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Leukoaraiosis is a common imaging marker of cerebral small vessel disease.

In recent years, with the continuous advances in brain imaging technology,

the detection rate of leukoaraiosis is higher and its clinical subtypes are

gradually gaining attention. Although leukoaraiosis has long been considered

an incidental finding with no therapeutic necessity, there is now growing

evidence linking it to, among other things, cognitive impairment and a high risk

of death after stroke. Due to di�erent research methods, some of the findings

are inconsistent and even contradictory. Therefore, a comprehensive and in-

depth study of risk factors for leukoaraiosis is of great clinical significance.

In this review, we summarize the literature on leukoaraiosis in recent years

with the aim of elucidating the disease in terms of various aspects (including

pathogenesis, imaging features, and clinical features, etc.).
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Introduction

Leukoaraiosis (LA), also known as white matter hyperintensity (WMH) or white

matter lesions (WMLs), is an imaging marker of cerebral small vessel disease (CSVD).

Recognition of CSVD dates back to the late 19th century, when Binswanger and his

student Alzheimer published the first articles on this topic (Binswanger, 1894; Alzheimer,

1902). However, it now seems likely that the patients they described had vascular changes

due to neurosyphilis, and that the original “Binswanger disease” may have described a

different pathology than what we currently understand by “small vessel disease” (Grueter

and Schulz, 2012). It was only with the availability of modern brain imaging in the

1970s that the discovery of subcortical lesions on brain scans by Hachinski and Awad,

respectively, drew attention to these asymptomatic vascular lesions (Awad et al., 1986a,b;

Hachinski et al., 1986, 1987).

“Leukoaraiosis” [from the Greek leuko (white) and araios (rarefaction)] is a purely

descriptive term, first described by Hachinski, to describe white matter lesions seen

on brain scans (Ichikawa et al., 2008). The appearance of LA depends on the imaging

method used, but typically it presents as multifocal or diffuse periventricular or

subcortical lesions of varying sizes. LA lesions multifocal or diffuse, with indistinct
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borders are most commonly located in the proximity of the

cerebral ventricles or within the semioval center and appear

hypodense in comparison to normal white matter on CT images;

Magnetic resonance imaging (MRI) is more clear, showing T2-

weighted (T2WI) and/or fluid-attenuated inversion recovery

sequences (FLAIR) with high signal and T1-weighted imaging

(T1WI) with equal signal or low signal, without cystic lesion

(Etherton et al., 2016).

LA is common in older adults, especially those with

vascular risk factors (Pantoni and Garcia, 1995). In the general

population, the prevalence of LA ranged from 11 to 21%

in patients around 64 years of age and was as high as

94% in the 82-year-old sample (Debette and Markus, 2010).

While it was for a long time regarded as an incidental

finding with no therapeutic consequences, there is now

increasing evidence that it is associated with specific clinical

manifestations such as cognitive decline, gait impairment,

mood disorders, urinary dysfunction, and disability (LADIS

Study Group, 2011). Given this clinical relevance, prevention

and treatment of LA is becoming increasingly important

(Bene et al., 2015). With the current aging population, the

prevalence of LA is considered rise further. Therefore, In-depth

study of LA is increasingly important (Grueter and Schulz,

2012). This paper reviews the progress of LA-related research

as follows.

Pathogenesis

CSVD, cerebral atherosclerosis, and cerebral amyloid

angiopathy, are the most common degenerative vascular

diseases in the elderly (Grinberg and Thal, 2010). LA, a

subtype of CSVD, is characterized pathologically by pale

myelin, demyelination, oligodendrocyte apoptosis, and vacuole

formation (Fazekas et al., 1998). Although LA is gaining

attention, its pathogenesis is still unclear. It is now generally

believed that it is mainly associated with cerebral blood flow

autoregulation function, venous collagen deposition, blood-

brain barrier (BBB) disruption, invalid neurovascular coupling

and genetic factors (Lin et al., 2017; Moretti and Caruso,

2020) (Figure 1).

Several successive studies published by Mok, Poels and

Joutel et al. found that hemodynamic alterations may be

associated with white matter ischemia (Joutel et al., 2010; Mok

et al., 2012; Poels et al., 2012), and impaired dynamic cerebral

autoregulation (dCA) is the most common hemodynamic

alteration. By assessing cerebral blood flow autoregulation, the

dCA process in the middle cerebral artery and posterior cerebral

artery bilaterally to represent the dCA of the whole brain, Guo

et al. found that the impairment of dCA in CSVD was not

limited to unilateral or bilateral effects, but involved the whole

brain (Guo et al., 2015). Sclerosis and luminal narrowing of

small cerebral vessels caused by chronic hypertension, diabetes

or other vascular risk factors may be the main cause of impaired

autoregulation of whole brain blood flow (Lin et al., 2017).

Previous studies on the pathogenesis of LA have focused on

changes in cerebral arteries rather than veins. Since the concept

of periventricular venous collagen deposition was introduced

by Moody et al. in 1995, venous collagen remodeling and

the influence of the venous system on LA began to receive

progressive attention (Moody et al., 1995). Venous ischemia

should receive more attention than arterial ischemia. Vascular-

derived edema and BBB injury are more common in venous

ischemia. In addition, venous ischemia is a long-term, more

inert process, and venous ischemia causes pathological features

and disease progression that are more similar to LA (Schaller

and Graf, 2004). Unlike arterial disease, unilateral obstruction

of the jugular venous outflow tract often results in restricted

venous drainage in the deep venous system, superficial venous

system and watershed areas bilaterally due to venous reflux to

the superior sagittal or transverse sinus. This feature makes it

more similar to the clinical presentation of bilateral LA (Schaller,

2004). Recently, an increasing number of studies support the

association of periventricular venous collagen deposition with

LA (Moody et al., 1995; Chung et al., 2011). In an autopsy

study of 22 patients aged 60 years or older with arteriovenous

differentiation using alkaline phosphatase staining, Moody et al.

found that 13 patients had periventricular venous collagen

deposition; of these, 10 patients with severe periventricular

venous collagen deposition had statistically significant LA

(Moody et al., 1995). Although the link between venous collagen

disease and LA is unclear, Moody et al. attributed it primarily to

a genetic susceptibility (Moody et al., 1995).

LA may also be associated with BBB injury. the entry

of secondary serum substances such as serum proteins,

complement components and fibrinogen into the brain

parenchyma after BBB injury may underlie the pathogenesis of

LA (Lin et al., 2017). Using dynamic-enhanced MRI, Starr et al.

found that patients with LA hadmore contrast leakage in arterial

penetration areas compared with normal subjects (Starr et al.,

2003). Young et al. reduced the bias in selecting different regions

of histopathology and their MRI results showed BBB damage

in both LA and non-LA regions, thus further illustrating the

close association between LA and BBB damage (Young et al.,

2008). In addition, capillary pericytes play especially crucial

roles in the function of the BBB, which may also underlie the

pathogenesis of LA (Uemura et al., 2020). Pericyte ablation leads

to breakdown of the BBB in the mouse brain (Nikolakopoulou

et al., 2019). Pericytes control protein expression in the tight

junctions, their alignment with endothelial cells, and the bulk-

flow transcytosis of fluid-filled vesicles across the BBB (Armulik

et al., 2010; Bell et al., 2010; Daneman et al., 2010; Quaegebeur

et al., 2010). The link between BBB and LA has been confirmed

by human and animal studies, and with the development of

imaging techniques, BBB damage has been identified as a cause

of LA. However, there is also a study claiming that BBB damage
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FIGURE 1

Pathophysiology of leukoaraiosis. The existence of artery luminal stenosis, artery wall sti�ness, endothelial dysfunction, and venous drainage

limitation due to risk factors such as aging, hypertension, diabetes, and genetic factors, etc. These directly contributes to the di�use loss of

autoregulation, venous hypertension, BBB damage, and hypoperfusion. Thereafter, demyelination, oligodendrocyte apoptosis, and axonal

damage occurs in response to stimulation by inflammation, oxidative stress, and apoptosis. The above processes are considered to be the main

pathogenic factors of LA (BBB, blood brain barrier).

is not associated with LA (Wahlund and Bronge, 2000). More

studies with less bias and more plausibility are still needed to

confirm the association between LA and BBB.

Recent studies found that the occurrence of LA may

also be associated with invalid neurovascular coupling. As

far as we know, endothelium distress can potentiate the flow

dysregulation and lead to microglia activation, chronic hypoxia

and hypoperfusion, vessel-tone dysregulation, altered astrocytes,

and pericytes functioning blood-brain barrier disruption, which

may be the pathogenetic basis of LA. The apparent consequence

(or a first event, too) is the macroscopic alteration of the

neurovascular coupling (Moretti and Caruso, 2020). This system

has many complex functions„ but it seems likely to exert

the drainage work of the brain. Therefore, modification of

this system produces deleterious effects, whose results are an

accumulation of catabolites and toxic substances, together with a

pronounced neural starvation (Abbott et al., 2018; Sweeney et al.,

2018). In LA, the pathological cascade of events, which occurs

as a consequence of the inflammatory/obstructive/stagnation-

induced process, determines a decrease of the vascular tone,

with a release of the blood-brain barrier permeability, with

a loss of the internal vascular remodeling and with major

vascular rarefactions. As a result, hypo-perfusion at rest occurs

in the brain and it is associated with a diminishment of the

neurovascular coupling (Wardlaw et al., 2013; Liu et al., 2017).

LA could also affect the integrity of the medial cholinergic

pathway, for the hypoperfusion preferred localization, in the

deep white matter capsule, or, due to the multiple lacunar

infarcts, the basal forebrain cholinergic bundle could be

deafferentated from the tubero-mamillary tracts (Zhan et al.,

1994; Román, 2004; Bohnen et al., 2009). These aspects affect the

normally-accurate cerebral flow regulation and they can further

disturb the “retrograde vasodilatation system” with necessary

consequences in neurovascular coupling (Ahtiluoto et al., 2010).

On the other hand, LA usually implies a reduced metabolic rate

of oxygen (estimated of about 35% in white matter) (Yao et al.,

1990; Furuta et al., 1991); metabolic incongruity between the

brain oxygen supply and its consumption has been described

in LA, which determines an altered neurovascular coupling and

altered vasomotor reactivity (Tak et al., 2011; Caruso et al., 2019).

With the development of genetic technology, research on

the pathogenesis of LA has gradually begun to focus on genetic

factors, which may play an important role in the development

of LA by as much as 55–80%(Atwood et al., 2004). Research

on genetic susceptibility to LA has been divided into two

main categories: candidate gene association studies (CGAS)

and genome-wide association studies (GWAS). Genome-wide

linkage analyses of LA in the past decades have found that

LA links to chromosomes 4, 5, 1 and 11 (Turner et al., 2005;

Destefano et al., 2006; Kochunov et al., 2009). Studies on CGAS,

GWAS and gene expression suggest that neuroimmunity,

inflammation, oxidative stress and apoptosis may be involved in

the formation of LA (Lin et al., 2017). Some animal studies on LA

also suggest that genetic factors are involved in its pathogenesis

(Lin et al., 2001; Lan et al., 2015). A small number of LA genetic

linkage analysis studies suggest that some certain specific genes

are closely associated with LA, but their exact loci have not been

identified (Lin et al., 2017). Notably, there were no reproducible

associations between the genes obtained from GWAS and LA.

Moreover, some of the associations presented in CGAS were

not identical to the results in GWAS (Fernandez-Cadenas et al.,

2011).
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Neuroimaging and diagnosis

CT and MRI

Although the term leukoaraiosis was introduced based on

CT images, lesions of LA are more clear and well defined on

MRI scans, especially using T2WI and FLAIR sequences. LA

appears as a low attenuation area on CT and as a high signal

area on T2WI or FLAIR. MRI is more sensitive than CT for

the detection of small lesions (O’sullivan, 2008). Thus LA can

be detected earlier on MRI, but not always in conjunction

with neurological deficits. In contrast, a clearer correlation

between imaging manifestations and neurological deficits can

be observed on CT, as lesions found on CT reflect more severe

neurodegenerative degeneration (Zagrajek and Pokryszko-

Dragan, 2005). Gradient echo sequences (GRE) or more

sensitive MRI magnetic susceptibility weighted imaging (SWI)

can demonstrate the presence of cerebral microhemorrhages

that cannot be distinguished from ischemic small vessel disease

on CT and that are often characteristic of hypertensive

small vessel disease and cerebral amyloid angiopathy (Yuan

et al., 2018). LA can be divided into periventricular LA and

deep/subcortical LA based on MRI features. periventricular

white matter receives blood supply mainly through long

penetrating branches and extraventricular isolated vessels, and

these features make periventricular LA attributable to ischemia

and ependymal layer injury (Rowbotham and Little, 1965).

The subcortical white matter receives its blood supply mainly

through short branch arteries from long penetrating branches, a

feature that makes it vulnerable to long-term chronic ischemic

and hypoxic injury (Rowbotham and Little, 1965). Usually,

however, this disease does not damage the tangentially moving

white matter fibers (i.e., U-shaped fibers) at the junction of the

gray and white matter.

The progression of LA tends to follow a general pattern.

Periventricular lesions initially occur apically in the lateral

ventricular horns, but as the disease progresses, its severity

may extend to the periventricular area. Deep white matter

lesions usually occur first in the frontal lobe, with subsequent

involvement of the parieto-occipital lobe and, rarely, in the

brainstem and basal ganglia regions (Ornello et al., 2018). This

lesion rarely involves the temporal lobe, an important feature

that distinguishes it from the autosomal dominant small vessel

arterial disease, CADASIL (Mijajlovic et al., 2011). They are

not apparent in mild LA, but as disease severity increases,

these lesions fuse together and eventually involve the entire

region diffusely.

The severity grading of LA relies mainly on the judgment

of the observer and is therefore more subjective. To increase

the objectivity of the ratings, different rating scales have been

developed, which can vary in complexity and ease of use.

Among the many scales used to grade the severity of CT, the

scale developed by Swieten et al. in 1992 has been widely

used in clinical (Marek et al., 2018). With the development

of magnetic resonance imaging techniques, several MRI-based

scales have been proposed to assess the degree of white matter

involvement. Notably, the scale developed by Fazekas et al. in

1987 is the most commonly used in clinical practice (Grueter

and Schulz, 2012; Marek et al., 2018). This scale assesses the

involvement of periventricular white matter and deep white

matter. The periventricular white matter was rated as follows:

0-no lesion, 1-“caps” or pencil-thin lining, 2-smooth “halo”, 3-

irregular periventricular signal extending to deep white matter.

And the deep white matter is graded as follows: 0—no lesion,

1—punctate lesion, 2—beginning of fusion, 3—extensive areas

of fusion (Scheltens et al., 1998). It is difficult to determine which

scale is the most accurate. MRI is more refined for LA analysis

because of better tissue resolution. For simple scales, assessing

the severity of LA can be difficult due to the subjective nature

of the assessment and the experience of the assessor. On the

other hand, the use of complex and time-consuming scales is less

feasible in a busy clinical setting. As a result, LA is often simply

classified as “none,” “mild,” “moderate,” or “severe.

Transcranial doppler ultrasound

Efforts should be directed to find portable and reliable

screening diagnostic tools that may help identify candidates

for MRI screening in remote areas where MRI is not

available. Previous studies have applied transcranial Doppler

ultrasound (TCD) to explore the relationship between cerebral

hemodynamics and brain lesions attributed to small vessel

disease in cognitive disorders (Heliopoulos et al., 2012; Mok

et al., 2012; Malojcic et al., 2017). The rationale is that early

changes in the intracranial blood vessel wall can be reliably

identified by ultrasound techniques, which allow to detect even

minimal or subclinical changes (Demarin and Morovic, 2014).

TCD, through the evaluation of the mean blood flow velocity

(MBFv) and the Gosling’s Pulsatility Index (PI), is able to

assess the cerebral hemodynamics of the main cerebral arteries.

While MBFv is a relative measure of the arterial perfusion

integrity, PI reflects the resistance of the small vessels and the

intracranial compliance (Baumgartner, 2006; Wagshul et al.,

2011). Therefore, TCD is an inexpensive and feasible alternative

to evaluate the cerebral hemodynamics, the arterial perfusion

integrity, and the intracranial small vessel compliance (Wagshul

et al., 2011; Brutto et al., 2015; Vinciguerra and Bosel, 2017).

A recent TCD study evaluated cerebral hemodynamics

in patients with late-life depression and subcortical ischemic

vascular disease, shows that a diffuse cerebrovascular pathology

likely arising from the small vessels and then extending to larger

arteries (Puglisi et al., 2018). Vinciguerra et al. assessed indices of

cerebral blood flow velocity in vascular cognitive impairment-

no dementia patients and to correlate TCD changes with

neuropsychological scores and white matter lesions severity.
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The results show that specific measures of cerebral perfusion

and vascular resistance were significantly associated with white

matter lesions and executive performance in patients with

vascular cognitive impairment-no dementia. These changes

may be considered as the TCD correlate of vascular cognitive

impairment-no dementia due to microcirculation pathology

(Vinciguerra et al., 2019). Hospital-based studies in high-risk

or stroke patients have found an association between the PI of

intracranial arteries and LA of presumed vascular origin (Xiong

et al., 2013). These findings suggest TCD represents a valuable

tool in the early detection, assessment, and management of LA

patients at risk for dementia.

However, a recent research shows that in a representative

sample of older adults living in a rural Latin American

population, the PI of major intracranial arteries do not correlate

with LA severity after adjusting for confounding variables

(Brutto et al., 2015). A high PI may not only reflect distal

cerebrovascular resistance (and thus, LA) but may also occur

as the result of large artery stiffness or other hemodynamic

factors (Webb et al., 2012). Because of its complex nature, PI

is not useful to assess LA prevalence and should not be used

alone as a proxy for LA (Brutto et al., 2015). However, Further

cooperative studies are still needed to settle the role of TCD in

mass screening of MRI candidates for LA assessment.

Transcranial magnetic stimulation

There is a need to find suitable biomarkers for the early

stages of LA that could be tested non-invasively and be

cost-effective toward the development and serial assessment

of novel treatment strategies, due to its relationship with

stroke, cognitive impairment, mood and behavioral, urinary

disturbances, and motor function disturbance, typically vascular

Parkinsonism and vascular cognitive impairment (Wardlaw

et al., 2013; Korczyn, 2015; Di Lazzaro et al., 2021). Transcranial

magnetic stimulation (TMS) is a powerful tool to probe in

vivo brain circuits, as it allows to assess several cortical

properties, enabling the identification of potential markers

of the pathophysiology and predictors of cognitive decline;

moreover, applied repetitively, TMS holds promise as a potential

therapeutic intervention (Di Lazzaro et al., 2021). This property

has led to many studies investigating the relation of dysfunction

of intracortical circuits or cortical plasticity with specific

clinical characteristics.

Cholinergic function was initially tested by means of TMS

to distinguish dementias with neuropathological evidence of

alteration of cholinergic pathways, such as Alzheimer’s disease

(AD) and Dementia with Lewy bodies (Di Lazzaro et al.,

2002, 2007), from non-cholinergic forms of dementia, such

as frontotemporal dementia (FTD) (Di Lazzaro et al., 2006).

Testing of cortical connectivity can also be used to find

hallmarks of sensorimotor cortical dysfunction in AD (Ferreri

et al., 2016). Moreover, synaptic dysfunction disrupting the

physiological process of synaptic potentiation after repeated

activation is emerging as another possible neurophysiological

marker of AD (Di Lorenzo et al., 2016; Motta et al., 2018).

While a single TMS measure offers low specificity, the use of a

panel of measures and/or neurophysiological index can support

the clinical diagnosis and predict progression (Di Lazzaro et al.,

2021).

In addition, TMS represents a powerful mean to probe in

vivo the synaptic function and plasticity at different disease

stages even in the very early phases when there are no structural

changes, and at the same time it may be used as a therapeutic

tool to modulate maladaptive plasticity in patients (Di Lazzaro

et al., 2021). So far, only repetitive TMS (rTMS) over the left

dorsolateral prefrontal cortex and multisite rTMS associated

with cognitive training have been shown to be, respectively,

possibly (Level C of evidence) and probably (Level B of

evidence) effective to improve cognition, apathy, memory, and

language in AD patients, especially at a mild/early stage of the

disease (Bentwich et al., 2011; Fiorenzato et al., 2017). The

clinical use of this type of treatment warrants the combination

of brain imaging techniques and/or electrophysiological tools

to elucidate neurobiological effects of neurostimulation and

to optimally tailor rTMS treatment protocols in individual

patients or specific patient subgroups with dementia or mild

cognitive impairment (Di Lazzaro et al., 2021). rTMS worked

in synergy with medication at least in alleviating behavioral

symptoms present in AD, suggesting positive interactions

between modulatory after-effects of rTMS and pharmacological

medication (Wu et al., 2015). However, it should be noted that

the very nature of concomitant rTMS and medication use is

not well understood and further research is needed in this area

(Hunter et al., 2019). Finally, some electroceutical therapies

such as transcranial direct current stimulation (tDCS) might

also modulate alterations in excitatory/inhibitory balance in

dementia with Lewy bodies, such as in the treatment of visual

hallucinations (Di Lazzaro et al., 2021). However, the efficacy of

tDCS have been equivocal in this regard (Elder et al., 2016, 2019).

Taken together, TMS, coupled with current biomarkers,

could ease the detection of neural degeneration in a phase

when it is still modifiable. Indeed, TMS could be able to

capture subtle changes years before the conversion to manifest

dementia. An early, accurate diagnosis of dementia will likely be

fundamental when designing trials of disease modifying drugs

(Di Lazzaro et al., 2021).

Epidemiology

The prevalence of LA varied widely across studies, ranging

from 5.3 to 95%(Dufouil et al., 2001; Wardlaw, 2001). This large

variability may be due to methodological differences between

studies, such as differences in imaging assessment methods, risk
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factors, and study populations. It is difficult to assess whether

prevalence of LA has changed over time due to its prevalence

varies so much. Better image quality and more sensitive brain

imaging techniques have higher diagnostic rates for LA, but

population aging may be the real reason for the increased

prevalence of LA (Park et al., 2007). However, today there is

a growing awareness of LA risk factors, and prevention and

control of hypertension may reduce the incidence of LA. Thus,

the apparent increase in LA incidence due to improved quality

of brain imaging may have been offset by the actual decrease due

to improved blood pressure control (Lovelock et al., 2007).

Risk factors

Although the pathogenesis of LA is not fully understood,

it is generally accepted that its incidence increases with

age, especially in people over 60 years of age (Grueter

and Schulz, 2012) (Figure 2). Other widely accepted risk

factors include female, hypertension, hypotension, heart

disease, type 2 diabetes, abdominal obesity, hyperlipidemia,

hyperhomocysteinemia (HHcy), carotid stenosis, history of

stroke, smoking, alcohol abuse, and chronic kidney disease and

etc. (Gottesman et al., 2010; Etherton et al., 2016; Marek et al.,

2018; Caruso et al., 2019). Still controversial risk factors include

epilepsy, tumor markers, and thyroid function in relation to LA

development (Ferlazzo et al., 2016; Seo et al., 2019; Son et al.,

2020). Due to the differences in research methods, some of the

studies have contradictory results.

Age

Advanced age may be the most important risk factor for the

development of LA (Grueter and Schulz, 2012). This is why LA is

often referred to as “age-related leukoaraiosis”. Although LA is

a pathological phenomenon, it may also be part of the normal

aging process to some extent. Although LA is a pathological

phenomenon, it may also be part of the normal aging process to

some extent. However, it is not clear at what age white matter

lesions begin to develop and there is a lack of precise data

on the extent of disease that can be considered “normal” at a

certain age (Pantoni and Garcia, 1997; Hopkins et al., 2006).

Most studies suggest that at least some white matter lesions

are predictable after age 50–65 (Srikanth et al., 2009). LA is

undoubtedly more common in the elderly and has a higher

incidence with increasing age (Grueter and Schulz, 2012).

Gender

Studies on the relationship between gender and LA

prevalence have shown conflicting results. Some findings find

a higher prevalence of LA in women, while others suggest

that men are at higher risk of developing LA (Grueter and

Schulz, 2012). The differences in the results of these studies

may be due in part to differences in the characteristics of

the study populations, as well as the influence of a number

of other confounding factors. For example, the study that

found that men were at higher risk was in the Japanese

study population, while the other two studies were in the

U.S. population (Park et al., 2007). In addition, Simoni

et al. suggested that there may also be differences in age or

hypertension prevalence between men and women, suggesting

a significant gender difference in LA prevalence (Simoni et al.,

2010).

Race

One reason why LA appears to be more prevalent in

Afro-Caribbean populations than in Caucasian populations

may be due to the higher prevalence of hypertension

in Afro-Caribbeans (Gottesman et al., 2010), who may

have more severe hypertension and tend to have poorer

control of their blood pressure than Caucasians. Also,

differences in genetic factors between Afro-Caribbean

and Caucasian populations may modify the effects of

hypertension on LA development (Meadows et al.,

2009).

Hypertension

Hypertension is closely related to LA and may be the

most important controllable risk factor for LA (Marek et al.,

2018). Hypertension promotes the underlying mechanism of

LA, promoting micro-athero-matosis, which can rapidly lead

to stenosis, or different degrees of vessel occlusion until the

complete lumen occlusion, inducing ischemia and brain damage

(Laurent et al., 2003). On the other hand, chronic hypertension

and hypotension alter cerebral blood flow autoregulation and

may affect the autoregulatory range (Caruso et al., 2019).

Relevant studies have clarified that hypertension plays an

important role in the development of LA, with elevated

systolic and diastolic blood pressure associated with it (Pantoni

and Garcia, 1997; Birns et al., 2009; Simoni et al., 2010).

Chronic hypertension has been shown to accelerate amyloid

deposition, blood-brain barrier (BBB) dysfunction, microglial

cells activation, and subsequent neuronal loss and development

of LA (Kruyer et al., 2015). No clear threshold has been

found for blood pressure for the development of disease, and

the relationship is continuous. In addition to the absolute

value of blood pressure, abnormal diurnal blood pressure

fluctuations may also be associated with LA (Etherton et al.,

2016).
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FIGURE 2

A synopsis of the possible risk factors conditioning the progression of LA. Among them, age, hypertension and hypotension are considered to be

the most important risk factors for LA (Grueter and Schulz, 2012).

Hypotension

Hypertension might be a historical problem for LA, but

hypotension might be even more dangerous by comparison.

Vascular aging is associated with changes in the mechanical

and structural properties of vessel walls, which leads to the

loss of arterial elasticity reducing arterial compliance (Jani and

Rajkumar, 2006). This induces an alteration in autoregulatory

capabilities of cerebral arteries, responsible of cerebral perfusion

at a constant rate of blood pressure. In this situation, the brain

may be more vulnerable to ischemic insults when systemic

blood pressure dips below a critical threshold for maintaining

perfusion (Torre, 2002). Orthostatic hypotension is arbitrarily

defined as a fall in systolic BP of 20 mmHg, or a fall in DBP

of 10 mmHg on standing, but when associated with symptoms

suggestive of cerebral hypoperfusion, an even smaller drop

in BP may be of equal importance (Mathias and Kimber,

1999). Several epidemiological studies have also described low

blood pressure, especially in later life as a risk factor for the

development of LA, pointing to the potential risk of over treating

hypertension (Verhaaren et al., 2013; Venkat et al., 2015).

Several studies have shown that sudden postural hypotension

can cause relatively prolonged changes in brain perfusion and

may contribute to cause small lacunar events or contribute to

white matter alterations and LA (Londos et al., 2000; Kaufmann

and Biaggioni, 2003). These aspects determine the sensitivity of

patients with LA to hypotension and each clinical condition that

may lead to hypotension might accelerate underlying disease

processes (Caruso et al., 2019).

Diabetes

Studies on the effects of diabetes on LA have shown

conflicting results. Some studies suggest an association between

LA and diabetes, especially with periventricular lesions (Bene

et al., 2015). Similarly, elevated fasting glucose has been found to

be associated with LA. In a study, Anan et al. found that insulin

levels were significantly higher in patients with LA (Anan et al.,

2009). The above data suggest that insulin resistance is a risk

factor for LA. Nevertheless, the strength of this association and

the pathological mechanisms involved are not clear. There are

also studies suggesting no significant relationship between LA

and diabetes (Bene et al., 2015).

Dyslipidemia

Dyslipidemia is an important risk factor for macrovascular

disease and whether it is also a risk factor for small vessel
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disease has not been established. park, Anan and Kocer et al.

have successively shown that both low levels of HDL and

hypertriglyceridemia may increase the risk of developing LA

(Kocer et al., 2005; Park et al., 2007; Anan et al., 2009). However,

the study by Padovani and Streifler et al. failed to find a

correlation between dyslipidemia and LA (Streifler et al., 1995;

Padovani et al., 1997).

Smoking

Whether smoking history influences the development of

LA is unclear. Park and Dijk et al. found that smoking

history and LA appear to be correlated (Park et al., 2007; Dijk

et al., 2008), but the study by Padovani and Streifler et al.

did not find a difference in the prevalence of LA between

smokers and non-smokers (Streifler et al., 1995; Padovani et al.,

1997).

Large artery atherosclerosis

Since the underlying pathological process of LA is

considered to be a small vessel lesion, large vessel atherosclerosis

and LA are not necessarily related. Breteler, Ohmine and

Manolio et al. found an association between atherosclerotic

disease and LA, which may be caused by two different

mechanisms (Breteler et al., 1994; Manolio et al., 1999; Ohmine

et al., 2008): First, the narrowing of blood vessels caused by

atherosclerosis reduces the blood flow to the brain, which

increases the risk of chronic ischemia in the brain and also

increases the risk of LA (Etherton et al., 2016). Second,

atherosclerotic disease and LA share a number of risk factors

and thereforemay occur together and affect each other (Etherton

et al., 2016).

Vitamin B12 and homocysteine

Homocysteine (Hcy) is a sulfur-containing amino acid

generated during methionine metabolism, accumulation of

which may be caused by genetic defects or the deficit of

vitamin B12 and folate. Hcy has many roles, the most

important being the active participation in the transmethylation

reactions, fundamental for the brain (Moretti et al., 2021). Hcy

accumulation could interfere with endothelium dysregulation,

favor oxidative damage, and promote neuroinflammation and

neurodegenerative processes, all of which occur in LA (Surtees

et al., 1997; Rutten-Jacobs et al., 2016; Piao et al., 2018; Moretti,

2019).

While many studies focused on thrombosis and HHcy,

HHcy and coronary disease, stroke, andmajor vessel disease, few

data are available on HHcy and vascular and neurodegeneration

because LA in the brain is a relatively recent entity (Moretti

et al., 2021). HHcy exerts essential alteration in the LA pattern.

HHcy induces an increase of Abeta 1–40 toxicity on the smooth

muscle cells of the brain’s small arteries, where cerebral amyloid

depositions occur, transforming the event into cerebral amyloid

angiopathy, a constant finding in overt LA condition (Zhao et al.,

2013; Caruso et al., 2019; Moretti and Caruso, 2019). HHcy

also promotes a constant enhancement of microglia activation,

inducing the sustained pro-inflammatory status observed in LA

(Moretti et al., 2021).

The correlation between low vitamin B12 levels and LA,

especially with periventricular lesions, has been reported in

a study by Pieters and de Lau et al. (De Lau et al., 2009;

Pieters et al., 2009). A very recent study showed a dose-

independent relationship between the plasma Hcy levels and

the development of LA (Ji et al., 2020). The study needs to

be confirmed in a much larger number of patients. However,

althoughWright and Hassan et al. showed a correlation between

low vitamin B12 levels and the resulting HHcy and LA,

there are still not enough studies to prove that vitamin B12

treatment or lowering Hcy levels in the body can improve

LA or slow its progression (Hassan et al., 2004; Wright et al.,

2005). Furthermore, cellular hypomethylation caused by build-

up of S-adenosylhomocysteine (AdoHcy) also contributes to the

molecular basis of Hcy-induced vascular toxicity, a mechanism

that has merited our attention in particular. AdoHcy is the

metabolic precursor of Hcy, which accumulates in the setting of

HHcy and is a negative regulator of most cell methyltransferases

(Esse et al., 2019). More importantly, AdoHcy has been claimed

to be a better indicator of LA than Hcy (Kerins et al., 2001; Valli

et al., 2008; Xiao et al., 2015).

Definition of the different roles of Hcy at the different

cellular levels, promotion of the confluency of altered white

matter areas, and times of the development of SVD in the brain

may provide hints as to themodulation of Hcy to prevent disease

(Moretti et al., 2021).

Epilepsy

Although the relationship between stroke and epilepsy has

been extensively studied, there is still less attention paid to LA

and epilepsy. Maxwell and Okroglic et al. suggested a mutual

facilitation between late-onset epilepsy and LA occurrence in

the elderly (Maxwell et al., 2013; Okroglic et al., 2013); however,

the results of Gasparini et al. suggested that the association

may be contingent (Gasparini et al., 2015). Therefore, further

animal and clinical studies are needed to clarify and explain

whether LA is merely an incidental imaging finding in patients

with epilepsy or whether it does play a role in the pathogenesis

of epilepsy.
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Tumor markers

Two studies in Korean population by Son and Seo et al.

suggested that CA199 and CEA levels of tumor markers were

positively correlated with LA (Seo et al., 2019; Son et al.,

2020). The correlation remained significant after controlling for

confounding factors including age, sex, body mass index, and

lifestyle. However, the exact mechanism of the effect is unknown,

and it is speculated that the possible causes are endothelial

dysfunction, insulin resistance, as CA199 and CEA were found

to be elevated in patients with non-malignant atherosclerosis

and diabetes mellitus. However, the above study was limited to a

cross-sectional study in the Korean population.

Thyroid function

Available data suggest a correlation between changes in

thyroid function and the development of LA. Leonards and

Zhang et al. found that thyroid stimulating hormone and

subclinical hypothyroidism were positively associated with

LA (Leonards et al., 2014; Zhang et al., 2017). The exact

mechanism responsible for this interplay is unclear, and the

aforementioned study attributes it to the effect of thyroid

hormones on microvascular endothelial function and the

systemic inflammatory response due to LA.

Clinical manifestation

Cognitive decline and dementia

Data from early cross-sectional studies have indicated a

possible association between LA and cognitive impairment

(Pantoni and Inzitari, 2005). Cognitive decline caused by LA

presents with executive dysfunctions, attention and memory

decline, set-shifting disabilities, slower speed of information

processing, decline of verbal fluency, and delayed recall. On

the behavior area, symptoms showed apathic, mood disorder,

depression and daily living disability (Pantoni, 2010; de Laat

et al., 2011; Del Bene et al., 2013). Among others, some clinical

features include sleep disorders, vertigo, tinnitus, and hearing

disorder (Li et al., 2018). White matter lesions are a predictor

of cognitive decline and dementia and there is a correlation

between progression of white matter lesion load and decline

in cognitive performance (Schmidt et al., 2007; Jokinen et al.,

2009). Therefore, LA are an important substrate for cognitive

impairment (Pantoni, 2010). However, LA are not associated

with global cognitive decline unless other lesions are also

present, and they should not be considered as an indicator of

dementia (Frisoni et al., 2007).

LA is today thought to be among the main causes

of vascular cognitive impairment (Pantoni, 2010). vascular

cognitive impairment associated with LA is thought to be a

progressive condition from normal cognitive status to frank

dementia (Pantoni et al., 2009). As well as cognitive disorders,

the clinical characteristics of vascular cognitive impairment

associated with LA are gait, mood and behavioral, and

urinary disturbances (Pantoni, 2010). In the early phases, these

disturbances can be mild and loosely associated. The final

stage is one in which the patient fits the criteria for dementia

(i.e., cognitive deficits have a clear and relevant effect on the

functional status), gait is very impaired with many patients

almost unable to walk and having frequent falls, mood is altered

with prominent depressive symptoms or apathy, and urinary

incontinence is present (Pantoni, 2010).

Age-related disability

Because white matter lesions are not only associated

with cognitive disorders but also with gait and mood

disturbances and urinary problems, it has been hypothesized

that they are a neuroimaging correlate of age-associated

disability (Baezner et al., 2008). The multicenter study

Leukoaraiosis andDisability (LADIS) was specifically investigate

that patients with severe white matter lesions had more than

twice the risk of transition than patients with mild lesions,

independently of many other predictors of disability (Inzitari

et al., 2007).

Neuropsychiatric symptoms resulting from LA mainly

include hallucination, agitation, depression, anxiety,

disinhibition, apathy, irritability, sleep disturbance, and

appetite change (Tang et al., 2009). 6 There is some evidence

that white matter hyperintensities may be related to poor

outcomes from delirium, as well as increasing the propensity

for delirium (Schmitt et al., 2012). Persons who are depressed

when they are older are more likely to have LA to be cognitively

impaired and to have an increase in falls (Chen et al.,

2015).

Urinary disturbances are common in cerebral vascular

pathology, whichmainly include nocturia, incontinence, urinary

frequency, and urgency (Li et al., 2018). In the LADIS study,

Poggesi and colleagues researched 639 individuals with age-

related white matter changes (ARWMC) ranging from mild to

severe, and reported that 70% of the participants complained

of at least one urinary symptom (Poggesi et al., 2008). Urinary

urgency is associated with the severity of ARWMC, while

urinary frequency is only associated with the stroke history. In

patients with Alzheimer’s disease, larger ARWMCs in volume

were found to be associated with urinary incontinence (Li et al.,

2018).

Gait disturbance, characterized by impairment of

locomotion, equilibrium and gait ignition, is another common

manifestation of LA (Iseki et al., 2010). LA is independently

associated with several gait parameters including a lower gait
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velocity, a shorter stride length and a reduced cadence (de

Laat et al., 2010). White matter lesions in the parietal lobe

are most highly associated with falls (Murray et al., 2010).

The loss of neural connections between the subcortex and the

cortex produced by the oxidative damage to the tissue appears

to be the major reason for these poor outcomes (Morley,

2015).

Prognosis

LA is common in the elderly and the prevalence increases

with age (Grueter and Schulz, 2012). However, very little is

known about the progression and prognosis of this disease,

other than its association with age. Currently, only a few

studies are available. The Austrian Stroke Prevention Study

found that only 17.9% of the study participants had progressive

white matter lesions at 3 years of follow-up (Schmidt et al.,

1999). In other studies, disease progression was found in 27%,

32%, and 28% of the study subjects at 2-, 3-, and 5-year

follow-ups, respectively showing disease progression (Taylor

et al., 2003; Van Dijk et al., 2005). A multicenter LADIS

study reported finding that 74% of a group of independent

elderly patients at baseline had varying degrees of disease

progression within 3 years (Inzitari et al., 2009). The risk

factors for LA progression appear to be the same as those

for the initial onset of disease, namely increasing age and

hypertension. The degree of baseline brain damage load may

be a prognostic factor, and patients with high brain damage

load are more likely to be further impaired (Gouw et al.,

2008). Overall, from the limited research data available, the

main factors associated with LA progression are advancing age,

hypertension, and high baseline lesion load. Clinically, many

studies have shown that disease progression in LA is associated

with cognitive decline (Cai et al., 2015). The correlation of

LA severity with stroke risk and gait impairment remains to

be confirmed (Figure 2).

Conclusion

In summary, the high prevalence and clinical relevance

of LA is gaining increasing attention with advances in brain

imaging technology. Because age is one of the most important

risk factors for this disease, and as the population ages, the

prevalence of LA and the consequent prevalence of dementia,

mobility impairment, and stroke will increase. Given the impact

not only on individuals but also on the health care system, it is

critical to understand the risk factors for LA and its prevention

and treatment strategies.
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