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Background. Coronary atherosclerotic heart disease (CHD) is a lethal disease with an unstated pathogenic mechanism. Therefore,
it is urgent to develop innovative strategies to ameliorate the outcome of CHD patients and explore novel biomarkers connected to
the pathogenicity of CHD. Methods. The weighted gene coexpression network analysis (WGCNA) was carried out on a coronary
atherosclerosis dataset GSE90074 to determine the crucial modules and hub genes for their prospective relationship to CHD. After
the different modules associated with CHD have been identified, the Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enriched pathway analyses were conducted. The protein-protein interaction (PPI) network was thereafter
performed for the critical module using STRING and Cytoscape. Results. The yellow module was recognized as the most
critical module associated with CHD. The enriched pathways in the yellow module included those related to inflammatory
response, positive regulation of extracellular signal-regulated kinase1/2 (ERK1/2) cascade, lipid catabolic process, cellular
response to oxidative stress, apoptotic pathway, and NF-kappa B pathway. Further CytoHubba analysis revealed the top five
hub genes (MMP14, CD28, CaMK4, RGS1, and DDAH1) associated with CHD development. Conclusions. The current study
provides the prognosis, novel hub genes, and signaling pathways for treating coronary atherosclerosis. However, their potential
biological roles require deeper investigation.

1. Introduction

Coronary atherosclerotic heart disease (CHD) is the leading
cause of mortality and disability worldwide. It is character-
ized by coronary atherosclerosis lesions resulting from the
vascular cavity stenosis, hypoxia, or necrosis [1]. Emerging
evidence suggests that the main risk factors of CHD include
psychological stress, lack of exercise, obesity, smoking, dia-
betes, dyslipidemia, and hypertension. In recent years, with
rapid changes in social circumstances and improved living
conditions, the morbidity associated with cardiovascular dis-
orders has been continually increasing [2]. CHD represents
the leading cause if most cardiovascular deaths. It accounts
for nearly 50% of all cardiovascular disease (CAD) deaths
in Western countries. The myocardial infarction resulting
from CHD has been found to be one of the leading reasons
for incapacity or mortality in cardiac disorder sufferers that
constitute a severe hazard to the human life [3]. It has been
established that individuals with CHD have a high hazard of

subsequent cardiovascular disorders containing myocardial
infarction (MI), stroke, and chronic heart failure (CHF) [4,
5]. With a significant increase in aging population, CHD
combined with CHF has emerged as a major challenge
worldwide, which can lead to utilization of excessive medical
resources and aggravate patients’ burden [6]. Although tre-
mendous improvement has been achieved in the diagnostic
and therapeutic strategies used for the management of
CHD, many patients affected with CHD fail to get detected
and assessed timely, thereby causing significant damage to
their health and well-being [7, 8]. Therefore, it is urgent to
decipher the exact molecular mechanism underlying CHD
to develop optimal therapy.

Several algorithms based study approaches have been
explored to assess the potential underlying mechanisms for
the gene networks that can provide overall comprehensions
into various disorders [9, 10]. Weighted gene coexpression
network analysis (WGCNA) is a system biology method that
could effectively differentiate gene coexpression networks of
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a multifaceted bioprocess to some specific modules [11].
These modules can be used to evaluate the relevant clinical
features. WGCNA could explore modules of the strongly rel-
evant genes and the correlative outer features by its particu-
lar function, acting as a valuable tool to detect potential
mechanisms, prospective markers, or treatment goals for
diverse diseases [12]. In recent years, WGCNA has been suc-
cessfully applied in various studies on sophisticated disorders,
especially in cardiovascular and cerebrovascular diseases, can-
cers, and neurodegenerative disorders [13–15]. Early findings
on CHD mechanisms have primarily focused on pathophysi-
ology; however, understanding of the different regulatory net-
works that can affect CHD remains insufficient.

In the current study, we first identified the crucial genes
involved in coronary atherosclerotic heart disease by weighted
gene coexpression network analysis. The enriched signaling
pathways were further explored. We carried out a WGCNA
analysis with the CHD-related dataset GSE90074. The crucial
modules were confirmed, and an enriched pathway analysis
for the crucial module was conducted to investigate the pro-
spective biological functions. PPI networks were also con-
structed using the STRING and Cytoscape software.

2. Methods

2.1. Dataset Information. The coronary atherosclerosis data-
set, GSE90074, was downloaded from the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo/). The dataset was processed using background amend-
ment through the R package (version 3.12) and quantile nor-
malization with the R package (version 1.17.1) software. A
total of 13080 mRNAs (including 143 samples), which con-
tained appropriate expression data, were obtained for fur-
ther investigation. The hclust (R base function) was
employed to conduct a hierarchical clustering analysis, and
all the outliers were omitted. Finally, the top 3000 critical
genes were selected for WGCNA analysis.

2.2. WGCNA. GSE90074 sample data were pretreated and
standardized by the WGCNA R package. Thereafter, the
genes with the highest 25% variance were chosen. The soft
threshold power of 5 (scale-freeR = 0:95) and a mod-
ulesize ≥ 30were used to mine the different crucial modules.
The correlation analysis between the various modules and
the clinical trait was conducted by using the correlation
analysis, and adj p < 0:01 was considered as significant.
The topological overlap measure (TOM) was used to assess
the network’s connectivity property. A clustering dendro-
gram was constructed using average linkage hierarchical
clustering based on the TOM matrix.

2.3. Identification of CHD-Related Modules Corresponding to
Clinical Traits. The potential relationship between the differ-
ent modules and clinical traits was examined to explore the
critical modules, which could be drastically associated with
the sample traits. We estimated the relevance between mod-
ule eigengenes (MEs) that can generalize the expression pro-
files of these modules. The association was evaluated by the
R statistical package WGCNA. The modules with high sig-

nificance (p < 0:05) were employed for the hub gene selec-
tion. The connection values were exhibited in a heatmap.
The modules, which were markedly connected to CHD,
were selected as the key modules. We estimated the connec-
tion between ME and clinical traits and examined the clini-
cal importance of these crucial modules.

2.4. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were conducted to assess the
biological significance of the various genes in the key mod-
ules by the cluster profile R package (version 3.12). GO path-
way analyses were conducted for the differentially expressed
genes (DEGs) using R and DAVID online software. KEGG
was performed to assess the critical biological functions
and pathways of the various DEGs. Adj p value < 0.05 was
selected for the significance threshold.

2.5. Identification of Hub Genes. The top 20% of crucial
genes were defined as potential hub genes in the crucial
modules with the maximum connectivity. STRING3 data-
base and Cytoscape v3.7.0 software were employed for the
coexpression network construction. The maximal clique
centrality (MCC) algorithm was used to identify the top five
hub genes with the highest connectivity from the key
modules.

2.6. Statistical Analysis. The package R was employed to
assess the gene expression. The “limma” package was
applied to evaluate the correction differences. The “cluster
profile” package was used for functional enrichment analysis
of the DEGs. The diagnostic value of the hub genes was
explored by using ROC curve in SPSS 22.0. p < 0:05 was con-
sidered as statistically significant.

3. Results

3.1. Creation of Weighted Gene Coexpression Network. The
top 3000 genes based on the GSE90074 dataset were used
to create the coexpression network. The clustering analysis
based on the profile of sample expression values was per-
formed to assess the possible outliers of samples
(Figure 1(a)). We further evaluated the threshold by employ-
ing the scale-free topology criterion. After identifying the
soft threshold, a weighted gene coexpression network was
set up based on the various identified genes. The scale-free
network was imported into the network topology with a soft
threshold set at 5 (scale-free R = 0:95) (Figure 1(b)).

3.2. Identification of Key Modules. A hierarchical clustering
tree was generated to mine the coexpression modules with
a dynamic cut approach. The smallest quantity of the genes
in each module was minModule size = 30. To construct a
topological overlap matrix (TOM), the contiguous and con-
nection matrices for the gene expression profile were ana-
lyzed. A final gene clustering tree based on the gene-gene
non-ω similarity was set up. In addition, all the similar
expression modules were merged, and nine different mod-
ules were identified. The correlation between the module
genes has been demonstrated in Figure 2(a). Moreover, the
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different modules have been indicated by diverse colors. The
TOM was visible with a heatmap that depicted adjacencies
or topological overlaps (Figure 2(b)).

3.3. The Correlation Analysis between Modules. We further
estimated the correlation between the modules to explore the
potential relationship between the identified modules. The
heatmap of the coexpression modules has been demonstrated
in Figure 3(a). Thereafter, the clustering dendrogram for
WGCNA coexpressionmodules was constructed to determine
the similarity between the modules. The coexpression mod-
ules fromWGCNA were evaluated by using hierarchical clus-

ter analysis, and the modules in the same category exhibited
similar gene expression trends (Figure 3(b)).

3.4. Construction of Module-Trait Relationships. To obtain
the possible gene modules that were tightly associated
with CHD, the related clinical information of the sample
was mined, and the association between the nine distinc-
tive modules and the clinical characters was evaluated.
The related sample traits (survival status, disease, male,
female, and age) were obtained according to the data
from the GSE90074. The correlation between the traits
and modules has been demonstrated in Figure 4. As
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Figure 1: Creation of weighted gene coexpression network. (a) A sample cluster dendrogram. (b) The soft thresholding powers for the scale-
free network.
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determined from the evaluation of module-trait relation-
ships, the yellow module exhibited a greater significance
related to CHD and exhibited a positive relationship.
The correlation coefficient was 0.18, thereby implying that
the various genes from this module were positively
affected by CHD progression. The pink module was
observed to be negatively related to CHD progression.
Furthermore, the correlation coefficient between the blue
module and the survival status was −0.17, thus implying

that the different genes in the blue module might be neg-
atively connected to the disease status.

3.5. Correlation between the Different Modules and Clinical
Traits. The module-trait association was examined by con-
necting the modules with sample traits to detect the appar-
ent connotations. For clinical status trait (CHD), the
brown module showed the highest positive correlation
(r = 0:29; p < 0:05), but the green module (r = −0:43; p <

Network heatmap plot, selected genes
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Figure 2: Evaluation of the key modules. (a) Cluster diagram of the various gene modules. (b) The TOM heatmap plot.
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Figure 3: The correlation analysis between the different modules. (a) Module-trait relationship. (b) Hierarchical clustering analysis for the
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0:05) demonstrated the negative correlation (Figure 5).
These results suggested that the brown and green modules
have been recognized as the crucial modules for CHD.

3.6. Enrichment Analysis. According to the correlation anal-
ysis and the different clinical features, the yellow module dis-
played the closest association with the progression of CHD.
To investigate the biological functions of the identified genes
implicated in this module, 325 genes were obtained for the
yellow module. GO and KEGG enrichment analyses were
carried out. Regarding the GO pathway analysis, it was
observed that the genes in the yellow module were enriched
in the positive regulation of angiogenesis, smooth muscle
cell proliferation, inflammatory response, ERK1 and ERK2
cascade, cytosolic calcium ion concentration, and cytokine-
mediated signaling pathway (Figure 6(a)). For the KEGG
enrichment analysis, the various genes in the yellow module
were primarily enriched in the inflammatory response,
innate immune response, lipid catabolic process, cellular
response to oxidative stress, apoptotic signaling pathway,
NF-kappa B signaling pathway, and NOD-like receptor sig-
naling pathway (Figure 6(b)).

3.7. Identification of the Hub Genes. We used the STRING
online tool to obtain a PPI network to determine the various
hub genes that can effectively modulate the progression of
CHS. The hub genes of the yellow module were introduced
into the STRING database for PPI exploration, and the var-
ious networks were created in Cytoscape (Figure 7). The top

five hub genes with the highest MCC scores that were iden-
tified in the yellow module were MMP14, CD28, CaMK4,
RGS1, and DDAH1.

3.8. Validation of the Various Hub Genes. The underlying
clinical importance of the various hub genes was also
explored by ROC analysis. All the five genes exhibited pro-
spective diagnostic values (p < 0:05) and ROC curves of
these hub genes have been depicted in Figure 8.

4. Discussion

Coronary atherosclerotic heart disease is one of the most
commonly diagnosed cardiac diseases in the world [16]. It
usually results from the congestion of the coronary artery
by atherosclerotic plaque. In many industrialized countries,
CHD has become the leading cause of mortality among
adults, accounting for 30.8%~40% of deaths globally, which
can severely endangered the well-being and survival of
human beings [17]. With the rapid development of our
economy and the acceleration of population aging world-
wide, the morbidity associated with CHD has been also sig-
nificantly increasing worldwide. Social and economic
development has made the average life expectancy of human
beings significantly longer than in the past, and the world is
aging. With the aggravation of population aging, the inci-
dence rate of chronic diseases such as CHD is on the rise.
The prevention and cure of CHD are facing severe problems
and challenges. Therefore, there is an urgent need to
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investigate the underlying molecular mechanisms to develop
novel therapeutic strategies for CHD.

With the innovation and development of DNA sequenc-
ing and chip technology, bioinformatics methods have been
extensively employed for research related to the various
chronic diseases, such as non-small-cell lung cancer [18],
gastric cancer [19], sepsis [20], pressure hydrocephalus
[21], amyotrophic lateral sclerosis [22], schizophrenia [23],
hypertension [24], hypertrophic cardiomyopathy [25], and
pulmonary artery high-pressure disease [26]. In the current
study, we have used multiple bioinformatics methods to
determine the potential biological mechanisms of CHD.
GEO database is a common gene chip database established
by NCBI. The weighted gene coexpression network analysis
(WGCNA) algorithm is a novel biological technique that
provides the association method between the various gene
modules and clinical traits to explore the genes involved in
specific phenotypical traits. It has been found that compared
with the classical difference gene expression analysis, which
primarily focuses about the genes illustrating the variance
between the different groups, WGCNA clusters can provide
information about the coexpressed genes in an unbiased
manner into modules that could be associated with clinical
traits. This study employed WGCNA to detect the crucial
modules implicated in CHD development. WGCNA was
performed on the dataset GSE90074, which comprised of
coronary atherosclerotic heart disease samples. Among the
nine coexpression modules acquired by WGCNA, the yellow
module was mainly associated with CHD development. We
recognized that the yellow module could serve as a critical

module related to CHD progression. We then conducted a
functional enrichment investigation to explore the diverse
biological functions of the genes implicated in this module.
We further investigated hub genes by constructing a PPI
network to explore the crucial genes involved in CHD
development.

The enrichment analysis of the yellow module’s biologi-
cal function and pathway illustrated that the genes were pri-
marily enriched in the inflammatory response, innate
immune response, lipid catabolic process, cellular response
to oxidative stress, and apoptotic signaling pathway, which
was concurrent with the previous findings. For instance,
Libby [27] demonstrated that the process of CHD might
be considered as an inflammatory response to coronary
artery injury. He revealed that the varying pathological con-
ditions could cause immune responses that could accelerate
the transmigrating of monocyte adhesion into the subinti-
mal space. Moreover, another study has highlighted the crit-
ical role of lipid accumulation in the processes linked to
onset and subsequent destruction of atherosclerotic plaques.
They depict that these lipid species could be considered the
basis for the forecast of CHD [28]. Kibel et al. reported that
chronic inflammation was the crucial pathophysiologic pro-
cess underlying atherosclerosis, and oxidative stress can play
a vital role in regulating vascular homeostasis. It has been
established that imbalance in the oxidant/antioxidant ratio
could result in oxidative stress and substantial vascular dam-
age [29]. In addition, a recent study has highlighted that
macrophage foam cells can increase the inflammatory
response and accelerate the eventual complications of
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Figure 5: Connection between the different modules of interest and the clinical traits in the yellow module.
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atherosclerosis [30]. Zakynthinos and Pappa indicated that
inflammation was the major cause of plaque rupture and
can promote acute atherothrombotic vascular occlusion
and infarction [31]. Another study reported that ROS can
induce the activation of the NF-κB pathway which in turn
can effectively promote the development of coronary calcifi-
cation [32]. Our results also confirmed the involvement of
the inflammatory response, innate immune response, lipid
catabolic process, cellular response to oxidative stress, and
metabolism-related processes in CHD.

The various hub genes were identified by constructing a
PPI network for the genes from the yellow module by the
STRING and Cytoscape. Eighty-three essential genes were
eventually confirmed for the yellow module. The top five
identified genes with the highest MCC scores were
MMP14, CD28, CaMK4, RGS1, and DDAH1. It has been

reported previously that the matrix metalloproteases
(MMPs) are a critical family of proteins implicated in vari-
ous biological processes, including angiogenesis, vascular
repairing, and inflammatory response. The roles of few
MMPs have been also implicated in CAD in which the spe-
cific proteases appear to exhibit differential effects. Among
these, the expression of MMP14 was found to be signifi-
cantly enhanced in injury-spawned blood vessels [33].
Schmitt et al. further demonstrated that the ratio of MMP-
14/TIMP-2 in aortic tissues could regulate the activation of
Pro-MMP-2 in ascending thoracic aortic aneurysms [34].
Moreover, MMP-14 has been found to play a crucial role
in the development of coronary vascular lesions [35]. Burton
et al. reported that MMP14 can function as an important
regulator gene related to the progression of atherosclerosis
and vascular calcification [36]. CD28 is a homodimeric cell
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Figure 6: Functional enrichment analysis of the various genes in the yellow module. (a) GO, Gene Ontology. (b) KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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surface receptor that is predominantly expressed on T-cells.
For years, the role of CD28− T cells has been implicated in
numerous inflammatory disorders. Sun et al. found that
CD4(+) CD28(-) T cells were detected in atherosclerotic pla-
ques and the peripheral circulation blood in patients with
acute coronary syndrome and exerted critical roles in plaque
ruptures [37]. Accumulating evidence has also indicated that
patients with CD28− T cell extensions can exhibit atheroscle-
rotic variations [38]. Furthermore, CD28− T cells are found
to be upregulated in the clinical situation linked to acute cor-
onary syndrome. The Ca2+-dependent protein kinase IV
(CaMK4), which acts as a crucial member of the CaMK fam-
ily, is a serine/threonine kinase that plays a multifunctional
role in modulating the immune response. Emerging evi-
dence has suggested that CaMK4 can exert a pivotal role in

the progression of Th17 cells and in regulating IL-17 pro-
duction by Th17 cells [39]. In addition, Ichinose et al. sug-
gested that CaMK4 suppression could result in the
significant reduction of IFN-γ production in T and B cells
[40]. Overall, consensus derived from the various studies
indicate that coronary atherosclerosis is primarily an inflam-
matory disease of the coronary artery. Santulli et al. sug-
gested that CaMKIV can play an essential role in blood
pressure modulation by controlling the endothelial nitric
oxide synthase activity [41]. They further reported that the
loss of CaMK4 can markedly accelerate hypertension pro-
gression, accompanied by endothelial dysfunction and organ
injury [41]. As a marker of endothelial dysfunction, asym-
metric dimethylarginines (ADMAs) have been recognized
as the hazard elements for diverse cardiovascular conditions
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such as pulmonary hypertension, coronary heart disease,
and portal hypertension [42, 43]. Dimethylarginine
dimethylaminohydrolase-1 (DDAH1) can play a critical role
in the decomposition process of ADMA and NO signaling.
A large body of evidence has indicated that the loss of func-
tion DDAH1 can directly relate to the rising morbidity of the
coronary heart disease, thrombosis, and stroke. In addition,
DDAH1 has been considered a crucial biomarker and can
display strong prognostic value in patients with CHD [44].
Recently, several studies have suggested that DDAH1 level
was correlated with amplified risk of stroke and CHD [45].

Regulator of G-Protein Signalling-1 (RGS1) is the prototype
of a seven-transmembrane receptor fused with an RGS
domain that can deactivate G-protein signaling and signifi-
cantly reduces the response to the sustained chemokine
stimulation [46]. RGS1 has been identified to display differ-
ential expression in CHD by whole-genome expression
arrays [47]. Patel et al. demonstrated that RGS1 could effec-
tively function as a negative regulator in various chronic
inflammatory diseases [48]. Consistent with these reports,
our results illustrated that MMP14, CD28, CaMK4, RGS1,
and DDAH1 played critical roles in the progression of
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Figure 8: ROC curves for the hub genes. ROC: receiver operating characteristic; AUC: area under curve.
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CHD. Our ROC analysis also revealed the potential clinical
importance of the five hub genes, and it was found that all
these five identified genes exhibited prospective diagnostic
values in CHD.

Taken together, WGCNA was carried out on a CHD
dataset. The yellow module was found to be the most crucial
module for CHD progression among the nine modules. The
yellow module was confirmed to be related to inflammatory
response, innate immune response, lipid catabolic process,
cellular response to oxidative stress, and apoptotic signaling
pathway. We also revealed that five crucial genes (MMP14,
CD28, CaMK4, RGS1, and DDAH1) played significant roles
in pathophysiological mechanisms of CHD. Our findings
might facilitate the forthcoming experimental studies aimed
at exploring the functions of the critical genes involved in
CHD. In addition, the hub genes obtained might provide
novel strategies for targeted therapy of CHD and contribute
to achieving an enhanced comprehension of the underlying
mechanisms of CHD. However, this study still has some lim-
itations. Although the hub genes were generated from a dif-
ferent dataset, it still needs to be further validated in a larger
patient cohort.
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