limited 
evidence available for clinical decision support, our methodology that improves the interpretation of predictions and 
generates more understandable clinical information will help prioritizing the outcomes and developing optimal 
individualized T2DM management. 

 

Materials and Methods 

Primary Dataset for Training and Internal Validation 

We used 10-year, de-identified EHR data (Jan 1, 2004-Dec 31, 2013) including inpatient, outpatient, and emergency 
department visits from the University of Minnesota Medical Center (UMMC), a main university hospital, located in 
Minneapolis, MN. From the EHR data, we extracted patient demographics (age, gender), smoking status, vital signs 
(BP, pulse, and Body Mass Index BMI), lab results (HbA1c, lipid panel, Glomerular Filtration Rate GFR), three 
diagnoses comorbid to T2DM (dyslipidemia, hypertension, obesity), and six diagnoses of complications of interest: 
chronic kidney disease (CKD), acute renal failure (ARF), ischemic heart disease (IHD), congestive heart failure 
(CHF), peripheral vascular disease (PVD), and cerebrovascular disease (CVD). ARF is not usually associated with 
T2DM but involves organs or functions that are affected by T2DM. To demonstrate our proposed methodological 
validity, we intentionally included ARF as one of outcomes. We used 80% and 20% of UMMC data for model 
training and internal validation, respectively. 

Study Design and Cohort Selection 

We conducted retrospective cohort study. In UMMC data, we set up the study baseline at Jan. 1, 2010, collected 
patients’ 6-year medical history to create baseline patient characteristics, and followed them from baseline to Dec. 
31, 2013, determining whether or not they developed any complication of interest (Figure 1).  
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Initially, we identified 22,946 adult T2DM patients based on ICD-9 codes. These patients were at least 18 years old 
at baseline, and they were generally diagnosed with T2DM within the 6-year period. When patients develop multiple 
complications, the effects of risk factors become conflated. Thus, we excluded 8,979 patients who already developed 
any of the complications before baseline and 914 patients who developed multiple complications during the follow-
up period. This was because we wanted to start with simple data without such conflated effects and achieve our goal 
of examining the feasibility of our methodology able to separate the two roles. We excluded 1,152 patients who had 
no HbA1c measurements at all, 1,611 patients who had no BP, pulse, or BMI measurements at all, 494 patients who 
had no lipids information at all, and 3 patients without any known smoking status, resulting in 9,793 patients.  

Second Dataset for External Validation  

For external validation, we used claims and EHR data from the OptumLabs Data Warehouse (OLDW), which 
includes de-identified claims data for privately insured and Medicare Advantage enrollees in a large, private, U.S. 
health plan, as well as de-identified EHR data from a nationwide network of provider groups. The database contains 
longitudinal health information on enrollees, representing a diverse mixture of ages, ethnicities and geographical 
regions across the United States. The health plan provides comprehensive full insurance coverage for physician, 
hospital, and prescription drug services. The EHR data sourced from provider groups reflects all payers, including 
uninsured patients8. We extracted 10-year data (Jan 1, 2006-Dec 31, 2015) from the OLDW and identified 72,720 
T2DM patients using the same study design (Figure 1) and selection procedure. 

Baseline Patient Characteristics in UMMC and OLDW Datasets 

Table 1 shows baseline patient characteristics in UMMC and OLDW datasets with variables available in this study. 
These variables represent risk factors and are used henceforth. UMMC patients had similar HbA1c but higher SBP 
and DBP compared to US adults with diabetes (HbA1c, SBP, and DBP are 7.2%, 131.5mmHg, and 69.4mmHg, 
respectively.)12, and they had signs of established CKD based on GFR13. Compared to UMMC patients, OLDW 
patients were older and had better HbA1c, better lipids, better kidney function, but higher SBP and DBP.   

Table 1. Baseline Patient Characteristics in UMMC and OLDW Datasets   

Variable Description UMMC (N=9,793) OLDW (N=72,720) 
male Male  51 46 
age Age (years)  58±13 60±12 
never_smoker Non-smoker 56 45 
a1c HbA1C 7.2±1 7.0±1 
ldl LDL-cholesterol (mg/dL) 103±28 101±28 
hdl HDL-cholesterol (mg/dL) 44±12 46±12 
trigl Triglycerides (mg/dL) 172±90 169±117 
tchol Total-cholesterol (mg/dL) 181±34 179±34 
gfr Glomerular Filtration Rate (ml/min/1.73m2) 58±32 76±27 
gfr_norm Normal Glomerular Filtration Rate 22 7 
bmi Body Mass Index (kg/m2) 34±7 34±8 
sbp Systolic Blood Pressure (mmHg) 127±11 131±11 
dbp Diastolic Blood Pressure (mmHg) 75±7 77±7 
pls Pulse (bpm) 76±9 77±9 
hyperlip Hyperlipidemia  81 86 
htn Hypertension  71 81 
obese Obesity (BMI > 30)  70 67 
 

Developing Multi-Task Learning Methodology 

Under our hypothesis, each risk factor played two roles. The first role quantified the extent to which the patient’s 
metabolic health had deteriorated, and the second role signaled which complication the patient was most likely to 
develop next. The first role was common across all complications (common effect), and the second role was specific 
to each complication (outcome-specific effect).  
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Formally, given a design matrix X that contained patients as rows and variables as columns, and t measuring time to 
event (complication or censoring), we simultaneously built the following six models, one for each complication c 

                                                       	
𝐷#: 𝜆# 𝑡 = 𝜆(# 𝑡 exp(Xα)exp(𝑋𝛽#)

	
subject	to 𝛼 : ≤ 𝐶:	and	

𝛽# : ≤ 𝐶=
                                                         Eq. (1) 

where 𝜆# 𝑡  was the patient’s hazard of developing complication c at time t, 𝜆(# 𝑡  was a complication-specific 
baseline hazard, C1 and C2 were user-defined thresholds, chosen via cross validation, and . : denoted the L-1 norm 
(LASSO-penalty). X contained all variables in Table 1 except T2DM-comorbidities (hyperlipidemia, hypertension 
and obesity) since their defining factors (lab results and vital signs) were included. 

Conceptually, each Dc model could be separated into two submodels as  

									𝜆# 𝑡 = {𝜅( 𝑡 exp 𝑋𝛼 }{𝜅(# 𝑡 exp 𝑋𝛽# }      Eq. (2) 

where the first submodel (with coefficients α) was a Cox model14 capturing the common effects, and the second 
submodel (with coefficients 𝛽#) was a Cox model capturing outcome-specific effects for each complication c. We 
called the first submodel General Progression Model and the second submodel Differential Progression Model.  

Since these two models used the same set of variables, coefficients α and 𝛽# were generally not identifiable (for 
each complication c, the effects of α and 𝛽# were not distinguishable). While the first of the two LASSO constraints 
in Eq. (1) simply induced sparsity in General Progression Model with the purpose of performing variables selection, 
the second LASSO-penalty made Differential Progression Models identifiable as it shrunk 𝛽#coefficients towards 0 
forcing General Progression Model to explain as much of the variability as possible. We iteratively updated α and 
𝛽# coefficients until they were stabilized (squared differences of coefficients between previous and current iterations 
were effectively zero). 

If the entirety of a variable’s effect was only general deterioration of the metabolic health, its 𝛽# would be exactly 0. 
Conversely, if	𝛽# > 0, the variable increased the risk of complication c by 𝛽#	from 𝛼 (harmful); and if 𝛽# < 0, it 
decreased the risk of complication c by 𝛽#	 from 𝛼  (protective). Therefore, non-zero 𝛽#  coefficients identified 
differential markers; these were the risk factors that had effects beyond General Progression and enabled improved 
interpretation of progression to the most likely next complication. 

Internal and External Validation 

To determine the significance of α  and 𝛽#  coefficients, we performed 1,000 permutation tests and calculated 
empirical p-values15. The key idea of permutation test was that variables were independent of randomly permuted 
labels; thus, coefficients of permuted labels were expected to have weaker associations than those of true labels. 
Then, the p-value of a coefficient could be calculated as the ratio of the number of permutation tests resulting in a 
stronger association to the total number of permutation tests. We internally evaluated predictive performance of our 
models in 20% of UMMC data and externally evaluated it in OLDW data using concordance index (c-index), 
typically used to assess predictive performance of Cox models. In internal validation, we also performed 1,000 
bootstrapping with sample size of 100% UMMC patients to obtain 95% confidence intervals (95CIs). To 
demonstrate that we did not suffer a loss of performance due to our proposed MTL-based methodology, we 
compared predictive performance between ours and a reference methodology that built six independent models 
(LASSO-penalized Cox regression) for the six complications at a time.  

 

Results 

In this section, we are presenting results from our proposed methodology focusing on improved interpretation of risk 
factors and predictive performance in comparison with the reference methodology.  

Coefficients from Multi-Task Learning Methodology 

Figure 2 presents α and 𝛽# coefficients from General Progression and Differential Progression Models. The rows are 
the variables. The first column corresponds to α coefficients from General Progression Model and the remaining 
columns correspond to 𝛽# coefficients from Differential Models for each complication c. The interpretation of the 
coefficients is analogous to the regular Cox models: the exponent of a coefficient is the hazard ratio (HR) that the 
variable confers on the patient.  
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For most variables (e.g., HbA1c, LDL) which higher values are associated with higher risks, if	α > 0, it indicates a 
harmful association; and if	α < 0, it indicates a protective association with General Progression. In Differential 
Progression, if	𝛽# > 0, the variable increases the risk of complication c by 𝛽#	from 𝛼, making the variable more 
important (harmful effect becomes larger); and if	𝛽# < 0, the variable decreases the risk of complication c by 
𝛽#	from 𝛼, making the variable less important (harmful effect becomes smaller). There are also variables (HDL, 
GFR, normal GFR, and never smoker) which higher values are associated with lower risks; thus, the interpretation 
of their coefficients is opposite. For example, if α of GFR > 0, it means that higher GFR is protective of General 
Progression; if 𝛽# of GFR > 0, it indicates that higher GFR is more important in progression to complication c 
(prospective effect becomes larger). 

To help detecting significant α and 	𝛽#	coefficients, we visualized associations between variables and complications 
(harmful, protective, more important, and less important) and p-values (Figure 2). Coefficients with a circle are 
statistically significant, and those without are insignificant. Larger circles indicate smaller p-values (more 
significant). The exact p-values can be found in appendix Table A-1. 

As expected, most variables significantly predicted General Progression: HbA1c, triglycerides, total cholesterol, 
GFR, normal GFR, BMI, SBP, DBP, non-smoker, and age (Figure 2). Traditionally, higher DBP is known to be 
harmful. But, several recent studies showed that DBP was protective of cardiovascular disease especially for older 
adults16. We also found that DBP is protective of General Progression. General Progression Model was a latent 
model in the sense that it did not have an observable outcome; it described the extent of deterioration in overall 
metabolic health. These variables of General Progression were those that many studies found to be significantly 
associated with an increased risk of micro and macrovascular complications and all-cause mortality17,18.  

What is General Progression Model? 

We defined General Progression mathematically as the effects that were common across all the complications and 
explained that General Progression captured deteriorating overall metabolic health. As an alternative, we interpreted 
α coefficients as the log HR of progression to any complication. To illustrate this, we built a LASSO-penalized Cox 
model that predicted the development of any complication (this model had an event if a patient developed any 
complication) and compared coefficients from this model (Figure 3) with α coefficients from General Progression 
Model (Figure 2). We found that they were similar with respect to effect size, sign, and significance, and this 
suggested that General Progression could be indicative of progression to any complication.  
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Interpretation of Coefficients from Multi-Task Learning Methodology 

After achieving the overarching goal of our proposed methodology to separate common effects (α) and outcome-
specific effects (𝛽#)	of a risk factor, we examined if results and their interpretations from our models clinically made 
sense. Especially, we wanted to have some of them consistent with known facts because if they were not, the utility 
of our methodology could be in doubt. To demonstrate this, let us consider the role of HbA1c in progression to CKD 
and IHD as an example as it is commonly accepted facts in practice: hyperglycemia is a key driver of microvascular 
complications (e.g., CKD), while dyslipidemia is a key driver of macrovascular complications (e.g., IHD)19.  

General Progression showed that a unit increase in HbA1c conferred a HR of 1.039 (exp(.0385)) on all 
complications uniformly (Figure 2, row1, column1). However, higher levels of HbA1c ultimately affect the different 
complications differently. As mentioned, it is well-known that HbA1c is more predictive of CKD than IHD. Indeed, 
Differential Progression for CKD showed that a unit increase in HbA1c conferred an additional log HR of .0407 on 
patients, increasing the HR of CKD from 1.039 to 1.0824 (exp(.0385+.0407) (Figure 2, row1, column2). 

It is also known that HbA1c is not as important in IHD as in CKD. Differential Progression for IHD showed that 
patients with higher HbA1c tended to suffer other (microvascular) complications. The log HR of IHD that a unit 
increase in HbA1c conferred on patients was negative, which decreased the HR of IHD from 1.039 to 0.9842 
(exp(.0385-.0544)) (Figure 2, row1, column4). What it means is that patients with higher HbA1c are more likely to 
progress to a complication than patients with lower HbA1c, and that complication is less likely to be IHD but more 
likely to be a microvascular complication such as CKD. That is, General Progression described the patient’s 
tendency to progress to a complication, and the Differential Progression helped to target which complication the 
patient is more likely to develop next. 

Differential Markers of CKD, IHD, PVD and CHF 

To easily detect distinguishing patterns of differential markers, we visualized each of CKD, IHD, PVD and CHF as 
a series of spider plots20 in Figure 4. In a spider plot, variables are arranged as axes extending radially from a central 
point, and each observation makes a closed polygon connecting points on all of the axes. Emphasis is upon 
discerning the characteristic shapes of these polygons among observations, rather than extracting specific values. 
The interpretation of our plots is as follows. Each plot corresponds to a complication. Ten variables for vital signs 
and lab results construct individual axes, radially arranged around a center point. The 𝛽# cofficient of each variable 
is depicted by an anchor (node) on an axis. As higher values of HDL, GFR, and DBP are protective, the sign of 
coefficients of them are reversed only for visualization purposes. The same color encoding was used to identify 
significantly more or less important differential markers. For each variable, distance from the center indicates an 
increased risk. In each plot, a navy line connecting the 𝛽# coefficients represents Differential Progression, while a 
green line connecting zero on each axis conceptually represents General Progression, a reference for Differential 
Progression. By comparing these two lines on each axis, differential risk for complication c beyond or below 
General Progression is easily distinguished. As we focused on straightforward interpretation, we did not perform 
normalization; thus, the scales of the variables are not comparable with each other. What is important is whether the 
navy line (Differential Progression) is outside or inside the green line (General Progression) on each axis. 
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IHD, PVD, and CHF are well-known concomitant macrovascular complications. They share similar 
pathophysiology and are believed to have similar risk factors21. Given these facts, distinguishing among them 
without a methodology like ours is more difficult. In Figure 4, spider plots show distinguishing patterns of 
differential markers among these very similar diseases. In progression to IHD, LDL was more important; SBP, and 
lower DBP were less important16. In progression to PVD, SBP and lower DBP were more important; BMI was less 
important. In progression to CHF, lipid abnormalities were less important; BMI, pulse, and SBP were more 
important (irregular or fast pulse is one of the symptoms of CHF). 

Coefficients from Reference Methodology 

Figure 5 shows coefficients from reference models. The rows are the variables, and the columns are complications. 
If a coefficient > 0, it indicates a harmful association; and if a coefficient < 0, it indicates a protective association 
with a complication c. In reference models, the two roles of a variable (α and 𝛽# coefficients) were not identifiable; 
thus, only the entirely of a variable’s effect was estimated, and the outcome-specific effect was masked. This was 
the motivation of our study and the key difference from our proposed methodology. To help detecting significant 
coefficients, we visualized the association between variables and complications (harmful and protective) and p-
values. The exact p-values can be found in appendix Table A-2. 

 
Utility of Our Proposed Multi-Task-Learning Methodology 

To demonstrate clinical utility of our methodology in comparison with reference methodology, let us take ARF as an 
example. Although a major cause of ARF is not diabetes, reference models identified virtually all the variables to be 
predictive of ARF (Figure 5). While, Differential Progression Model for ARF showed that progression to ARF was 
only associated with the underlying advanced metabolic deterioration (General Progression), and all the variables 
were not specific to ARF (Figure 2).  

Another example is CKD. Risk factors of CKD are well-understood. The reference model for CKD identified 
HbA1c (barely), GFR and age as significant risk factors, and they are indeed known risk factors. In fact, reference 
models identified age as a risk a factor for every complication; however, it is not that a patient is more likely to 
develop CKD just because he is older. Whereas, General Progression Model and Differential Progression Model for 
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CKD suggested that older patients were more likely to have their metabolic health deteriorated than younger 
patients; and, age played no role in progression to CKD beyond General Progression.  

Internal and External Validation 

Table 2 presents predictive performance in C-Index of our MTL-based models and reference models. Generally, 
they achieved similar predictive performance. Minimal albeit statistically significant differences were only observed 
in complications with small number of progressing patients.  

For both, predictive performance was lower in external validation. UMMC data consisted of smaller number of 
patients from one healthcare system. Thus, they might be less representative of T2DM population than OLDW 
patients, or they might be subpopulation of OLDW patients. Also, patient characteristics differed fundamentally 
between them (Table 1). However, except CKD, C-Indices were still within 95CIs. 

Table 2. Predictive Performance in C-Index (95CIs) 

Dataset Methodology CKD ARF IHD PVD CHF CVD 
Internal 
(UMMC) 

MTL .74(.73-.79) .58(.48-.82) .57(.52-.58) .75(.59-.80) .83(.70-.91) .75(.63-.78) 
Reference .74(.73-.79) .62(.48-.79) .57(.52-.58) .75(.60-.81) .84(.67-.91) .78(.65-.80) 

External 
(OLDW) 

MTL .71 .61 .53 .61 .73 .64 
Reference .71 .63 .53 .61 .74 .68 

 

Discussion 

Given that the effect of deteriorating overall metabolic health is common across all the complications, we 
hypothesized each risk factor had two roles: describing the extent of deteriorating overall metabolic health and 
signaling a particular complication the patient is progressing towards. We have successfully demonstrated that our 
proposed methodology separated these two roles of risk factors and revealed distinguishing patterns of differential 
markers. Also, we modeled multiple complications simultaneously by sharing their information; thereby, generating 
systematic and comprehensive interpretation of different roles of risk factors among various complications.  

Our study has important strengths. First, we made more understandable predictions for clinicians by focusing on 
improved interpretability. Usually, high predictive accuracy is of key importance in prediction models. However, 
lack of clarity in the interpretation of predictions limits their usefulness in practice. Second, we externally evaluated 
predictive performance of our models, which were rarely done in other studies. Although the reference model did 
well or slightly better than our proposed model, the difference was minimal. So, we would say that we did not 
compromise predictive performance due to our proposed methodology. Third, our methodology is of high utility 
because it can be applied to other clinical conditions in which comorbidities matter. 

We have several limitations. When identifying cohorts, we excluded patients who developed multiple complications. 
Although this action limits the generalizability of our work, our primary interest was to demonstrate the feasibility 
and utility of our proposed methodology. Additionally, we excluded patients with unknown vital signs, lab results, 
and/or smoking status. We tested differences between final study cohort and these excluded patients. All variables 
except hdl, tchol, dbp, never_smoker, and age were significantly different, and the excluded patients were generally 
sicker. Thus, our study is subject to selection bias. But, ours was not to estimate the effect of a risk factor, in which 
addressing selection bias using imputation methods is critical, but to separate the entirety of the effect into common 
and outcome-specific effects. Lastly, we used variables easily obtained from EHR data. Many studies have found 
that T2DM is disproportionally affected by race, ethnicity and/or socioeconomic status22. Although they are very 
important risk factors, we mainly focused on modifiable risk factors.  

When we build a model on large amounts of data, most variables become statistically significant; however, they may 
be clinically irrelevant. To impact individualized patient care, it is critical to develop enabling technologies that 
extract clinically useful information from the large amounts of data. Our future work is to extend this work to larger 
cohorts and overcome the limitations. If we can obtain reasonable levels of generalizability, we believe that our 
methodology will have significant potential to help clinicians prioritizing outcomes and making a more accurate 
prognosis for T2DM patients. 
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