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ABSTRACT: We investigated the effect of cyclic chain topology
on the molecular ordering and thermal stability of comb-shaped
polypeptoid thin films on silicon (Si) substrates. Cyclic and linear
poly(N-decylglycine) (PNDG) bearing long n-decyl side chains
were synthesized by ring-opening polymerization of N-decylgly-
cine-derived N-carboxyanhydrides. When the spin-coated thin films
were subjected to thermal annealing at temperatures above the
melting temperature (T > Tm), the cyclic PNDG films exhibited
significantly enhanced stability against melt-induced dewetting than
the linear counterparts (l-PNDG). When recrystallized at temper-
atures below the crystallization temperature (T < Tc), the homogeneous c-PNDG films exhibit enhanced crystalline ordering relative
to the macroscopically dewetted l-PNDG films. Both cyclic and linear PNDG molecules adopt cis-amide conformations in the
crystalline film, which transition into trans-amide conformations upon melting. A top-down solvent leaching treatment of both l/c-
PNDG films revealed the formation of an irreversibly physisorbed monolayer with similar thickness (ca. 3 nm) on the Si substrate.
The physisorbed monolayers are more disordered relative to the respective thicker crystalline films for both cyclic and linear
PNDGs. Upon heating above Tm, the adsorbed c-PNDG chains adopt trans-amide backbone conformation identical with the free c-
PNDG molecules in the molten film. By contrast, the backbone conformations of l-PNDG chains in the adsorbed layers are notably
different from those of the free chains in the molten film. We postulate that the conformational disparity between the chains in the
physically adsorbed layers versus the free chains in the molten film is an important factor to account for the difference in the thermal
stability of PNDG thin films. These findings highlight the use of cyclic chain topology to suppress the melt-induced dewetting in
polymer thin films.

■ INTRODUCTION

Macromolecules with cyclic topology have attracted growing
interests because of their unique structural and physical
properties relative to the linear analogues. Because of the
absence of chain ends, cyclic polymers exhibit unusual
relaxation behaviors and diffusive motions that deviate from
the classic reptation theory of linear polymers in concentrated
systems.1−8 The closed contour shape of cyclic polymers also
gives rise to more compact coil-like conformations that are
often described as crumpled globules4 or “lattice animal-like”
structures with folded loops in a self-similar manner.5,9 It has
also been shown that the cyclic topology has a significant
impact on the self-organization or melt recrystallization of
polymers, which can lead to a change in melting point,
nucleation rate, crystalline growth kinetics, and crystallinity,
depending on the molecular weight (Mn) and polymer
types.10−14

Recent studies on topological effects of cyclic polymers have
also been focused on thin film systems where polymer chains
are confined to nanometer length scales between interfaces.

For example, Foster and co-workers reported a retarded
surface fluctuation for cyclic polystyrene molten films relative
to the linear counterparts within a low molecular weight
regime.15,16 Torkelson and co-workers have reported a
diminished free surface effect on the glass transition temper-
ature (Tg) of cyclic PS chains, which led to a much smaller Tg

reduction at the free surface region as compared to the linear
PS films.17 Several studies have also been focused on the
influence of cyclic topology on dewetting or instability of thin
polymer films prepared on solid substrates, which often
presents a challenge in the design of thin film devices (e.g.,
conformal coatings, organic photovoltaics, antifouling coatings,
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and biosensors). Albert and co-workers have shown that cyclic
poly(ε-caprolactone) (Mn = 6 kg/mol) thin films have
enhanced stability against melt-induced dewetting relative to
the linear analogues.18 Shi, Jiang, and co-workers investigated
the film instability of linear and cyclic polystyrene (PS) film on
silanized Si substrate and showed that cyclic PS (Mn = 20 kg/
mol) films dewetted more slowly than the linear analogues.19

When the polymers are confined at nanometer scales,
interfaces are known to have significant impacts on the
structure and properties of thin polymer films. Within the past
decade, the research literature regarding interfacial effects have
emphasized a key point: The formation of an irreversible
adsorbed layer at the polymer−substrate interface from the
melt plays a vital role in determining the structure, chain
dynamics, and thermal stability of substrate-supported thin
polymer films.20−31 Depending on the polymer characteristics
and thermal processing history, polymer chains that directly
interact with the substrate surface via physisorption can
possess different chain conformation, adsorbed amount,
surface coverage, and density on the substrate.20,21,24,26−28,30,32

Recent studies have revealed a strong correlation between
autophobic dewetting of thin polymer films and the nano-
architectures/conformations of adsorbed chains at the inter-
face, where the conformational difference between the
adsorbed chains and free chains plays a significant
role.25,29−31 Interestingly, by using the top-down solvent
leaching method (also known as Guiselin’s approach),33 it
has been found that cyclic PS melt forms thicker irreversibly
adsorbed layers on solid substrates than the linear PS melt,
which can dramatically alter the interfacial effect on chain
dynamics and dewetting behaviors of polymer thin films.16

Polypeptoids are structural mimics of polypeptides and have
recently attracted much attention due to their potential for
biotechnological applications (e.g., antifouling coatings, drug/
gene delivery, and biosensor).34−39 They are biodegradable
and minimally cytotoxic toward various human cell lines.39 In
addition, polypeptoids exhibit excellent thermal processability,
enhanced protease stability, and good solubility in common
organic solvents due to the absence of hydrogen bonding and
stereogenic centers along the backbone, in sharp contrast to
polypeptides.34−39 Recent synthetic developments in the
organo-mediated ring-opening polymerization (ROP) of N-
substituted glycine-derived N-carboxyanhydride have enabled
access to well-defined linear and cyclic polypeptoids with
tunable side-chain chemistry.40−42 It has been found that both
linear and cyclic polypeptoids with relatively long n-alkyl side
chains (4 ≤ S ≤ 14, where S is the number of carbon atoms in
the linear n-alkyl group) exhibit two phase transitions with
increasing temperature, i.e., a crystalline phase to a “sanidic”
liquid crystalline (LC) mesophase transition and the LC
mesophase-to-isotropic melt transition.42,43 In the crystalline
phase, the polypeptoids chain adopt a board-like structure
where the backbone is fully extended in an all cis-amide
conformation and is approximately coplanar with the n-alkyl
side chains.43,44 The intermolecular interactions between n-
alkyl side chains likely arise from van der Waals interactions
and packing constraints in the crystalline lattice, whereas the
interactions between all cis-amide backbones may involve
additional contributions, such as CH···O hydrogen bonding or
amide dipolar interactions.43−45 The all-cis-amide backbone
conformation, which is more compact and possesses a higher
degree of ordering than the all-trans-amide conformation,
allows for more favorable intra- and intermolecular interactions

during self-assembly processes.44,45 While significant advances
have been made toward understanding of the structure and
assembly properties of comb-shaped polypeptoids in bulk and
in solution, the understanding of how these polypeptoids
behave under nanoconfinement or near interfaces is limited.
Because of the unique combination of biophysiochemical
properties of polypeptoids, understanding the fundamental
structure−property relationships of polypeptoid thin films is
important toward rational design of thin-film-based biotechno-
logical devices, such as antifouling coatings, biosensors, and
bioelectronics.
In this study, we investigated the effect of cyclic topology on

the structural ordering and thermal stability of thin polymer
films based on comb-shaped crystallizable polypeptoid bearing
long n-alkyl side chains (i.e., poly(N-decylglycine)). Both l-
PNDG and c-PNDG spin-coated films were found to be highly
crystalline with board-shaped molecules stacked side-by-side
normal to the silicon substrate. Interestingly, upon prolonged
thermal annealing at T > Tm, l-PNDG films exhibited a
significant extent of dewetting relative to the analogous c-
PNDG films. A top-down solvent leaching treatment of the l/c-
PNDG films revealed the presence of irreversibly and
physically adsorbed PNDG monolayers at the polymer−solid
interface. While the thicknesses of the monolayers are nearly
identical, cyclic PNDG adsorbed chains show enhanced
molecular ordering relative to the linear adsorbed chains. We
postulate that the difference in the interfacial structure of
adsorbed chains is one important factor that contributes to the
notable discrepancy in the stability of cyclic and linear PNDG
thin films against melt-induced dewetting. Cyclic topology can
be used to suppress the melt-induced dewetting of comb-
shaped polypeptoid films over appreciable time scales while
simultaneous promoting crystalline ordering of the film.

■ RESULTS AND DISCUSSION
Structural Elucidation of Linear and Cyclic PNDG

Thin Films before and after Melt-Induced Dewetting.
Linear and cyclic PNDG thin films (l-PNDG: DPn = 52, Mn =
10.4 kg/mol, PDI = 1.14; c-PNDG: DPn = 50, Mn = 10.2 kg/
mol, PDI = 1.11 (Table S1 and Figures S1−S3)) with different
thicknesses were spin-coated onto HF-treated Si substrates
(hereafter denoted as Si substrates) and then subjected to
thermal annealing at T = 200 °C for prolonged time under
vacuum. (Note: the thermal annealing temperature is
significantly higher than the isotropic melting transition
temperature of the bulk polymers (Tm ≈ 174 °C for l-
PNDG and Tm ≈ 169 °C for c-PNDG).42) Figure 1 shows
representative optical microscopic (OM) images of 48 and 111
nm thick thin films of linear and cyclic PNDG (hereafter
denoted as l/c-PNDG films) on Si substrates after annealed at
T = 200 °C for 15 h. As seen from the figure, all the l-PNDG
thin films broke up into islands or droplet-based patterns,
which is a clear indication of dewetting. It should be noted that
the original as-cast films were homogeneous, and no sign of
dewetting was observed (Figure S5), which suggests that the
dewetting process occurred during the thermal annealing at T
≫ Tm. By contrast, c-PNDG thin films with the same
thicknesses remain relatively homogeneous without any
notable formation of islands or droplets, indicating enhanced
film stability under identical thermal annealing conditions. The
differences in the thermal stability and homogeneity of the
thermally annealed l/c-PNDG films were further revealed by
X-ray reflectivity (XRR) analysis. Figure 2 shows the XRR
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curves plotted as a function of the scattering vector (qz) in the
direction perpendicular to the surface. The XRR curve for the
thermally annealed c-PNDG film exhibit well-defined Kiessig
fringes with a periodicity of Δqz = 0.013 Å−1, in stark contrast
to that of the l-PNDG film where the Kiessig fringes are
notably absent. In addition, a sharp Bragg reflection at qz =
0.258 Å−1 corresponding to a d-spacing of 2.47 nm (via d =
2π/q) was observed for both thermally annealed linear and
cyclic PNDG films. This spacing is consistent with the distance
between adjacent backbones of PNDG polymers that are
separated by the long n-decyl side chains along the out-of-
plane direction in the crystalline state (Figure S6).42−44,46−49

The XRR data for the annealed c-PNDG film with qz ≤ 0.22
Å−1 were fitted by using a two-layer model with a Si substrate
and a polypeptoid layer. The best fit (the black solid line) to
the XRR profile of the c-PNDG film was calculated based on
the electron density profile above the Si substrate, as shown in
the inset of Figure 2. It should be noted that the electron
density (ρe) of the PNDG film is estimated to be 0.32 e·Å−3

based on the bulk density of PNDG (0.95 g/cm3)48,49 and was
fixed during the fitting. The best fit to the data yields a
thickness of 48.1 ± 0.1 nm and a surface root-mean-square
(RMS) roughness of 0.85 ± 0.05 nm for the c-PNDG film. As a
result, we conclude that the thermally annealed c-PNDG film is
relatively homogeneous and retains the bulk density on the Si
substrate.
In situ GIWAXD was used to investigate the structure and

phase transition of l/c-PNDG thin films on the Si substrate.
Figure 3 shows the representative two-dimensional (2D)
GIWAXD profiles of the 48 nm thick l/c-PNDG thin films
measured before, during, and after thermal annealing at T =
200 °C. (Note: the 2D GIWAXD patterns before and after the
thermal annealing were collected at T = 25 °C.) As seen in
Figure 3a,d, prior to thermal annealing, both the as-cast linear
and cyclic PNDG films show arc-shaped primary (001),
secondary (002), and tertiary (003) peaks at q = 0.254, 0.508,
and 0.762 Å−1 in the out-of-plane (qz) direction, respectively
(Figure 4a). The primary (001) reflection gives a d-spacing of
2.47 nm, which corresponds to the distance between adjacent
PNDG backbones separated by the long n-decyl side chains
along the crystallographic c-axis in the crystalline
state.42−44,46−49 Meanwhile, a broad ring-like diffraction is
observed near q = 1.4 Å−1 with a notably higher intensity in the
in-plane (qxy) than the out-of-plane (qz) direction for both l/c-
PNDG as-cast films (Figure 4a,b). This diffraction corresponds
to the face-to-face packing of PNDG backbones, i.e., the (100)
packing with a d-spacing of 0.45 nm along the crystallographic
a-axis.44 These crystal dimensions along a- and c-axes suggest
that the l/c-PNDG molecules in the as-cast films have adopted
the board-like conformations with a fully extended cis-amide
backbone (Figure 5a) being nearly coplanar with the n-decyl
side chains, similar to those reported for the comb-shaped
polypeptoids in the bulk crystalline state.44 The board-like l/c-
PNDG molecules are preferentially stacked side-by-side in the
substrate-normal direction and face-to-face in the substrate-
parallel direction, which is the so-called “edge-on” crystalline
orientation (Figure 5b). The predominant edge-on crystalline
orientation is likely attributed to the preferential segregation of
long n-decyl side chains at both the free surface and polymer−
solid interface to lower the interfacial energy.
To further elucidate the effect of chain topology on the

molecular ordering of PNDGs in the films, the full width at
half-maximum (β) of the (001) reflection in the qz direction
obtained by fitting to a Gaussian function was corrected for
instrumental resolution and used to estimate the crystalline
size (or the structural coherence, L) of l/c-PNDG crystals from
the Scherrer equation L = (0.9λ)/(β cos θ), where 0.9 is the
Scherrer constant, θ is the scattering angle, and λ is the X-ray
wavelength. The L001 values were found to be 11.3 and 9.4 nm
for the c-PNDG and l-PNDG as-cast films, respectively,
indicating an enhanced molecular ordering of cyclic PNDG
relative to the linear PNDG molecules in the substrate-normal
direction within the 48 nm thick films prior to any thermal
treatment. Interestingly, the broad (100) peak in the qxy
direction is less intense for the c-PNDG as-cast film relative
to the l-PNDG film under the same X-ray exposure time,
suggesting a somewhat diminished ordering for the face-to-face
stacking of the board-like PNDG molecules in the substrate-
parallel direction for the former film than the latter.
Upon heating the samples at T = 200 °C, which is far above

the bulk melting temperatures of l/c-PNDGs,42 only two broad
isotropic ring-like reflections located at q = 0.33 Å−1 and q =

Figure 1. (a) Representative optical microscopic (OM) images of the
48 nm thick and 111 nm thick l-PNDG and c-PNDG films prepared
on Si substrates after thermally annealed at 200 °C for 15 h.

Figure 2. XRR curves of the 48 nm thick c-PNDG (red circles) and l-
PNDG (blue triangles) films prepared on Si substrates after thermally
annealed at 200 °C for 15 h. The solid black line corresponds to the
best-fits of the electron density (ρe) profile against the distance (z)
from the Si surface shown in the inset.
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1.29 Å−1 are discernible in the GIWAXD profiles (Figures3b,e
and 4c), corresponding to d-spacings of 1.90 and 0.49 nm,
respectively. The azimuthally isotropic scattering patterns
indicate the lack of preferred molecular orientation inside the
molten films. In addition, the azimuthally integrated intensities
of the ring-like reflections measured in situ at T = 200 °C
during thermal annealing are much weaker than those
measured at T = 25 °C (i.e., both before and after annealing)
(Figure 4). The two d-spacings obtained at T = 200 °C clearly
deviate from the (001) and (100) d-spacings of the crystalline
PNDGs with the cis-amide backbone conformation. Interest-
ingly, they are consistent with the PNDG molecules adopting a
board-shape conformation with a trans-amide backbone
(Figure 5a) being nearly coplanar with the n-decyl side chains,
as predicted by molecular dynamics simulations.44 Hence, the
melting of l/c-PNDG films correspond to a structural
transition from a crystalline packing of board-shape molecules
with cis-amide backbone conformations to randomly oriented
board-shape molecules with trans-amide backbone conforma-

tion (Figure 5b). The absence of the higher order diffraction
peaks indicates the lack of long-range molecular ordering of the
board-shape molecules at T > Tm. It is interesting that the
linear and cyclic PNDGs maintain a board-shape conformation
in both the crystalline and molten state. This is presumably
due to the strong and unique backbone−backbone interaction
present in polypeptoid molecules.
The recrystallization of l/c-PNDG thin films was triggered

upon cooling from the isotropic melt, evidenced by the
emergence of sharp diffraction peaks in the GIWAXS profiles
(Figures 3c,f and 4d,e). Separate in situ temperature-dependent
GIWAXD measurements (Figure S7) have shown that the
crystallization temperatures (Tc) of l/c-PNDG thin films are
nearly identical (Tc ≅ 140 °C), which is consistent with the
crystallization temperatures of bulk l/c-PNDGs determined by
DSC analysis.42 At room temperature, a series of well-defined
diffraction arcs corresponding to the side-by-side packing of
board-like PNDG molecules (00l) were observed in the qz
direction for both linear and cyclic PNDG films (Figures 3c,f

Figure 3. 2D GIWAXD images of the 48 nm thick l-PNDG (top row) and c-PNDG (bottom row) films prepared on Si before, during, and after the
thermal annealing process. The out-of-plane (qz) and in-plane (qxy) directions are indicated by arrows.

Figure 4. (a, b) One dimensional (1D) GIWAXD profiles of the as-cast l/c-PNDG films (48 nm in thickness) along (a) qz and (b) qxy directions
measured at T = 25 °C before annealing. (c) 1D GIWAXD profiles of the l/c-PNDG films measured at T = 200 °C during annealing, which were
obtained by azimuthally integrating of the corresponding 2D images (Figure 3b,e) from 0 to 90° azimuthal angle with respect to the qxy-axis. The
corresponding 1D GIWAXD along the qz direction is shown in the inset. (d, e) 1D GIWAXD profiles of the annealed l/c-PNDG thin films along
the (d) qz and (e) qxy directions after being cooled to T = 25 °C. Note that c-PNDG and l-PNDG are shown in red and blue dots, respectively.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c01205
Macromolecules 2020, 53, 7601−7612

7604

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.0c01205/suppl_file/ma0c01205_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?fig=fig4&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01205?ref=pdf


and 4d), whereas the (100) reflection corresponding to the
face-to-face packing of PNDG molecules appeared as streaks in
the qxy direction (Figures 3c,f and 4e). The (001) and (100) d-
spacings of the recrystallized l/c-PNDG films obtained by
GIWAXD were determined to be d001 = 2.45 nm and d100 =
0.45 nm, respectively, indicating the l/c-PNDGs have
readopted the cis-amide backbone conformation on the Si
substrate upon cooling below Tc (Figure 5b). The recrystal-
lized l/c-PNDG films have clearly restored “edge-on”
crystalline orientation with significantly enhanced anisotropic
molecular ordering relative to their respective as-cast films. In
addition to the streak-like (100) peak located at qxy = 1.4 Å−1, a
broad off-axis reflection near q = 1.4 Å−1 is also discernible at
∼30° off the qxy-axis, which is attributed to the overlapped
(101) and (102) reflections in the nonorthogonal crystalline
lattice (Figure S6).44 The appearance of the off-axis reflection
is consistent with enhanced molecular ordering in the
recrystallized PDNG films relative to the as-cast films. It
should be noted that unlike shorter PNDG segments or
oligomers (i.e., DPn ≤ 20), which often show distinct higher
order (10l) reflections,43,44,50 the (10l) peaks in both 52-mer l-
PNDG and 50-mer c-PNDG films are poorly resolved. Similar
findings have also been reported in relatively high molecular
weight PNDG homopolymers and block copolymers.42,50 We
attribute this to the chain folding of longer PNDG molecules
in the crystalline state, resulting in diminished long-range
ordering along the crystallographic a-axis relative to the
oligomeric counterparts.
The structural coherence L001 in the qz direction has been

calculated via the Scherrer equation (Figure 4d). The L001 of
the recrystallized c-PNDG film (16.8 nm) was found to be
larger than that of the recrystallized l-PNDG film (15.9 nm).
Consistently, the broad (100) peak in the qxy direction was also
found to be much more intense for the recrystallized c-PNDG
film than the linear counterpart (Figure 4e). In addition, the
structural coherence in both substrate-normal and substrate-

parallel directions is significantly higher in recrystallized films
than their respective as-cast films. These combined results
indicate that recrystallization under the same supercooling
condition has resulted in the formation of linear and cyclic
PNDG films with enhanced anisotropic molecular ordering, in
spite of the macroscopic dewetting for the linear PNDG film;
the molecular ordering in the recrystallized cyclic PNDG film
is more long ranged relative to the linear counterpart in both
the substrate-normal and substrate-parallel directions.
It is clear that with same film thickness, thermal annealing

condition, and nearly identical chain length (or molecular
weight) cyclic PNDG films are more stable against dewetting
than the linear counterparts. Meanwhile, the difference in the
chain topology did not alter the preferred molecular
conformation and orientation of PNDGs in the crystalline or
molten films.

Structural Elucidation of Physisorbed l/c-PNDG
Layers at the Substrate−Polymer Interface. Thermal
annealing of the spin-coated polymer films (including both
amorphous and semicrystalline polymers) at T > Tg or Tm is
known to facilitate the formation of irreversibly adsorbed
polymer nanolayers on solid surfaces via physisorption where
noncovalent interaction is involved.20−25,27,28,32,51−53 AFM
analysis of the dewetted region of the l-PNDG film on the Si
(Figure S8) revealed that the dewetted region is not “empty”
but covered by a thin “wetting polymer layer” on the Si
substrate. This suggests the occurrence of autophobic
dewetting, where a layer of polymers covalently or non-
covalently attached on a solid substrate “thermodynamically
repels” the nongrafted but otherwise identical molecules.54−57

Several previous studies have shown that the formation of an
irreversible adsorbed layer and its local structural evolution at
the interface are responsible for the thermal stability (or
wettability) of supported thin polymer films.19,25,29,31,58 The
unfavorable entropic interaction between the free chains and
the strongly adsorbed chains (also known as the “flattened
chains”) is believed to be the driving force for the occurrence
of autophobic dewetting,25,29,56,59 resulting in no interpenetra-
tion of chains at the free polymer/adsorbed polymer
interface.25,53 By contrast, when the adsorbed chains are
loosely attached and allow interpenetration with free chains at
the interface, they then act as “connectors” that can effectively
promote interfacial adhesion and prevent dewetting of the
polymer film from the substrate.25,31,53,60,61

Inspired by these earlier reports, we further investigated the
structure of adsorbed PNDG polymers at the substrate
interface using a top-down solvent leaching method previously
developed by Guiselin.33 After being preannealed at T = 200
°C for 15 h, both the dewetted l-PNDG and the relatively
stable c-PNDG films were subjected to solvent leaching with
chloroform, a good solvent for both l/c-PNDGs, to remove the
unadsorbed chains and unveil the interfacially adsorbed chains.
The detailed solvent leaching process is summarized in the
Supporting Information. Figure 6a shows the XRR profiles of
the l-PNDG and c-PNDG residual layers after leaching with
chloroform to remove the unadsorbed chains. The XRR curves
for both l-PNDG and c-PNDG residual layers showed well-
defined interference fringes with the first two minima located
at almost the same position near qz = 0.10 Å−1 and qz = 0.32
Å−1, indicating the presence of thin layers with similar
thickness on the Si substrates. The lengths of the first
oscillation periods, i.e., Δqz ≅ 0.22 Å−1, give an approximated
thickness of ∼2.9 nm via d = 2π/Δqz. However, we found that

Figure 5. (a) Schematics showing the all trans- and cis-amide
backbone conformations of l/c-PNDG (R = n-decyl group). (b)
Schematic illustration of the change in molecular packing of l/c-
PNDG films upon heating/cooling. Possible chain folding and cyclic
topology were omitted for clarity.
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the Δqz values of the other oscillation periods in the XRR
curve are different, indicating the presence of nonuniform
electron density along the surface-normal direction in the
residual layer, which will be further discussed (vide inf ra,
Figures 6c and 8).
To determine the chemical composition of these residual

layers on Si, we performed X-ray photoelectron spectroscopy
(XPS) measurements, and the results are summarized in Figure
S9. In the XPS scans, the prominent peak with a binding
energy of 284.7 eV is identifiable with the C 1s peak typically
found in the aliphatic carbons in the n-decyl side chains (as
well as possible hydrocarbon contaminations from the

sample).62 An additional shoulder peak corresponding to the
carbons of the amide (C(O)N) groups in the PNDG
backbone with a binding energy near 288.1 is also
discernible.62,63 In addition, a strong N 1s peak with a binding
energy of 400.0 eV that corresponds to the nitrogen atoms of
the amide group in the PNDG backbone was also observed in
the spectra of the l-PNDG and c-PNDG residual layers,62

which was absent in the spectra of the bare Si substrates.
Hence, XPS data provide compelling evidence that the residual
layers are composed of adsorbed PNDG molecules, which
cannot be removed from the substrate during the chloroform
leaching.
Figure 7 shows the GIWAXD results of the nanometer thick

l-PNDG and c-PNDG residual layers, that is, irreversibly
adsorbed layers. At 25 °C, both l-PNDG and c-PNDG
adsorbed layers did not exhibit any signals associated with
the (001), (002), and (003) diffractions along qxy (Figure 7e)
or other directions (Figure S10), indicating the absence of
ordered side-by-side packing of PNDG molecules in the
adsorbed layers, in sharp contrast to their respective thin films.
The only discernible peak is the streak-like (100) reflections
located near qxy = 1.4 Å−1 for both l-PNDG and c-PNDG
adsorbed layers, as shown in the horizontal line cuts of the 2D
GIWAXD patterns along the qxy direction (Figure 7e). This
indicates the adsorbed l/c-PNDGs still adopt a board-shape
molecular geometry with a cis-amide conformation and
maintain a face-to-face molecular packing in the substrate-
parallel direction (i.e., an edge-on orientation), which is
identical with the crystalline packing observed in their
respective thin film. With the same X-ray exposure time, the
(100) peak for the c-PNDG adsorbed layer is slightly sharper
relative to that of the l-PNDG adsorbed layer (Figure 7a,b,e),
suggesting a more ordered face-to-face stacking of the
adsorbed chains in the substrate-parallel direction for the
former than the latter. As the l/c-PNDG adsorbed layers are
only of ca. 3 nm thick, we conclude that the adsorbed layers

Figure 6. (a, b) XRR curves of the c-PNDG (red circles) and l-PNDG
(blue triangles) residual layers (i.e., irreversibly adsorbed layers)
measured at (a) 25 °C and (b) 200 °C in situ, respectively. The solid
black line corresponds to the best fits to the data based on the
electron density (ρe) profile against the distance (z) from the Si
surface shown in (c, d). The dotted line in (b) corresponds to the ρe
value of bulk PNDG with a density of 0.95 g/cm3.

Figure 7. (a−d) 2D GIWAXD images of the (a, c) c-PNDG and (b, d) l-PNDG adsorbed layers on a Si substrate measured at 25 and 200 °C. (e, f)
Line-cut GIWAXD profiles of the c-PNDG (red dots) and l-PNDG (blue dots) adsorbed layers along the qxy direction measured at (e) 25 and (f)
200 °C. Note that the 1D GIWAXD intensity data have been shifted vertically for clarity. The (100) peak position is indicated by the red arrows
shown in (a) and (b). The red dashed line in (c) is to guide the eye. In (c), the reflection at q = 0.33 Å−1 is indicated by the black arrows.
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are composed of a single molecular layer of l/c-PNDGs with an
“edge-on” monolayer lamellae on the Si surface.
On the basis of the structural ordering and orientation of the

l/c-PNDG adsorbed chains, we adopt a multislab model for the
electron density profile (Figure 8) to fit the XRR curves of the

adsorbed layers (Figure 6a) measured at 25 °C. Given that the
cis-amide backbone and n-decyl side chains possess different
electron densities (ρe), a four-layer model that composed of a
bottom Si substrate and three layers on top: a middle layer of
cis-amide backbone units sandwiched by two layers of n-decyl
side chains, was used to fit the data (Figure 8). The details of
the four-layer model fitting are described in the Supporting
Information. In brief, the free parameters used in the best fits
of the XRR data (Figure 6a) are the ρe and thickness of the
inner n-decyl layer (h1) and the interfacial roughness at the
multiple interfaces, i.e., silicon/inner n-decyl layer interface
(σSi), inner n-decyl layer/cis-amide backbone interface (σ1), cis-
amide backbone/outer n-decyl layer interface (σ2), and outer
n-decyl layer/air interface (σ3). The parameters obtained from
the best fits to the XRR data are tabulated in Table 1. We
found the total thicknesses of the l-PNDG (h1 + h2 + h3 = 30.7
± 1.0 Å) and c-PNDG adsorbed layers (32.3 ± 1.0 Å) to be
comparable with only a 1.6 Å difference. Based on the ρe
profiles shown in Figure 6c, the ρe values of the inner region
for l-PNDG and c-PNDG adsorbed layers were about 12%

lower than the theoretical ρe of the n-decyl side chains with the
cis-amide polypeptoid backbone.44 This indicates that the inner
n-decyl chains in both l-PNDG and c-PNDG adsorbed layers
are less compact relative to those in the crystalline bulk or the
outer n-decyl chains in the monolayers. There is also a clear
difference in the interfacial roughness between the l-PNDG
and c-PNDG adsorbed layers (Figure 6c): the c-PNDG
adsorbed layer has slightly lower roughness at the silicon/
inner n-decyl layer interface (σSi = 4.6 ± 0.5 Å), but nearly 2
times higher roughness at the free surface (σ3 = 4.5 ± 0.5 Å)
than the l-PNDG counterpart (σSi = 5.7 ± 0.6 Å, σ3 = 2.3 ± 0.2
Å). This finding is in good agreement with the AFM results
(Figure 9). On the basis of AFM imaging analysis, we found

that the surface RMS roughness of the c-PNDG adsorbed layer
(∼4.5 Å) is much larger than that of the l-PNDG counterpart
(∼2.9 Å), in good agreement with the XRR results.
Interconnected fibrillar nanostructures for both l-PNDG and
c-PNDG adsorbed layers are also discernible from the
corresponding phase images, which are likely attributed to
the molecular packing of adsorbed chains at the interface. The
nanofibrils in c-PNDG adsorbed layer are thicker and longer,
suggesting higher molecular ordering of c-PNDG adsorbed
chains along in-plane direction than linear ones, which is
consistent with the GIWAXD results.
Interestingly, when the monolayer is heated at T > Tm, the in

situ GIWAXD result for the c-PNDG adsorbed monolayer

Figure 8. Schematic representation of the molecular structure of l/c-
PNDG with a cis-amide backbone conformation. The theoretical
dimensions and electron densities of the backbone and side-chain
regions are illustrated. The four-layer model used to fit the XRR
curves of the adsorbed monolayers measured at 25 °C is shown in the
inset.

Table 1. XRR Fitting Parametersa for l/c-PNDG Adsorbed Monolayers at 25 and 200 °C

T (°C) polymer σSi (Å) ρe,1 (e Å
−3) h1 (Å) σ1 (Å) ρe,2 (e Å

−3) h2 (Å) σ2 (Å) ρe,3 (e Å
−3) h3 (Å) σ3 (Å)

25 l-PNDG 5.7 0.22 16.4 5.9 0.42 4.4 3.5 0.30 9.9 2.3
c-PNDG 4.6 0.26 18.0 4.6 0.42 4.4 3.8 0.30 9.9 4.5

200 l-PNDG 3.0 0.29 38.4 9.9
c-PNDG 3.5 0.31 38.7 12.8

aσSi: silicon/inner n-decyl layer interface (σSi). ρe,1, ρe,2, and ρe,3 are the electron densities of the first, second, and third layers from the Si surface,
respectively. h1, h2, and h3 are the thicknesses of the first, second, and third layers from the Si surface, respectively. σ1, σ2, and σ3 are the surface
RMS roughnesses of the first, second, and third layers from the Si surface, respectively. Note that ρe,2, ρe,3, h2, and h3 were fixed to the theoretical
dimension and electron density of the backbone and side chains derived from the previous report.44 Note that the error values of h1, h2, and h3 are
±1.0 Å. The error values of σSi, σ1, σ2, and σ3 are ∼10% of the σ values. The error values of ρe,1, ρe,2, and ρe,3 are ∼10% of the ρe values.

Figure 9. Representative AFM height images of the (a) l-PNDG and
(b) c-PNDG adsorbed layers. The corresponding phase images are
shown in (c) and (d), respectively. The scales of height and phase
images are ±1 nm and ±2°, respectively. The scan size of all images is
1 μm × 1 μm.
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exhibits two ring-like reflections at q = 0.33 and 1.29 Å−1 at
200 °C (Figure 7c,f and Figure S10), indicating the adsorbed
chains of c-PNDG adopt the extended trans-amide backbone
conformations with the board-like molecules randomly
oriented inside the monolayer, similar to the conformational
state observed for the 48 nm thick molten films. By contrast,
for the l-PNDG adsorbed monolayer at 200 °C, only a ring-like
reflection located at q ∼ 1.58 Å−1 is discernible, which
corresponds to a d-spacing of 4.0 Å. This d-spacing does not
match any theoretical molecular dimension of PNDG in
extended chain conformations (trans or cis-amide), indicating
the l-PNDG adsorbed chains may be trapped in an out-of-
equilibrium state with a distorted chain conformation. We
postulate that the difference in the molecular ordering in the
molten state of the adsorbed layers is attributed to the
topological difference of the polymers: cyclic topology reduces
the conformational freedom of the polymer chains, thus
favoring more ordered backbone conformation and molecular
packing at the solid−polymer interface. Upon irreversible
adsorption, it is likely that the cyclic chains adopt mutually
threaded “lattice animal-like” structures with folded loops in
two dimensions at the solid interface,5,9 thereby maximizing
the contacts between the n-decyl side chains and the Si surface
and maintaining certain compactness in the substrate-parallel
direction.
Upon heating to 200 °C, drastic changes in the XRR curves

of both adsorbed l/c-PNDG monolayers were observed
(Figure 6b). The substantial smearing of the interference
fringes of the XRR curves is attributed to the significant
roughening of the monolayers along with an apparent loss of ρe
contrast between PNDG backbone and side chains. Hence, the
XRR curves at 200 °C were fitted by using a two-layer model
with a Si substrate and a single polypeptoid layer. The electron
density profiles obtained from the best fits to the data are
shown in Figure 6d. The fitting parameters are tabulated in
Table 1. Both cyclic and linear PNDG adsorbed layers were
found to exhibit a similar ∼34% increase in the overall
thickness along with a significant increase in the surface
roughness upon heating to 200 °C. Meanwhile, the overall ρe
of the adsorbed layers is reduced. These drastic changes in the
electron density profiles near the Si substrate are attributed to
the phase transitions of adsorbed chains upon heating at T >
Tm. As mentioned, the 2D GIWAXD results of both l-PNDG
and c-PNDG adsorbed layers at 200 °C (Figure 7) have
revealed isotropic diffraction patterns, indicating the absence of
any preferential molecular orientation on the substrate surface.
These combined results suggest that upon heating to 200 °C
(above Tm) the l-PNDG and c-PNDG adsorbed monolayers
transition from an ordered (crystalline) state to a disordered
molten (amorphous) state, which is accompanied by an
increase in thickness (or free volume) and decrease in average
density.
It should be mentioned that 15 h annealing at 200 °C is

sufficient to reach equilibrium of chain adsorption for both l/c-
PNDGs on the Si substrate. By using the top-down solvent
leaching method, we conducted independent adsorption
studies of l/c-PNDGs on Si substrates by determining the
growth of residual adsorbed layers as a function of
preannealing time (5 min−50 h) at 200 °C. The thickness
of the l/c-PNDG adsorbed layers was found to increase rapidly
at the early stage of adsorption and reached a plateau
thicknesses after 2−4 h of annealing at 200 °C (Figure S11).
There is no significant difference in the adsorption kinetics

between cyclic and linear chains, and the overall trend of
adsorption process is similar to the findings on other polymer
melt systems.20,22,23,32,51

Molecular Origin for the PNDG Film Stability against
Melt-Induced Dewetting. At temperatures above Tm, l-
PNDG films undergo autophobic dewetting to a much greater
extent than the c-PNDG films, resulting in the formation of
macroscopic droplets and islands for the linear PNDG film.
What remains unclear is why the molecular topology (cyclic vs
linear) has such a significant impact on the relative stability of
comb-shaped polypeptoid thin films against melt-induced
dewetting. From the liquid contact angle measurement (Figure
S12), it was found that both adsorbed l/c-PNDG monolayers
(ca. 3 nm in thickness) exhibit the same surface tensions as
those in 48 nm thick films (Figure S4), indicating that the
difference in the autophobicity between linear and cyclic
PNDG adsorbed chains is not due to enthalpic contributions
(or macroscopic interfacial tension differences).
A recent study by Wang et al. investigated the film instability

of linear and cyclic polystyrene (PS) film on silanized Si
substrate and showed that cyclic PS (Mn = 20 kg/mol) films
dewetted more slowly than the linear analogues.19 It was found
that the irreversibly adsorbed layers formed by cyclic PS were
more than 30% thicker than those formed by linear chains,
which was believed to be the key for the enhanced thermal
stability of cyclic PS films.19 By using Si as substrate, Foster et
al. showed that the adsorbed layer is 70% thicker for cyclic PS
chains than for the linear analogues.16 An early theoretical
study of a weakly attractive polymer−substrate system has also
predicted a greater amount of adsorption of cyclic chains to the
substrate than linear chains.64 Because the adsorption process
of a polymer chain toward a solid surface is enthalpically driven
and entropically unfavored, adsorption of cyclic polymers is
expected to cause less configurational entropy penalty due to
their topological constraints than that of the linear
polymers,64−66 while the enthalpic gains for both cyclic and
linear chains are the same due to identical segmental structure.
Consequently, if the cyclic chain topology can confer a greater
extent of polymer adsorption on the substrate resulting in
thicker adsorbed layers, it may amplify the substrate effect (or
the impact of adsorbed chains) on the molecular motion or the
surface fluctuation of a polymer film via long-range
perturbation,15,16,20,21,27,67−69 thereby suppressing the dewet-
ting.
In contrast to these early reports, we have found the

thickness and electron density profiles of the adsorbed layers
for cyclic and linear PNDG films to be nearly identical. As a
result, we postulate that the relative thermal stability of cyclic
and linear PNDG films mainly arises from the structural
disparity of their adsorbed layers and not from their
thicknesses/total adsorbed amounts on the substrate. At 25
°C, the c-PNDG adsorbed monolayer shows higher surface
roughness and better in-plane molecular ordering than the l-
PNDG monolayer. Upon heating at T = 200 °C above the
melting temperature (Tm), both cyclic and linear PNDG
adsorbed layers become thicker and less dense as they lose
orientational ordering. Interestingly, c-PNDG adsorbed chains
at 200 °C adopt the same board-shape molecular geometry
with the trans-amide backbone conformation as the free c-
PNDG chains in the molten film. By contrast, the
conformation of l-PNDG adsorbed chains at 200 °C are
more disordered and notably different from the board-shape
conformation of the free l-PNDG chains with the trans-amide
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backbone in the molten film. As a result, the disordered l-
PNDG adsorbed chains “thermodynamically repel” the
neighboring unadsorbed chains to minimize the unfavorable
contacts and limit interpenetration of unadsorbed chains at the
free polymer/adsorbed polymer interface, eventually resulting
in autophobic dewetting of the l-PNDG film. We reason that
the conformational disparity between the linear PNDG
molecules in the adsorbed layer and the molten film provides
the thermodynamic driving force for the autophobic dewetting
for the linear PNDG films. In the case of c-PNDG film, the
continuity in the chain conformation from the adsorbed
monolayer to the neighboring polymer melt plays an active
role in stabilizing the interface and suppressing the autophobic
dewetting.
One aspect that remains unclear is how the c-PNDG free

chains in the film interact with the adsorbed chains under the
cyclic topological constraints and whether there is any
interdiffusion at the interface. According to previous neutron
reflectivity studies on PS and PEO systems, the adsorbed
chains show interdiffusion with the chemically identical free
chains in the melt up to a certain extent only if the chains are
loosely attached at the interface.31,53 For strongly adsorbed
chains with a flattened conformation, no interdiffusion has
been observed at the free polymer-adsorbed polymer inter-
face.31,53 Considering the lack of chain ends and the presence
of long n-decyl side chains in polypeptoids, we speculate that
the interdiffusion between free chains and adsorbed chains of
comb-shaped c-PNDG would be more restricted relative to
conventional coil-like polymers without bulky side chains.
In addition to structural factors, we shall discuss the effect of

polymer mobility which may also play a role in determining the
film stability and dewetting process. Because of the unusual
conformational properties conferred by the absence of free
chain ends, the molecular motion of a cyclic polymer often
behaves differently from its linear analogue.8 Apart from the
topological effect on the dynamical properties of bulk polymer
melts, the molecular motion or the mobility gradient of a
confined polymer film can be strongly influenced by the
nanoscale structure and dynamics of adsorbed chains at the
polymer−solid interface.15,16,20,21,27,67−69 Using X-ray photon
correlation spectroscopy, Foster et al. observed slower surface
fluctuations of cyclic PS as compared to linear PS analogues,
which were attributed to the bulk Tg differences and the
interplay between the free surface effect and immobilized
adsorbed layer effect.15,16 Torkelson et al. have reported a
weaker perturbation of the free surface of cyclic PS thin film
relative to the linear PS counterpart by Tg measurement of thin
films with varying thickness.17 The slower surface fluctuations
of cyclic PS have been linked to the irreversibly adsorbed of
chains at the substrate interface, where a 70% thicker adsorbed
layer was found for cyclic PS chains as compared to linear
analogues.16 If the c-PNDG melts in a confined thin film
geometry have slower molecular mobility relative to that of l-
PNDG, we may expect a suppression in the autophobic
dewetting process. A full investigation on dynamical properties
of l/c-PNDG films will be the subject of future experiments.

■ CONCLUSIONS
We investigated the thermal properties and structural ordering
of comb-shaped polypeptoid thin films with different chain
topologies (linear vs cyclic) on a Si substrate. When thermally
annealed at T > Tm, both l-PNDG and c-PNDG chains adopt a
board-like geometry with mainly trans-amide backbone

conformation and are randomly oriented inside the film.
When cooled below the crystallization temperature (T < Tc),
the l/c-PNDGs maintained a board-shape geometry with
predominantly cis-amide backbone conformation and pack into
highly ordered lamellar structure with the crystallographic c-
axis preferentially aligned in the substrate-normal direction.
Cyclic PNDG films were found to exhibit significantly
enhanced stability against melt-induced dewetting and
improved crystalline ordering relative to the linear PNDG
films which ruptured into macroscopic droplets during the
thermal annealing process.
Investigation of the interfacial structure at the polymer−Si

interface has revealed the formation of physically adsorbed
monolayer at the Si surface for both l/c-PNDG films. While
both l/c-PNDG physisorbed chains exhibited a face-to-face
molecular packing in the direction parallel to the Si surface at
room temperature (T < Tc), the c-PNDG monolayer show
thicker fibrillar structures and higher surface roughness than
the linear counterpart. When annealed at T > Tm, c-PNDG
adsorbed chains can still undergo a cis-to-trans amide backbone
conformational transition similar to that observed in the bulk
film. This ensures a conformational continuity between the
adsorbed chains and free chains in the bulk molten film, thus
inhibiting the dewetting of c-PNDG films. By contrast, the
conformation of l-PNDG adsorbed chains was found to differ
from that of the free chains in the molten film. The
conformational difference results in unfavorable interaction
between the chemically identical molecules in the adsorbed
layer and bulk film, thus contributing to pronounced melt-
induced dewetting in l-PNDG film. This study highlights the
use of cyclic chain topology to suppress the melt-induced
dewetting and enhance molecular ordering of crystallizable
polymer thin films. The formation of comb-shaped poly-
peptoid monolayers that irreversibly physisorbed at the solid
surface with a preferred edge-on lamellae orientation may also
serve as a simple and versatile approach for a broad spectrum
of surface modification/functionalization purposes, such as
surface sensing and antifouling coatings.
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(14) Schal̈er, K.; Ostas, E.; Schröter, K.; Thurn-Albrecht, T.; Binder,
W. H.; Saalwac̈hter, K. Influence of chain topology on polymer
dynamics and crystallization. Investigation of linear and cyclic poly(ε-
caprolactone)s by 1H solid-state NMR methods. Macromolecules
2011, 44 (8), 2743−2754.
(15) Wang, S.-F.; Jiang, Z.; Narayanan, S.; Foster, M. D. Dynamics
of surface fluctuations on macrocyclic melts. Macromolecules 2012, 45
(15), 6210−6219.
(16) He, Q.; Narayanan, S.; Wu, D. T.; Foster, M. D. Confinement
effects with molten thin cyclic polystyrene films. ACS Macro Lett.
2016, 5 (9), 999−1003.
(17) Zhang, L.; Elupula, R.; Grayson, S. M.; Torkelson, J. M. Major
impact of cyclic chain topology on the Tg-confinement effect of
supported thin films of polystyrene. Macromolecules 2016, 49 (1),
257−268.
(18) Kelly, G. M.; Haque, F. M.; Grayson, S. M.; Albert, J. N. L.
Suppression of melt-induced dewetting in cyclic poly(ε-caprolactone)
thin films. Macromolecules 2017, 50 (24), 9852−9856.
(19) Wang, L.; Xu, L.; Liu, B.; Shi, T.; Jiang, S.; An, L. The influence
of polymer architectures on the dewetting behavior of thin polymer
films: From linear chains to ring chains. Soft Matter 2017, 13 (17),
3091−3098.
(20) Fujii, Y.; Yang, Z. H.; Leach, J.; Atarashi, H.; Tanaka, K.; Tsui,
O. K. C. Affinity of polystyrene films to hydrogen-passivated silicon
and its relevance to the t-g of the films. Macromolecules 2009, 42 (19),
7418−7422.
(21) Napolitano, S.; Wubbenhorst, M. The lifetime of the deviations
from bulk behaviour in polymers confined at the nanoscale. Nat.
Commun. 2011, 2, 260−267.
(22) Gin, P.; Jiang, N.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S.
K.; Endoh, M. K.; Koga, T. Revealed architectures of adsorbed

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c01205
Macromolecules 2020, 53, 7601−7612

7610

http://orcid.org/0000-0002-3507-5219
http://orcid.org/0000-0002-3507-5219
mailto:naishengjiang@ustb.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianxia+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianyi+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Albert+Chao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liying+Kang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kangmin+Niu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruipeng+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Masafumi+Fukuto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01205?ref=pdf
https://dx.doi.org/10.1051/jphys:0198600470120212100
https://dx.doi.org/10.1051/jphys:0198600470120212100
https://dx.doi.org/10.1051/jphys:0198800490120209500
https://dx.doi.org/10.1051/jphys:0198800490120209500
https://dx.doi.org/10.1038/nmat2292
https://dx.doi.org/10.1038/nmat2292
https://dx.doi.org/10.1063/1.3587137
https://dx.doi.org/10.1063/1.3587137
https://dx.doi.org/10.1063/1.3587138
https://dx.doi.org/10.1063/1.3587138
https://dx.doi.org/10.1039/C5SM01994J
https://dx.doi.org/10.1039/C5SM01994J
https://dx.doi.org/10.1039/C5SM01994J
https://dx.doi.org/10.1103/PhysRevLett.57.3023
https://dx.doi.org/10.1103/PhysRevLett.57.3023
https://dx.doi.org/10.1021/acs.macromol.7b02638
https://dx.doi.org/10.1021/acs.macromol.7b02638
https://dx.doi.org/10.1021/acs.macromol.7b02638
https://dx.doi.org/10.1039/C6SM01622G
https://dx.doi.org/10.1039/C6SM01622G
https://dx.doi.org/10.1021/ma102970m
https://dx.doi.org/10.1021/ma102970m
https://dx.doi.org/10.1021/ma102970m
https://dx.doi.org/10.1021/ma102838c
https://dx.doi.org/10.1021/ma102838c
https://dx.doi.org/10.1021/ma102838c
https://dx.doi.org/10.1021/ma2028215
https://dx.doi.org/10.1021/ma2028215
https://dx.doi.org/10.1021/acsmacrolett.6b00497
https://dx.doi.org/10.1021/acsmacrolett.6b00497
https://dx.doi.org/10.1021/acs.macromol.5b02474
https://dx.doi.org/10.1021/acs.macromol.5b02474
https://dx.doi.org/10.1021/acs.macromol.5b02474
https://dx.doi.org/10.1021/acs.macromol.7b02200
https://dx.doi.org/10.1021/acs.macromol.7b02200
https://dx.doi.org/10.1039/C7SM00379J
https://dx.doi.org/10.1039/C7SM00379J
https://dx.doi.org/10.1039/C7SM00379J
https://dx.doi.org/10.1021/ma901851w
https://dx.doi.org/10.1021/ma901851w
https://dx.doi.org/10.1038/ncomms1259
https://dx.doi.org/10.1038/ncomms1259
https://dx.doi.org/10.1103/PhysRevLett.109.265501
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01205?ref=pdf


polymer chains at solid-polymer melt interfaces. Phys. Rev. Lett. 2012,
109 (26), 265501.
(23) Jiang, N.; Shang, J.; Di, X.; Endoh, M. K.; Koga, T. Formation
mechanism of high-density, flattened polymer nanolayers adsorbed on
planar solids. Macromolecules 2014, 47 (8), 2682−2689.
(24) Asada, M.; Jiang, N.; Sendogdular, L.; Sokolov, J.; Endoh, M.
K.; Koga, T.; Fukuto, M.; Yang, L.; Akgun, B.; Dimitriou, M.; Satija, S.
Melt crystallization/dewetting of ultrathin PEO films via carbon
dioxide annealing: The effects of polymer adsorbed layers. Soft Matter
2014, 10 (34), 6392−6403.
(25) Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.;
Koga, T.; Satija, S. K. Nanoscale adsorbed structures as a robust
approach for tailoring polymer film stability. Soft Matter 2016, 12 (6),
1801−1809.
(26) Burroughs, M. J.; Napolitano, S.; Cangialosi, D.; Priestley, R. D.
Direct measurement of glass transition temperature in exposed and
buried adsorbed polymer nanolayers. Macromolecules 2016, 49 (12),
4647−4655.
(27) Panagopoulou, A.; Napolitano, S. Irreversible adsorption
governs the equilibration of thin polymer films. Phys. Rev. Lett.
2017, 119 (9), No. 097801.
(28) Xu, J.; Liu, Z.; Lan, Y.; Zuo, B.; Wang, X.; Yang, J.; Zhang, W.;
Hu, W. Mobility gradient of poly(ethylene terephthalate) chains near
a substrate scaled by the thickness of the adsorbed layer.
Macromolecules 2017, 50 (17), 6804−6812.
(29) Li, X.; Lu, X. Evolution of irreversibly adsorbed layer promotes
dewetting of polystyrene film on sapphire. Macromolecules 2018, 51
(17), 6653−6660.
(30) Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X.; Priestley, R. D.
Effect of local chain conformation in adsorbed nanolayers on confined
polymer molecular mobility. Phys. Rev. Lett. 2019, 122 (21), 217801.
(31) Barkley, D. A.; Jiang, N.; Sen, M.; Endoh, M. K.; Rudick, J. G.;
Koga, T.; Zhang, Y.; Gang, O.; Yuan, G.; Satija, S. K.; Kawaguchi, D.;
Tanaka, K.; Karim, A. Chain conformation near the buried interface in
nanoparticle-stabilized polymer thin films. Macromolecules 2017, 50
(19), 7657−7665.
(32) Durning, C. J.; O’Shaughnessy, B.; Sawhney, U.; Nguyen, D.;
Majewski, J.; Smith, G. S. Adsorption of poly(methyl methacrylate)
melts on quartz. Macromolecules 1999, 32 (20), 6772−6781.
(33) Guiselin, O. Irreversible adsorption of a concentrated polymer
solution. Europhys. Lett. 1992, 17 (3), 225−230.
(34) Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.;
Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.;
Zuckermann, R. N. Sequence-specific polypeptoids: A diverse family
of heteropolymers with stable secondary structure. Proc. Natl. Acad.
Sci. U. S. A. 1998, 95 (8), 4303−4308.
(35) Zhang, D.; Lahasky, S. H.; Guo, L.; Lee, C.-U.; Lavan, M.
Polypeptoid materials: Current status and future perspectives.
Macromolecules 2012, 45 (15), 5833−5841.
(36) Sun, J.; Zuckermann, R. N. Peptoid polymers: A highly
designable bioinspired material. ACS Nano 2013, 7 (6), 4715−4732.
(37) Gangloff, N.; Ulbricht, J.; Lorson, T.; Schlaad, H.; Luxenhofer,
R. Peptoids and polypeptoids at the frontier of supra- and
macromolecular engineering. Chem. Rev. 2016, 116 (4), 1753−1802.
(38) Zhu, L.; Simpson, J. M.; Xu, X.; He, H.; Zhang, D.; Yin, L.
Cationic polypeptoids with optimized molecular characteristics
toward efficient nonviral gene delivery. ACS Appl. Mater. Interfaces
2017, 9 (28), 23476−23486.
(39) Chan, B. A.; Xuan, S.; Li, A.; Simpson, J. M.; Sternhagen, G. L.;
Yu, T.; Darvish, O. A.; Jiang, N.; Zhang, D. Polypeptoid polymers:
Synthesis, characterization, and properties. Biopolymers 2018, 109 (1),
e23070.
(40) Guo, L.; Zhang, D. Cyclic Poly(α-peptoid)s and Their Block
Copolymers from N-Heterocyclic Carbene-Mediated Ring-Opening
Polymerizations of N-Substituted N-Carboxylanhydrides. J. Am.
Chem. Soc. 2009, 131 (50), 18072−18074.
(41) Guo, L.; Lahasky, S. H.; Ghale, K.; Zhang, D. N-Heterocyclic
Carbene-Mediated Zwitterionic Polymerization of N-Substituted N-
Carboxyanhydrides toward Poly(α-peptoid)s: Kinetic, Mechanism,

and Architectural Control. J. Am. Chem. Soc. 2012, 134 (22), 9163−
9171.
(42) Lee, C.-U.; Li, A.; Ghale, K.; Zhang, D. Crystallization and
Melting Behaviors of Cyclic and Linear Polypeptoids with Alkyl Side
Chains. Macromolecules 2013, 46 (20), 8213−8223.
(43) Greer, D. R.; Stolberg, M. A.; Xuan, S.; Jiang, X.; Balsara, N. P.;
Zuckermann, R. N. Liquid-Crystalline Phase Behavior in Polypeptoid
Diblock Copolymers. Macromolecules 2018, 51 (23), 9519−9525.
(44) Greer, D. R.; Stolberg, M. A.; Kundu, J.; Spencer, R. K.; Pascal,
T.; Prendergast, D.; Balsara, N. P.; Zuckermann, R. N. Universal
Relationship between Molecular Structure and Crystal Structure in
Peptoid Polymers and Prevalence of the cis Backbone Conformation.
J. Am. Chem. Soc. 2018, 140 (2), 827−833.
(45) Edison, J. R.; Spencer, R. K.; Butterfoss, G. L.; Hudson, B. C.;
Hochbaum, A. I.; Paravastu, A. K.; Zuckermann, R. N.; Whitelam, S.
Conformations of peptoids in nanosheets result from the interplay of
backbone energetics and intermolecular interactions. Proc. Natl. Acad.
Sci. U. S. A. 2018, 115 (22), 5647−5651.
(46) Lee, C.-U.; Smart, T. P.; Guo, L.; Epps, T. H.; Zhang, D.
Synthesis and Characterization of Amphiphilic Cyclic Diblock
Copolypeptoids from N-Heterocyclic Carbene-Mediated Zwitterionic
Polymerization of N-Substituted N-Carboxyanhydride. Macromole-
cules 2011, 44 (24), 9574−9585.
(47) Lee, C.-U.; Lu, L.; Chen, J.; Garno, J. C.; Zhang, D.
Crystallization-Driven Thermoreversible Gelation of Coil-Crystalline
Cyclic and Linear Diblock Copolypeptoids. ACS Macro Lett. 2013, 2
(5), 436−440.
(48) Sun, J.; Teran, A. A.; Liao, X. X.; Balsara, N. P.; Zuckermann, R.
N. Crystallization in sequence-defined peptoid diblock copolymers
induced by microphase separation. J. Am. Chem. Soc. 2014, 136 (5),
2070−2077.
(49) Sun, J.; Jiang, X.; Lund, R.; Downing, K. H.; Balsara, N. P.;
Zuckermann, R. N. Self-assembly of crystalline nanotubes from
monodisperse amphiphilic diblock copolypeptoid tiles. Proc. Natl.
Acad. Sci. U. S. A. 2016, 113 (15), 3954−3959.
(50) Jiang, N.; Yu, T.; Darvish, O. A.; Qian, S.; Mkam Tsengam, I.
K.; John, V.; Zhang, D. Crystallization-driven self-assembly of coil−
comb-shaped polypeptoid block copolymers: Solution morphology
and self-assembly pathways. Macromolecules 2019, 52 (22), 8867−
8877.
(51) Housmans, C.; Sferrazza, M.; Napolitano, S. Kinetics of
irreversible chain adsorption. Macromolecules 2014, 47 (10), 3390−
3393.
(52) Bal, J. K.; Beuvier, T.; Unni, A. B.; Chavez Panduro, E. A.;
Vignaud, G.; Delorme, N.; Chebil, M. S.; Grohens, Y.; Gibaud, A.
Stability of polymer ultrathin films (<7 nm) made by a top-down
approach. ACS Nano 2015, 9 (8), 8184−8193.
(53) Jiang, N.; Sen, M.; Zeng, W.; Chen, Z.; Cheung, J. M.;
Morimitsu, Y.; Endoh, M. K.; Koga, T.; Fukuto, M.; Yuan, G.; Satija,
S. K.; Carrillo, J.-M. Y.; Sumpter, B. G. Structure-induced switching of
interpolymer adhesion at a solid-polymer melt interface. Soft Matter
2018, 14 (7), 1108−1119.
(54) Hare, E. F.; Zisman, W. A. Autophobic liquids and the
properties of their adsorbed films. J. Phys. Chem. 1955, 59 (4), 335−
340.
(55) Shull, K. R. Wetting autophobicity of polymer melts. Faraday
Discuss. 1994, 98 (0), 203−217.
(56) Reiter, G.; Auroy, P.; Auvray, L. Instabilities of thin polymer
films on layers of chemically identical grafted molecules. Macro-
molecules 1996, 29 (6), 2150−2157.
(57) Ferreira, P. G.; Ajdari, A.; Leibler, L. Scaling law for entropic
effects at interfaces between grafted layers and polymer melts.
Macromolecules 1998, 31 (12), 3994−4003.
(58) Wang, L.-N.; Zhang, H.-H.; Xu, L.; Liu, B.-Y.; Shi, T.-F.; Jiang,
S.-C.; An, L.-J. Dewetting kinetics of thin polymer films with different
architectures: Effect of polymer adsorption. Chin. J. Polym. Sci. 2018,
36 (8), 984−990.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c01205
Macromolecules 2020, 53, 7601−7612

7611

https://dx.doi.org/10.1103/PhysRevLett.109.265501
https://dx.doi.org/10.1021/ma5003485
https://dx.doi.org/10.1021/ma5003485
https://dx.doi.org/10.1021/ma5003485
https://dx.doi.org/10.1039/C4SM00683F
https://dx.doi.org/10.1039/C4SM00683F
https://dx.doi.org/10.1039/C5SM02435H
https://dx.doi.org/10.1039/C5SM02435H
https://dx.doi.org/10.1021/acs.macromol.6b00400
https://dx.doi.org/10.1021/acs.macromol.6b00400
https://dx.doi.org/10.1103/PhysRevLett.119.097801
https://dx.doi.org/10.1103/PhysRevLett.119.097801
https://dx.doi.org/10.1021/acs.macromol.7b00922
https://dx.doi.org/10.1021/acs.macromol.7b00922
https://dx.doi.org/10.1021/acs.macromol.8b01141
https://dx.doi.org/10.1021/acs.macromol.8b01141
https://dx.doi.org/10.1103/PhysRevLett.122.217801
https://dx.doi.org/10.1103/PhysRevLett.122.217801
https://dx.doi.org/10.1021/acs.macromol.7b01187
https://dx.doi.org/10.1021/acs.macromol.7b01187
https://dx.doi.org/10.1021/ma981785k
https://dx.doi.org/10.1021/ma981785k
https://dx.doi.org/10.1209/0295-5075/17/3/007
https://dx.doi.org/10.1209/0295-5075/17/3/007
https://dx.doi.org/10.1073/pnas.95.8.4303
https://dx.doi.org/10.1073/pnas.95.8.4303
https://dx.doi.org/10.1021/ma202319g
https://dx.doi.org/10.1021/nn4015714
https://dx.doi.org/10.1021/nn4015714
https://dx.doi.org/10.1021/acs.chemrev.5b00201
https://dx.doi.org/10.1021/acs.chemrev.5b00201
https://dx.doi.org/10.1021/acsami.7b06031
https://dx.doi.org/10.1021/acsami.7b06031
https://dx.doi.org/10.1002/bip.23070
https://dx.doi.org/10.1002/bip.23070
https://dx.doi.org/10.1021/ja907380d
https://dx.doi.org/10.1021/ja907380d
https://dx.doi.org/10.1021/ja907380d
https://dx.doi.org/10.1021/ja210842b
https://dx.doi.org/10.1021/ja210842b
https://dx.doi.org/10.1021/ja210842b
https://dx.doi.org/10.1021/ja210842b
https://dx.doi.org/10.1021/ma401067f
https://dx.doi.org/10.1021/ma401067f
https://dx.doi.org/10.1021/ma401067f
https://dx.doi.org/10.1021/acs.macromol.8b01952
https://dx.doi.org/10.1021/acs.macromol.8b01952
https://dx.doi.org/10.1021/jacs.7b11891
https://dx.doi.org/10.1021/jacs.7b11891
https://dx.doi.org/10.1021/jacs.7b11891
https://dx.doi.org/10.1073/pnas.1800397115
https://dx.doi.org/10.1073/pnas.1800397115
https://dx.doi.org/10.1021/ma2020936
https://dx.doi.org/10.1021/ma2020936
https://dx.doi.org/10.1021/ma2020936
https://dx.doi.org/10.1021/mz300667n
https://dx.doi.org/10.1021/mz300667n
https://dx.doi.org/10.1021/ja412123y
https://dx.doi.org/10.1021/ja412123y
https://dx.doi.org/10.1073/pnas.1517169113
https://dx.doi.org/10.1073/pnas.1517169113
https://dx.doi.org/10.1021/acs.macromol.9b01546
https://dx.doi.org/10.1021/acs.macromol.9b01546
https://dx.doi.org/10.1021/acs.macromol.9b01546
https://dx.doi.org/10.1021/ma500506r
https://dx.doi.org/10.1021/ma500506r
https://dx.doi.org/10.1021/acsnano.5b02381
https://dx.doi.org/10.1021/acsnano.5b02381
https://dx.doi.org/10.1039/C7SM02279D
https://dx.doi.org/10.1039/C7SM02279D
https://dx.doi.org/10.1021/j150526a014
https://dx.doi.org/10.1021/j150526a014
https://dx.doi.org/10.1039/fd9949800203
https://dx.doi.org/10.1021/ma950297z
https://dx.doi.org/10.1021/ma950297z
https://dx.doi.org/10.1021/ma9712460
https://dx.doi.org/10.1021/ma9712460
https://dx.doi.org/10.1007/s10118-018-2111-1
https://dx.doi.org/10.1007/s10118-018-2111-1
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01205?ref=pdf


(59) Reiter, G.; Khanna, R. Negative excess interfacial entropy
between free and end-grafted chemically identical polymers. Phys. Rev.
Lett. 2000, 85 (26), 5599−5602.
(60) Raphael, E.; De Gennes, P. G. Rubber adhesion with connector
molecules. J. Phys. Chem. 1992, 96, 4002−4007.
(61) Reiter, G.; Schultz, J.; Auroy, P.; Auvray, L. Improving adhesion
via connector polymers to stabilize non-wetting liquid films. Europhys.
Lett. 1996, 33 (1), 29−34.
(62) Briggs, D. Surface Analysis of Polymers by XPS and Static SIMS;
Cambridge University Press: Cambridge, 1998.
(63) Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B.
New peptidomimetic polymers for antifouling surfaces. J. Am. Chem.
Soc. 2005, 127 (22), 7972−7973.
(64) Van Lent, B.; Scheutjens, J.; Cosgrove, T. Self-consistent field
theory for the adsorption of ring polymers from solution. Macro-
molecules 1987, 20 (2), 366−370.
(65) Chen, Z.; Escobedo, F. A. Influence of polymer architecture
and polymer-wall interaction on the adsorption of polymers into a slit-
pore. Phys. Rev. E 2004, 69 (2), No. 021802.
(66) Ye, S.; Tang, Q.; Yang, J.; Zhang, K.; Zhao, J. Interfacial
diffusion of a single cyclic polymer chain. Soft Matter 2016, 12 (47),
9520−9526.
(67) Koga, T.; Jiang, N.; Gin, P.; Endoh, M. K.; Narayanan, S.;
Lurio, L. B.; Sinha, S. K. Impact of an irreversibly adsorbed layer on
local viscosity of nanoconfined polymer melts. Phys. Rev. Lett. 2011,
107 (22), 225901.
(68) Perez-de-Eulate, N. G.; Sferrazza, M.; Cangialosi, D.;
Napolitano, S. Irreversible adsorption erases the free surface effect
on the Tg of supported films of poly(4-tert-butylstyrene). ACS Macro
Lett. 2017, 6 (4), 354−358.
(69) Zheng, X.; Rafailovich, M. H.; Sokolov, J.; Strzhemechny, Y.;
Schwarz, S. A.; Sauer, B. B.; Rubinstein, M. Long-range effects on
polymer diffusion induced by a bounding interface. Phys. Rev. Lett.
1997, 79 (2), 241−244.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c01205
Macromolecules 2020, 53, 7601−7612

7612

https://dx.doi.org/10.1103/PhysRevLett.85.5599
https://dx.doi.org/10.1103/PhysRevLett.85.5599
https://dx.doi.org/10.1021/j100189a018
https://dx.doi.org/10.1021/j100189a018
https://dx.doi.org/10.1209/epl/i1996-00299-3
https://dx.doi.org/10.1209/epl/i1996-00299-3
https://dx.doi.org/10.1021/ja0522534
https://dx.doi.org/10.1021/ma00168a024
https://dx.doi.org/10.1021/ma00168a024
https://dx.doi.org/10.1103/PhysRevE.69.021802
https://dx.doi.org/10.1103/PhysRevE.69.021802
https://dx.doi.org/10.1103/PhysRevE.69.021802
https://dx.doi.org/10.1039/C6SM02103D
https://dx.doi.org/10.1039/C6SM02103D
https://dx.doi.org/10.1103/PhysRevLett.107.225901
https://dx.doi.org/10.1103/PhysRevLett.107.225901
https://dx.doi.org/10.1021/acsmacrolett.7b00129
https://dx.doi.org/10.1021/acsmacrolett.7b00129
https://dx.doi.org/10.1103/PhysRevLett.79.241
https://dx.doi.org/10.1103/PhysRevLett.79.241
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01205?ref=pdf

