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Aquaculture has long been seen as a sustainable solution to some of the world’s
growing food shortages. However, experience over the past 50 years indicates that
infectious diseases caused by viruses, bacteria, and eukaryotes limit the productivity of
aquaculture. In extreme cases, these types of infectious agents threaten the viability of
entire aquaculture industries. This article describes the threats from infectious diseases
in aquaculture and then focuses on one example (QX disease in Sydney rock oysters)
as a case study. QX appears to be typical of many emerging diseases in aquaculture,
particularly because environmental factors seem to play a crucial role in disease outbreaks.
Evidence is presented that modulation of a generic subcellular stress response pathway
in oysters is responsible for both resistance and susceptibility to infectious microbes.
Understanding and being able to manipulate this pathway may be the key to sustainable
aquaculture.
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INTRODUCTION
During the latter part of the last century, aquaculture (the farm-
ing of aquatic animals and plants) was seen as a key emergent
food source needed to compensate for the world’s rapidly grow-
ing human population. Aquaculture production increased rapidly
during the 1970’s and 1980’s (FAO, 2012) (Figure 1). However,
despite continued strong growth in freshwater aquaculture (pri-
marily in Asia), increases in production from farming of marine
species, such as oysters, has slowed. In some cases, output has
begun to decline. There are a number of reasons for this. Marine
aquaculture (mariculture) is susceptible to environmental degra-
dation of coastal and estuarine waters around the world, and the
supply of new, accessible farming sites is limited. More impor-
tantly, mariculture is particularly prone to infectious diseases,
which are the main limiting factors in marine aquaculture pro-
duction worldwide (Leung and Bates, 2013).

The pathogens and parasites that affect aquaculture pro-
duction around the world include viruses [e.g., ostreid herpes
virus (OsHV1), white spot syndrome virus (WSSV), abalone
viral ganglioneuritis], bacteria (e.g., Vibrio harveyi, Flexibacter
columnaris, Aeromonas salmonicida), protozoans (e.g., Perkinsus
species, Marteilia species, and Bonamia species), and multicel-
lular parasites or pests (e.g., mud worms and platyhelminths)
(Renault, 1995; Coelen, 1997). These infectious agents can be
highly host specific (e.g., Marteilia sydneyi in Sydney rock oysters)
or have a broad range of host species (e.g., Perkinsus olseni, WSSV,
or Vibrio harveyi). Disease epizootics caused by these infectious
agents are often devastating. For instance, outbreaks of WSSV
are responsible for annual losses in the shrimp industry of up
to $10 billion worldwide (Flegel and Alday-Sanz, 2007; Sánchez-
Martínez et al., 2007; FAO, 2012), whilst OsHV1 microvariant

(OsHV-1 μvar) epizootics between 2008 and 2012 caused the pro-
duction of Pacific oysters (Crassostrea gigas) in France to decline
by 40% (Segarra et al., 2010).

Factors that affect the susceptibility of mariculture industries
to disease epizootics include zoonoses altering the host specificity
of pathogens and the ingression of pathogens from wild popula-
tions, reliance on high density monocultures, ease of transmission
in the aquatic environment, the availability of intermediate hosts,
and environmental degradation as a result of human activities
(McCallum et al., 2003; Martin et al., 2010; Pulkkinen et al.,
2010). This article focuses on the effects of environmental stress
on disease susceptibility in aquaculture. It uses a specific exam-
ple, QX disease in Sydney rock oysters, to highlight the complex
relationships that exist between pathogens, their hosts and the
environment.

THE SYDNEY ROCK OYSTER INDUSTRY
The Sydney rock oyster, Saccostrea glomerata (previously known
as S. commercialis), has been cultivated in Australian coastal
waters since the 1870’s. A decline in natural oyster stocks fol-
lowing European settlement led to the establishment of the first
cultivation techniques in state of New South Wales (NSW) in
1872 (Nell, 1993). Initial oyster farming techniques were based
on the Claire (ponds) method used throughout France. In the
1930’s, the Sydney rock oysters industry adopted a new cultivation
system, in which oyster larvae were caught on tarred hardwood
sticks placed in estuaries where spatfall is reliable (Angell, 1986).
Traditionally, sticks were moved around bays or estuaries after
spatfall and oysters were grown to maturity in the inter-tidal
zone. More recently, farmers implemented a “single seed” cul-
ture method, which involves spat being scraped off sticks after
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FIGURE 1 | World aquaculture production between 1980 and 2010,

showing the contribution from different growing environments (from:

http://2011.polarhusky.com/logistics/maps-and-route/data/world-

fisheries/).

settlement. The juvenile oysters are then grown in trays or bas-
kets in sub-tidal and inter-tidal zones (Nell, 1993). The single
seed method for capturing spat is now being replaced by hatchery
technologies, where spat are produced in hatchery-based selective
breeding programs that can control the phenotypic characteristics
of oysters.

Sydney rock oysters are produced on the eastern Australian
seaboard from the NSW/Victorian border in the south to
Moreton Bay in subtropical Queensland (Nell, 1993) (Figure 2A).
There has also been some success in farming the species on the
north coast of Australia and in Western Australia (Nell, 2002).

Sydney rock oyster farming is the fourth biggest oyster aqua-
culture industry in the world and remains NSW’s largest aquacul-
ture industry. However, production levels have fallen by over 40%
since the 1970’s and remain fragile (Figure 2B; Heasman et al.,
2000). Three thousand eight hundred and eighty three tonnes
of edible oysters were produced in NSW in 2010–2011 (ABARE,
2012). This represents a 22% (1077 tonne, $4.7 million) decrease
in edible oyster production compared with 2009–2010. The sub-
stantial decline in Sydney rock oyster production since its peak in
the 1970’s has been due primarily to the impacts of two infectious
diseases, Winter Mortality Syndrome, and QX disease.

OYSTER DISEASES
Since the mid-1800’s, when overfishing and destruction of natural
oyster beds led to the development of oyster farming through-
out Europe, disease has been the prominent controlling factor
in oyster population dynamics (Roch, 1999). Global oyster pro-
duction is based almost entirely upon just five species. Hence,
oyster industries are usually local monocultures that are sub-
ject to inherent disease epizootics. Apart from OsHV1 in Pacific
oysters, the majority of oyster diseases are caused by protozoan
parasites. The estuarine environments where oysters are cul-
tured provide an ideal medium for the dispersal and survival of

FIGURE 2 | (A) The major oyster growing areas of Australia and the species
farmed in those areas (Nell, 2003). (B) Sydney rock oyster production grew
steadily until the mid-1970’s, when pressure from infectious disease
epizootics caused a major decline in the industry (Nell, 2003).

parasitic protozoans due to natural currents, stable temperatures,
and availability of intermediate hosts. The two main protozoan
diseases affecting production of Sydney rock oysters (Winter
Mortality and QX disease) only infect S. glomerata. The transfer
of oysters between estuaries for on-growing during the 1960’s was
originally thought to have aided the spread of both diseases (Nell,
2003).

The main etiological agent of Winter Mortality is a protist
Bonamia roughleyi (previously known as Mikrocytos roughleyi;
Cochennec-Laureau et al., 2003). This includes the parasite in a
genus that also commonly afflicts European flat oysters. As its
name suggests, Winter Mortality predominantly occurs during
colder months from June to August and is restricted to the cooler
southern range of Sydney rock oysters. In affected areas, mor-
talities of up to 80% are common. Oysters in their third winter,
just prior to reaching market size, are the most susceptible (Smith
et al., 2000). Current methods used to manage the disease include
transferring oysters to upstream leases where lower salinities are
thought to decrease susceptibility to B. roughleyi infection. Many
farmers also sell their oysters prior to their third winter when
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they are most at risk of infection. However, this option is rarely
available to growers in the more southerly regions, because oys-
ters in these colder waters take longer to reach market size (Smith
et al., 2000). New information also suggests that other pathogens,
in addition to B. roughleyi, may be involved in Winter Mortality.

MARTEILIA SYDNEYI AND QX DISEASE
QX (for Queensland Unknown) disease, also known as marteil-
iosis, is now the most serious disease affecting the Sydney rock
oyster industry (Anderson et al., 1995; Adlard and Ogburn, 2003).
QX disease is caused by the paramyxean protozoan Marteilia
sydneyi, which was first described by Perkins and Wolf (1976).
The infective season for M. sydneyi occurs during the southern
hemisphere summer and early autumn, from January to April.
Outbreaks of QX disease were first recorded during the late 1970’s
and were restricted to a small number of estuaries from The Great
Sandy Straight of southern Queensland through to the Macleay
River in northern NSW (Adlard and Ernst, 1995) (Figure 3).

The parasite was later discovered in the Georges River, Sydney,
in 1994. Examination of S. glomerata digestive tract samples taken
from Lime Kiln Bar (33◦59′08′′S, 151◦03′10′′E) in the Georges
River identified tricellular sporonts that were typical of M. syd-
neyi infections (Adlard and Ernst, 1995). During 1993/1994 over
13 million oysters were produced in the Georges River. However,
consistent seasonal outbreaks of QX disease have caused produc-
tion to steadily decline so that only 750,000 oysters were produced
there in 2000/2001. This constitutes a fall in production of 94%
over 6 years (Nell and Hand, 2003). Mortality rates from QX dis-
ease can reach 95% per year (Peters and Raftos, 2003). Current
production in the Georges River is restricted to selectively bred,
M. sydneyi-resistant strains. Pacific oysters, which are unaffected
by QX disease, were introduced as a replacement for Sydney rock
oysters in the Georges River. However, these Pacific oysters have
since been devastated by outbreaks for OsHV1 μvar, which began
in 2010.

The Hawkesbury River, approximately 50 km north of the
Georges River in NSW, is the most recent growing area to experi-
ence an outbreak of QX disease. This estuary had previously been
the second largest producer of Sydney rock oysters in Australia.
The disease was first detected in the Hawkesbury River during
2004, when an examination of oysters from upstream oyster leases
uncovered sporulating M. sydneyi in oyster guts. By the end of
2005, Sydney rock oysters in most growing areas of the estuary
had suffered mortality rates of up to 90% (Butt and Raftos, 2007).
Again, Pacific oysters were used to replace Sydney rock oysters
in the Hawkesbury River, and again they were devastated (up to
100% mortality) by an outbreak of OsHV1 μvar in 2013.

A sensitive, polymerase chain reaction (PCR) diagnostic assay
for M. sydneyi has been used to test for the presence of the par-
asite in numerous estuaries along the NSW coastline (Adlard
and Worthington-Wilmer, 2003). These tests have shown that
M. sydneyi is present in the vast majority of S. glomerata growing
estuaries on the NSW coast, including those that had previously
been thought to be parasite free (Adlard and Wesche, 2005). There
are approximately 40 estuaries in which Sydney rock oysters are
grown, but only 7 of these have experienced QX disease outbreaks.
Based on these data, it is now widely believed that M. sydneyi is

FIGURE 3 | The distribution of Sydney rock oyster farming estuaries on

the coast of NSW, Australia that are affected by QX disease and the

year in which QX disease outbreaks first occurred.

an enzootic parasite of Sydney rock oysters throughout Australia
(Adlard and Wesche, 2005).

THE M. SYDNEYI LIFE CYCLE
The original description of M. sydneyi by Perkins and Wolf (1976)
focused on pathogen sporulation in the digestive gland of the
oyster host. Traditional laboratory detection techniques limited
further elucidation of M. sydneyi’s early development. However,
the use of DNA probes for in situ hybridization has allowed the
site of initial infection and subsequent development of the para-
site within oysters to be defined (Figure 4) (Kleeman et al., 2002).
The earliest infectious stage of M. sydneyi that can be identi-
fied in oysters is a uninucleate stem cell. These stem cells were
discovered in the palps and gill epithelia of S. glomerata. Their
presence in these epithelial tissues suggests that infection results
from a “free-floating” parasitic stage entering the gills during fil-
ter feeding (Kleeman et al., 2002). Stem cells proliferate in the gill
epithelium. Once sufficient numbers of stem cells have been gen-
erated, they penetrate the basal membrane, entering connective
tissues. This enables their dissemination throughout the oyster.

The majority of stem cells converge on the digestive gland,
where they enter the digestive tubule epithelium (Kleeman et al.,
2002) (Figure 5). Once in the digestive gland, replication and
further development continues to form a primary 2-celled plas-
modium. This plasmodium divides to form between 8 and 16
sporonts. Each sporont then undergoes further internal division
to form two spores, each with three concentric cells (Roubal et al.,
1988). Spores are shed into the environment via the alimentary
canal prior to the death of the oyster (Anderson et al., 1995).

Despite our understanding of M. sydneyi’s development within
oysters, it is only recently that the fate of the parasite has been
determined once it is shed from infected oysters. Wesche et al.
(1999) assessed spore survival after their release into the envi-
ronment. They found that spores are relatively short-lived out-
side their oyster host (7–35 days) when compared to the 3–10
month infection cycle of the pathogen within oysters. Also, no
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FIGURE 4 | The life cycle of M. sydneyi within Sydney rock oysters (Kleeman et al., 2002).

FIGURE 5 | (A) An M. sydneyi sporangiosorus in the digestive gland of an
infected oyster. This sporangiosorus contains six individual reproductive
bodies (sporonts or secondary cells, SP). Cleavage of the sporangium
(cytoplasm of the sporont) leads to the development of two to three

multinucleated (N1, N3) spores (S), surrounded by inclusion bodies (I). The
nucleus (N) of an oyster hemocyte adjacent to the sproangiosorus is also
shown. (B) A differential interference contrast micrograph of M. sydneyi
sporonts purified by density gradient centrifugation (Kuchel et al., 2010a,b).
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morphological development of the parasite could be detected out-
side the host and energy reserves were deemed to be insufficient
for prolonged survival (Wesche et al., 1999).

These results indicated that there may be an intermediate
host for M. sydneyi. The existence of an intermediate host was
supported by transmission trials on the closely related Marteilia
refringens, agent of Aber Disease of flat oysters in Europe (Berthe
et al., 1998). Healthy European flat oysters did not become
infected when inoculated with live M. refringens cells, regard-
less of inoculum strength. Cohabitation trials under laboratory
conditions also failed to transmit the parasite between oysters. It
was only when uninfected oysters were placed in natural environ-
ments within the endemic range of the parasite that infections
occurred (Audemard et al., 2001). Further research by Audemard
et al. (2002) found that a copepod, Paracartia grani, became
infected with M. refringens after 7 days cohabitation with infected
oysters. The population dynamics of P. grani in O. edulis grow-
ing areas also match its potential role as an intermediate host for
M. refringens (Audemard et al., 2004). However, the full life cycle
of M. refringens has not been closed because re-infection (P. grani
to O. edulis transmission) experiments have not been successful.

It was originally thought that the intermediate hosts of the QX
parasite, M. sydneyi, might be scavenging carnivores that ingest
spores as they feed on dead oyster tissue. However, the subsequent
discovery that M. sydneyi spores are released prior to the death of
S. glomerata suggested that benthic or filter-feeding organisms are
more likely intermediate hosts (Roubal et al., 1988). This was fur-
ther supported by the observation that shed spores have a negative
buoyancy and so were likely to sink to the sediment below oyster
racks (Wesche et al., 1999). In 2000, Kleeman and Adlard devel-
oped PCR and in situ hybridization assays to finally resolve the
identification of an intermediate host for M. sydneyi. Their assays
targeted the ribosomal DNA of M. sydneyi so that potential hosts
could be tested for the presence of the parasite with high precision
and specificity. However, definitive evidence for an intermediate
host remains unavailable.

OYSTER IMMUNE RESPONSES AGAINST M. SYDNEYI
Despite the lethality of M. sydneyi infections in some Sydney
rock oyster growing areas, there is strong evidence to suggest that
oysters can mount effective immune responses against M. syd-
neyi. Butt and Raftos (2007) examined the response of oyster
hemocytes (the oyster equivalent of circulating blood cells) to
M. sydneyi in vitro. They found that both granulocytes and
hyalinocytes were able to rapidly ingest parasite sporonts by the
process of phagocytosis (Figure 6).

In vitro experiments showed that phagocytosis of M. syd-
neyi stimulated intracellular activity of the defensive enzyme,
phenoloxidase. This led to the complete melanization of phago-
somes containing parasites, and presumably the destruction of
the ingested M. sydneyi (Figure 7). The role of phenoloxidase
in phagolysosomal activity against M. sydneyi was supported by
an electron microscopical study by Kuchel et al. (2010a). They
showed that, after ingestion of M. sydneyi, granules in S. glomerata
hemocytes that contain phenoloxidase (Aladaileh et al., 2007a),
fuse with phagosome membranes and that the pH of phagosomes
decreases in a typical phagolysosomal response (Figure 8).

FIGURE 6 | (A–C) Phagocytosis of M. sydneyi sporonts by S. glomerata
hemocytes. H, hyalinocyte; GR, granulocyte; SP, sporont; I, inclusion bodies
within sporonts stained with Congo red; F, filopodia; N, nucleus; G,
intracellular granules within hemocytes.

FIGURE 7 | Melanization of M. sydneyi by phenoloxidase activity

within S. glomerata hemocytes. (A) Initially, melanization (brown
coloration) is focused around phagocytosed M. sydneyi sporonts. Arrows
indicate granular melanin deposition around ingested parasite. (B) As
melanization continues, entire hemocytes, including the internalized
sporont(s), become melanized. Bars = 5 μm (Butt and Raftos, 2008).

In addition, Kuchel et al. (2010a) observed the deposition of
phenoloxidase metabolites in phagosomes after in vitro phago-
cytosis of M. sydneyi sporonts by S. glomerata hemocytes. Most
importantly, ingested and melanized M. sydneyi have also been
detected in vivo among hemocytes from infected oysters (Butt and
Raftos, 2008). All of these data suggest that Sydney rock oyster
hemocytes can recognize and phagocytose M. sydneyi, and that
phenoloxidase is a critical intracellular effector mechanism that
acts against ingested M. sydneyi as part of the phagolysosomal
process.

Phenoloxidase is a key enzyme in the immunological defenses
of invertebrates (Söderhäll and Cerenius, 1998). The role of
phenoloxidase in host defense is best characterized in arthro-
pods, although numerous studies have also demonstrated its
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FIGURE 8 | Transmission electron micrographs showing the fusion of

S. glomarata hemocyte granules with phagosomes containing

ingested M. sydneyi. (A) Hemocyte granules (G) approach and fuse to the
phagosomal membrane (PA) that surrounds a M. sydneyi sporont. PM,
parasite membrane. (B) Granules fuse to the phagosome containing
M. sydneyi sporonts. (C) High resolution image of a granule fusing with the
phagosome membrane around an M. sydneyi sporont (Kuchel et al.,
2010a,b).

importance in bivalve molluscs (Deaton et al., 1999; Jordan and
Deaton, 2005; Munoz et al., 2006; Aladaileh et al., 2007a; Hellio
et al., 2007; Butt and Raftos, 2008). The enzyme facilitates the
formation of the pigment melanin, which is important in the
sequestration of foreign material during defensive encapsulation
(Söderhäll and Cerenius, 1998). Melanin and its intermediate
metabolites in the phenoloxidase pathway also have direct antimi-
crobial activities in both extracelullular fluids and intracellular
phagolysosomes (Asokan et al., 1997).

We have made similar observations on the roles of phenolox-
idase in the immune system of Sydney rock oysters. Aladaileh
et al. (2007a) demonstrated that phenoloxidase is a key compo-
nent of intracellular granules within S. glomerata phagocytes. It is
also evident that intracellular phenoloxidase in S. glomerata can
produce metabolites that are associated with antimicrobial activ-
ity (Aladaileh et al., 2007b), and that challenging Sydney rock
oyster hemocytes with pathogen-associate molecules increases
phenoloxidase activity (Aladaileh et al., 2007c).

ENVIRONMENTAL STRESS AND DISEASE IN MOLLUSCS
Given that Sydney rock oysters clearly have effective immunolog-
ical defenses against M. sydneyi, the outstanding question about
QX disease is, why do oysters lose control of the parasite lead-
ing to outbreaks of lethal disease? Our work, described in detail
below, suggests that environmental stress results in the suppres-
sion of the Sydney rock oyster immune system, and that this
immunosuppression contributes to QX disease epizootics.

The survival of all organisms depends upon their ability
to maintain homeostasis in highly variable environments. This

balance is perhaps most difficult to maintain in sessile poik-
ilothermic osmoconformers, such as bivalve molluscs. External
stressors constantly threaten the physiological steady state of these
organisms (Lacoste et al., 2002). Stressors to which oysters are
exposed vary widely, but include extremes of temperature, salin-
ity, and pH, as well as anthropogenic factors (Kuchel et al.,
2011). The estuarine environment, which is home to commer-
cial and wild oyster populations, is prone to extreme hydrological
changes. These changes are associated with tidal fluctuations
and rainfall events, and can lead to the introduction of efflu-
ent (nutrient loading and chemical contamination) and increased
sediment loads resulting from upstream runoff. Oysters require
a range of adaptive responses to counteract these stressors. Such
responses, or the stressors themselves, often affect the effective
function of physiological mechanisms, including the immune sys-
tem. Immunosuppression, which can result from environmental
stress, leaves organisms more susceptible to disease epizootics
(Chu et al., 2002).

The link between aquaculture species, pathogens, and the envi-
ronment has been acknowledged for some time (Kuchel et al.,
2011). As long ago as 1974, it was recognized that disease out-
breaks in fish only occurred when environmental conditions were
suitable (Snieszko, 1974). However, mechanistic links between
host immunological defense and environmental change has only
been established far more recently. Lacoste et al. (2001a,b,c, 2002)
have shown that oysters possess a form of catecholamine-based
neuroendocrine response similar to the adrenergic system that
is activated in vertebrates during acute stress responses. Their
work demonstrated that, as environmental conditions change,
immunological function in marine invertebrates can be inhib-
ited by adaptive changes to their own physiology mediated by
the catecholamine hormone, noradrenaline. Once released into
the hemolymph, noradrenaline was shown to decrease hemocyte
phagocytic activity and the production of reactive oxygen species
(ROS) in phagolysosomes (Lacoste et al., 2001a,c).

Other studies have investigated the types of environmental
or anthropogenic stressors that affect immunological activity
in molluscs. Pipe et al. (1999) examined the effects of copper
on various immunological parameters in the marine mussel,
Mytilus edulis. They identified dose-dependent changes in hemo-
cyte numbers, particularly a decrease in the frequency of cir-
culating eosinophilic granulocytes, after copper exposure. These
eosinophilic cells are responsible for most peroxidase, phenolox-
idase, and phagocytic activity in M. edulis (Pipe et al., 1997).
However, contrary to expectations, decreases in phenoloxidase
and peroxidase activity in copper-affected mussels were not sta-
tistically significant. This could be explained in part by the large
variability in the activity of these enzymes between individual
mussels (Pipe et al., 1999).

Further work on the effects of anthropogenic pollutants on
the M. edulis immune system showed that polycyclic aromatic
hydrocarbons (PAH), such as fluoranthene and phenanthrene,
inhibit phagocytic activity and damage lysosomes. PAH’s accu-
mulate within lysosomes so that damage is caused by direct
physical disturbance of the lysosomal membrane. Similar disrup-
tion inhibits phagocytosis (Grundy et al., 1996). The combined
stress of high temperature and copper exposure was also shown
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to have deleterious effects on M. edulis hemocytes. Both total and
differential hemocyte counts were affected, as were superoxide
production and phagocytic activities (Parry and Pipe, 2004).

Pacific oysters (C. gigas) have also been tested to determine
the effects of mechanical disturbance on immunological func-
tion. The effects of mechanical agitation were investigated because
oyster culture techniques require individuals to be continually
sorted and redistributed throughout their development using
mechanical grading machines. Lacoste et al. (2002) tested whether
such disturbance made oysters more susceptible to disease out-
breaks. They found that hemocyte chemotaxis, phagocytosis and
ROS production were all inhibited after continuous shaking for
15 min. These immunological parameters rapidly recovered in
the 60–90 min after shaking, indicative of an acute hormonal
stress response. Similar results were reported when abalone
(Haliotus tuberculata) were exposed to mechanical disturbance.
Immediately after agitation, hemocyte numbers, as well as amoe-
boid, phagocytic, and superoxide activities, were significantly
decreased. This was followed by a compensatory increase in most
parameters 4 h after the stress (Malham et al., 2003). In both of
these studies, noradrenaline and dopamine concentrations were
measured as stress indicators. The concentrations of both cat-
echolamine hormones increased immediately after the onset of
the mechanical disturbance. Such results suggest a direct link
between physical stress, hormonal responses, and immunological
impairment (Lacoste et al., 2002; Malham et al., 2003).

However, other studies on oysters have demonstrated very
different effects depending upon the type of stress applied. In
Eastern oysters (C. virginica) exposure to various concentrations
of tributyltin was found to have negligible effects on immunologi-
cal activity (Anderson et al., 1996). Similarly, exposure to different
salinity levels had no detectable effect on lysozyme or respira-
tory burst activities in the European flat oyster, O. edulis (Hauton
et al., 2000). This contrasted studies looking at dietary effects on
immunological activity in C. gigas. Zhang and Li (2006) found
that starving oysters for 42 days reduced condition indices and
lysosomal membrane integrity. Alternatively, improving nutrition
in Pacific oysters increased oxidative activity and phagocytic clear-
ance rates. These results were also replicated in similar trials using
the Manila clam, Ruditapes philippinarum (Delaporte et al., 2003).

Normal physiological variables have also been shown to
impair immunological activity. For instance, gametogenesis in
Pacific oysters reduces phagocytic activity and hemocyte func-
tion (Delaporte et al., 2006). It is thought that these physiological
changes associated with broadcast spawning could explain some
of the seasonal variability in immunological activity observed
in many molluscan species and their susceptibility to disease
(Duchemin et al., 2007).

Even though the role of environmental stress in the impair-
ment of immune responses has been established in a vari-
ety of aquaculture species, the effects that this immunolog-
ical suppression has on disease susceptibility has only been
investigated in a small number of host-pathogen relationships
(Lafferty and Kuris, 1999). One study investigated the col-
lapse of the Black abalone (Haliotis cracherodii) fishery on the
Californian coast. Field studies concluded that the combination
of numerous stressors, including increased water temperatures,

pollutants, over-fishing, and competition from sea urchins left the
abalone susceptible to the etiological agent of withered foot syn-
drome, Xenohaliotis americanus (Davis et al., 1992; Lafferty and
Kuris, 1999). Laboratory studies using another abalone species,
Haliotis diversicolor supertexta, found that exposures to ammo-
nia, high temperatures and low dissolved oxygen concentrations
all impaired cellular immunological responses. As a result, the
abalone in all treatments showed increased susceptibility to infec-
tion by Vibrio parahaemolyticus (Cheng et al., 2004a,b,c).

Disease susceptibility in the Eastern oyster, C. virginica, has
also been shown to increase in response to anthropogenic pol-
lutants (Chu and Hale, 1994; Fisher et al., 1999). However, Chu
et al. (2002) concluded that this increased susceptibility may not
have been caused by immunological inhibition. Despite testing
a range of cellular and humoral immunological parameters, no
differences could be detected between control oysters and those
exposed to contaminated sediments.

THE ROLE OF ENVIRONMENTAL STRESS IN QX DISEASE
Similar associations between environmental stress, the immune
system and disease have been identified in QX disease outbreaks.
Peters and Raftos (2003) found that inhibition of oyster immuno-
logical function (reflected by phenoloxidase activity) is associated
with infective periods for M. sydneyi. The fact that phenoloxidase
activity was suppressed in oysters that were not actively infected
with M. sydneyi suggests that external influences, and not M. syd-
neyi itself, were responsible for this inhibition of the immune
system.

Anecdotal evidence from oyster farmers had long pointed to a
link between QX disease and environmental factors. Initial exam-
ination of QX disease in southern Queensland suggested that
outbreaks occurred after heavy summer rainfall (Haysom, 1978;
Lester, 1986). This prompted studies to determine whether epi-
zootics of M. sydneyi were triggered by a drop in environmental
pH associated with runoff from acid sulfate soils. Early work
by Anderson et al. (1995) found that M. sydneyi infection still
occurred during periods when no major pH fluctuations were
observed. However, a subsequent study by Wesche (1995) found
that infection outbreaks did occur soon after a major drop in
environmental pH, even though no causal relationship between
pH and QX disease outbreaks could be established. It was also
demonstrated that substantial drops in pH could occur without
resulting in a QX disease epizootic.

A breakthrough in linking QX disease to environmental stress
came from a study by Peters and Raftos (2003), which again tested
a relationship between rainfall and disease, this time focusing on
low salinity rather than altered pH. They used field trials to show
that the activity of the key defensive enzyme, phenoloxidase, was
consistently lower in oysters held in QX disease prone areas, rel-
ative to those in QX disease free locations. This suggested that
suppression of phenoloxidase activity may be responsible for QX
disease outbreaks. Reanalysis of their data to include the salin-
ity of the water at the different locations over time identified
a strict relationship between low salinity associated with sum-
mer rainfall, suppression of phenoloxidase activity and increasing
intensity of M. sydneyi infection. This work (Peters and Raftos,
2003) also provided an explanation for temporal variation in QX
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FIGURE 9 | Results of a field trial conducted in the Georges River,

Sydney, between 2001 and 2004. Data were recorded for the salinity of
water in the river, the phenoloxidase (PO) activities in hemolymph from

oysters held in the river, and the intensity of M. sydneyi infections within
those oysters. Data were recalculated from those reported in Peters and
Raftos (2003).

disease, wherein severe disease outbreaks can occur within an oys-
ter growing area one year, but not the next. Their field studies
in the Georges River showed substantial differences in salinity,
phenoloxidase activity, and the intensity of M. sydneyi infection
between 2001, a year in which seasonally average levels of rainfall
were recorded in the Georges River catchment during summer,
and 2003, which was the beginning of a major drought on the
east coast of Australia (Figure 9).

The link between low salinity, immune suppression, and QX
disease was later supported by Butt et al. (2006), who demon-
strated that phenoloxidase activities were proportionally lower
in oysters exposed under laboratory conditions to low (7 ppt)
and intermediate (13.5 ppt) salinities, relative to those held under
“normal” (34 ppt) conditions. This correlation between low salin-
ity and low phenoloxidase activity was also evident in experi-
ments in which oysters were held in water from different sites
within the same river system that had different levels of salinity
(Butt et al., 2006). Significantly, these data also matched histor-
ical observations that QX disease outbreaks are more severe in
the low saline, upper reaches of estuaries. It may also explain why
more estuaries are affected by QX disease in sub-tropical regions
of Australia (northern NSW and southern Queensland) where
average annual rainfall can be more than twice that of temperate
(southern) areas.

Further investigation revealed that a range of environmen-
tal stressors, not just low salinity, have substantial effects on the
Sydney rock oyster immune system that might be associated with
disease susceptibility. For instance, Butt et al. (2008) showed that
the muscle relaxant, magnesium chloride, which was being tri-
aled for use in Sydney rock oyster hatcheries, significantly affected
a range of parameters associated with immune function. Total
hemocyte frequencies, acid phosphatase activities, and superox-
ide production were all found to increase within 48 h of exposing
oysters to magnesium chloride. In contrast, the phenoloxidase
activities of oysters exposed to magnesium chloride declined

significantly relative controls. All of these responses were relatively
short term (96 h), again indicating an acute stress response.

Starvation also has a modulatory effect on Sydney rock oysters.
Butt et al. (2007) demonstrated that the frequency of hemocytes
and phenoloxidase activity in oyster hemolymph decreased by
up to 25% in oysters whose diet had been halved relative to
fully fed controls. Superoxide and peroxidase production also
decreased significantly when oysters were starved (no food)
for 2–4 weeks. All of these parameters returned to normal
when starved oysters were fed. The recovery of phenoloxidase
activities over-compensated during the recovery (full feeding)
phase of the experiment to the extent that phenoloxidase activ-
ities post-recovery were substantially higher than those before
starvation.

These data suggest that a range of well-defined stressors
can affect the Sydney rock oyster immune system and may be
associated with disease susceptibility. However, in some cases,
the nature of the environmental perturbation associated with
immune suppression and disease remains unknown. Butt and
Raftos (2007) investigated a QX disease outbreak during 2005 in
the Hawkesbury River, Sydney, in an effort to identify environ-
mental variables associated with the disease in that river system.
As in the Georges River, they found that phenoloxidase (and
antimicrobial) activity was significantly inhibited during a key
period of M. sydneyi infectivity (January–March 2005) and that
phenoloxidase inhibition was strictly correlated with the intensity
of M. sydneyi infection in oysters. The data indicated that some
transient environmental stressor may have affected phenolox-
idase activity during the critical infection window, increasing
susceptibility of oysters to disease. However, the simultaneous
analysis of a broad range of environmental variables (salin-
ity, temperature, pH, algal density, chlorophyll a concentration,
and dissolved oxygen) failed to identify any single factor that
was associated with decreased phenoloxidase activity or disease
intensity.
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IMMUNOSUPPRESSION AND DISEASE SUSCEPTIBILITY
MAY BE ASSOCIATED WITH PROGRAMMED CELL DEATH
Even though there is strong evidence for a link between envi-
ronmental stress and disease susceptibility, information is only
now emerging to indicate a mechanistic basis for this asso-
ciation. A number of studies have shown that environmental

stressors affect oyster hemocytes, which are the main media-
tors of immune responses. For instance, Kuchel et al. (2010b),
Kuchel and Raftos (2011) investigated the effects of mechani-
cal agitation, hypo-saline conditions, and exposure to the air
on the hemocytes of Akoya pearl oysters (Pinctada imbricata).
They found that both phagocytosis and phenoloxidase activity

FIGURE 10 | Effects of noradrenaline on hemocytes morphology.

Hemocytes were stained for mitochondrial membrane potential (MitoTracker,
red), F-actin (phalloidin-Alexa Fluor 488, green), and nuclear DNA (TO-PRO-3,
blue). (A–C) Show stained hemocytes after different periods of noradrenaline
treatment (10, 20, and 30 min, respectively). (D,E) are untreated hemocytes.
(F,G) Show noradrenaline-untreated and treated hemocytes, respectively,

stained for mitochondrial membrane potential with DiOC6(3) (green) and
nuclear DNA with TO-PRO-3 (blue). (H,I) Show scanning electron micrographs
of untreated hemocytes and noradrenaline-treated hemocytes, respectively.
(J,K) Show transmission electron micrographs of untreated hemocytes, and
noradrenaline-treated hemocytes, respectively. The box in (K) is enlarged in
(L). Mitochondria are shown by arrows. (Aladaileh et al., 2008b).

www.frontiersin.org April 2014 | Volume 5 | Article 135 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Raftos et al. Microbial disease in oysters

decreased significantly when oysters were exposed to all three
stressors. Transient decreases were also evident in total hemocyte
counts after mechanical stress and exposure to air, while signifi-
cant increases in total hemocyte counts occurred after exposure
to low salinity. Most significantly, the frequency of different
hemocyte sub-populations in the hemolymph of P. imbricata
was significantly altered when oysters were subjected hypo-saline
conditions.

Lacoste et al. (2001a,b,c, 2002) began to uncover the mech-
anistic basis of these cellular responses to stress by demonstrat-
ing clear links between adrenergic stress responses, the sup-
pression of cell-mediated immune responses, and disease sus-
ceptibility in Pacific oysters. This early work was then taken
forward by Aladaileh et al. (2008a,b) and Kuchel and Raftos
(2011). Aladaileh et al. (2008a) showed that noradrenaline secre-
tion in Sydney rock oysters was stimulated by altered salinity,
extremes of temperature, and physical agitation. This suggested
that environmental factors that are commonly associated with
oyster farming lead to adrenergic stress responses. The same
study demonstrated that injecting noradrenaline into S. glomerata
inhibits the phenoloxidase activities of both whole hemolymph
and serum. It also decreases the frequency of hemocytes in
hemolymph, alters differential hemocyte frequencies (includ-
ing the frequency of phenoloxidase-positive cells), and inhibits
phagocytic activity. Additional in vitro studies showed that the
production of reactive oxygen intermediates, such as superox-
ide and peroxide, by hemocytes increased in the presence of
noradrenaline.

The effects of noradrenaline on the function of the Sydney rock
oyster immune system were linked to changes in the composition
of the defensive hemocyte population by Aladaileh et al. (2008b).
Noradrenaline was shown to induce some of the typical features
of programmed cell death (apoptosis) in S. glomerata hemocytes.
These features included the loss of mitochondrial membrane
potential, DNA fragmentation, and plasma membrane “bleb-
bing.” Restructuring of the F-actin cytoskeleton was associated
with these changes, which could explain why hemocyte adhe-
sion and pseudopodia formation by hemocytes were inhibited by
noradrenaline (Figure 10).

Similar observations have been made in the Akoya pearl oyster
(P. imbricata) (Kuchel and Raftos, 2011; Kuchel et al., 2011). They
found that treating P. imbricata hemocytes in vitro with nora-
drenaline resulted in enhanced DNA fragmentation relative to
controls. Annexin V-FITC staining, a marker of early apoptotic
events, and hemocyte adhesion were also significantly affected
by exposure to noradrenaline. In addition, morphological and
ultrastructural alterations that are typical of apoptosis were iden-
tified in noradrenaline treated hemocytes using transmission and
scanning electron microscopy. These changes included chromatin
and cytoplasmic condensation, the formation of apoptotic bodies,
vacuolization, and blebbing. Polymerization of F-actin was also
observed around the periphery of the cytoplasm.

All of these data support a model in which the apop-
totic cell death caused by hormonal responses to environ-
mental stress cause a depletion of critical hemocytes popula-
tions in oysters, resulting in immunosuppression and disease
susceptibility.

CONCLUSIONS AND FUTURE DIRECTIONS
Infectious diseases are the main factors that limit the production
of food and other products by aquaculture industries world-
wide. Substantial evidence suggests that disease susceptibility in
at least some aquaculture species, notably S. glomerata, is closely
linked to the immunosuppressive effects of environmental stress.
These effects seem to be mediated by hormonal stress responses
that result in the apoptotic death of crucial hemocytes popu-
lations involved in immunological defense. Our next challenge
is to understand the subcellular processes that result in apopto-
sis, and how these may be controlled to develop disease resis-
tant populations for aquaculture. We are currently investigating
whether environmental stress leads to increased metabolic activ-
ity with the consequent production of harmful ROS within oyster
hemocytes that damages the cytoskeleton and initiates apopto-
sis. At a broader level, aquaculture industries worldwide need
to start integrating our growing understanding of the cellular
and genetic basis of disease resistance into effective manage-
ment practices, such as marker assisted selection for disease
resistance.
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