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Abstract: Ocular diseases such as diabetic retinopathy (DR) and uveitis are associated with injury to
the blood–retinal barrier (BRB). Whereas high glucose (HG) and advanced glycation end products
(AGE) contribute to DR, bacterial infections causing uveitis are triggered by endotoxins such as
lipopolysaccharide (LPS). It is unclear how HG, AGE, and LPS affect human retinal endothelial cell
(HREC) junctions. Moreover, tumor necrosis factor-α (TNFα) is elevated in both DR and ocular
infections. In the current study, we determined the direct effects of HG, AGE, TNFα, and LPS on
the expression and intracellular distribution of claudin-5, VE-cadherin, and β-catenin in HRECs and
how these mediators affect Akt and P38 MAP kinase that have been implicated in ocular pathologies.
In our results, whereas HG, AGE, and TNFα activated both Akt and P38 MAPK, LPS treatment
suppressed Akt but increased P38 MAPK phosphorylation. Furthermore, while treatment with
AGE and HG increased cell-junction protein expression in HRECs, LPS elicited a paradoxical effect.
By contrast, when HG treatment increased HREC-barrier resistance, AGE and LPS stimulation
compromised it, and TNFα had no effect. Together, our results demonstrated the differential effects
of the mediators of diabetes and infection on HREC-barrier modulation leading to BRB injury.

Keywords: blood–brain barrier; claudin-5; AGE; TNFα; hyperglycemia; lipopolysaccharide

1. Introduction

According to the National Eye Institute, ~14.6 million Americans are expected to have
diabetic retinopathy (DR) by 2050, the major cause of vision impairment in the US [1]. A
major event in the course of DR is the breakdown of the inner blood–retinal barrier (BRB)
composed of retinal endothelial cells (RECs), pericytes, glia, and the outer BRB composed
of choriocapillaris and retinal pigment epithelial cells [2–5]. Retinal ECs and epithelial
cells are sealed by the adherens junctions (AJs) and tight junctions (TJs) to form a highly
selective barrier for gases, fluids, proteins, lipids, ions, salts, and other nutrients, and
inflammatory cells to pass through it by controlled junctional complex alterations and
turnover of proteins such as cadherins, claudins, and zona occludens-1 and 2 (ZO-1/2) [6,7].
The characteristics of a particular cell–cell junction differ with the type of cells involved
and the type of blood–tissue barrier [8–10]. The different repertoire of cell-junction proteins
in various vascular beds explains their physiological or pathological standing [5,11,12].
The molecular composition of BRB and their modulation in vision disorders such as DR,
retinopathy of prematurity, and uveitis are only starting to emerge.

DR is a neurovascular disease associated with REC dysfunction [13]. Chronic plasma
high glucose (HG) contributes to microvascular damage via reduced perfusion and is-
chemia through several hypoxia-driven factors [14]. The differences in the expression
profiles of proangiogenic factors, cytokines, and TJ proteins seem to be dictated by the
origin of ECs relating to their vascular bed [15,16]. How the human RECs (HRECs) respond
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to hyperglycemia and tumor necrosis factor-α (TNFα) are different from bovine retinal
ECs, and ECs from other vascular beds such as the human brain and umbilical vein (HU-
VECs) [17,18] have been reported. Whereas HG suppresses proliferation of HUVECs [19],
human pulmonary artery ECs [20], human dermal microvascular ECs [21], porcine aortic
ECs [22], and bovine retinal ECs [23], it induces proliferation of HRECs [24–26], suggesting
that HREC-junctions may have a distinct molecular architecture compared to other vascular
beds, which may have implications in various human retinal disorders.

Retinal vascular hyperpermeability occurs through various stimuli, leading to edema
and breakdown of BRB [27]. Although high glucose (HG), advanced glycation end prod-
ucts (AGE), TNFα, and lipopolysaccharide (LPS) are known to be modulating the BRB,
whether all these directly modulate HREC-barrier is unclear. Since the vascular endothelial
growth factor (VEGF) is not the only growth factor that is dysregulated in DR and uveitis,
we investigated the modulations in HREC-barrier in vitro and the underlying molecular
mechanisms in response to HG, TNFα, bovine serum albumin (BSA)-bound AGE, and LPS
to mimic diabetes- and infection-induced inflammation in the human retina. Specifically,
we determined the effect of these stimuli on HREC barrier integrity, AJ and TJ protein
expression, their intracellular localization, and changes in the phosphorylation of Akt and
P38 MAP kinase. Our results reveal distinct mechanisms of HREC-barrier regulation by
various agents that are upregulated in diabetes and infection. Treatment with Akt inhibitor
triciribine (TCBN) significantly reversed the adverse effects of HG and AGE on the HREC
barrier, thus suggesting the potential benefits of TCBN to treat DR-associated BRB injury.

2. Materials and Methods
2.1. Cell Culture and Reagents

HRECs were maintained in Endothelial Cell Basal Medium fortified with EC growth
supplements, antibiotics, and fetal bovine serum (Cell biologics, Chicago, IL, USA). Cells
were grown on flasks coated with gelatin (0.2%). Cells from passages 6–10 were used for
the experiment. All other plastic culture wares, reagents, and chemicals were purchased
from Fisher Scientific, Hampton, NH, USA. Considering that the culture medium already
contains 5.5 mM glucose, additional D-glucose was added to prepare a total of 30 mM
glucose-containing medium for the HG treatment [28]. The normal medium was served
as a control. Primary HRECs were exposed to glucose in two different conditions: (1) by
replacing 50 % (50–50) fresh medium each day for 5 d in both the control and treatment
groups, and (2) by treating cells once with HG medium with no change for 5 d. BSA-AGE
(Cat No. 121800) was purchased from Millipore (Boston, MA, USA). Human TNFα (Cat
No. A42550) was purchased from Thermo Scientific (Frederick, MD, USA). LPS lyophilized
powder (Cat No. L2018) was obtained from Millipore Sigma (Boston, MA, USA). Triciribine
(TCBN) was obtained from Selleckchem (Cat No. S1117), Houston, TX, USA.

2.2. Western Blot Analysis

The cell lysates were prepared using immunoprecipitation assay lysis buffer (Millipore,
Burlington, MA, USA) supplemented with protease and phosphatase inhibitors (Roche,
Basel, Switzerland). Protein concentration was measured by the DC protein assay (Bio-
Rad, Hercules, CA, USA), and approximately 30–40 µg of proteins in Laemmli buffer
were used. Western blotting was performed as described previously [29]. Densitometry
was performed using NIH ImageJ software. Antibodies used include pSer473-Akt (Cat
No. 9271), pThr308-Akt (Cat No. 9275), Pan Akt (Cat No. 4685), pP38 MAP Kinase
(Cat No. 9215), total P38 MAP Kinase (Cat No. 9212), VE-cadherin (Cat No. 2500), and
GAPDH (Cat No. 5174), were purchased from Cell Signaling, Danvers, MA, USA. Anti-
Claudin-5 (CLDN5) (Cat No. 352500) antibody was purchased from Thermo Scientific,
Waltham, MA, USA. Anti-mouse (Cat No. 170-6516) and anti-rabbit (Cat No. 170-6515) HRP-
conjugated secondary antibodies were obtained from Bio-Rad (Hercules, CA, USA). Alexa
485-conjugated secondary antibodies were purchased from Thermo Scientific (Frederick,
MD, USA). Antibody dilutions are provided in Appendix A.
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2.3. Measurement of Endothelial-Barrier Resistance

Endothelial-barrier integrity was measured as the electrical resistance of the endothe-
lial monolayer using electric cell-substrate impedance sensing (ECIS) equipment (Applied
Biophysics, Troy, NY, USA) as described previously [30]. To synchronize the HREC mono-
layer before the treatments, we allowed 24 h of stabilization time to achieve a stable resis-
tance. Once stable resistance was reached, cells were subjected to treatment with insults
(30 mM HG [28], 50 µg/mL AGE [31], 10 ng/mL TNFα [32], and 0.1 µg/mL LPS [33,34])
for 24 h or as specified, and the endothelial-barrier resistance was measured in real-time at
multiple frequency modes.

2.4. Immunofluorescence Staining and Confocal Imaging

Immunofluorescent staining of HREC monolayers was performed in eight-well cham-
ber slides (Fisher Scientific, Hampton, NH, USA). Confluent monolayers were treated
for 24 h and washed three times with PBS. The cells were fixed by incubating in ice-cold
4% paraformaldehyde (Cat N. AAJ19943K2) for 20 min followed by PBS wash. The cells
were permeabilized with 0.2% Triton X-100 for 15 min and washed with PBS. Cells were
incubated in a blocking solution (10% normal donkey serum +0.5% Triton-X in PBS) for
one hour. The cell monolayers were then thoroughly washed with PBS before incubation
with primary antibodies against CLDN5 (1:200, mouse) and β-catenin (1:100, rabbit) in
blocking solution at 4 ◦C overnight. Immunofluorescence was revealed by incubating in
Alexa-Flour secondary antibodies the next day (1:500 dilution of goat anti-rabbit 488 and
goat anti-mouse 488) obtained from Thermo Scientific (Waltham, MA, USA). Cells were
mounted onto a glass slide using DAPI containing mounting medium (Vector Laboratories,
Burlingame, CA, USA). Samples were observed under a confocal microscope equipped
with argon and helium/neon lasers (Zeiss, Oberkochen, Germany). Negative controls had
just the secondary antibodieswith primary antibodies omitted. All negative controls had
no detectable non-specific labeling.

2.5. Statistical Analysis

All of the data are presented as mean± SEM. The “n” value for each figure implies
the number of samples in each group. All band densitometry analyses are presented as
fold changes compared to respective control groups. All of the data were analyzed by
parametric testing using Student’s unpaired t-test or one-way analysis of variance, followed
by the post hoc test (Dunnett’s method) using the GraphPad Prism 6.01 software. Data
with p < 0.05 were considered significant.

3. Results
3.1. Treatment with HG Increases CLDN5 Expression

Treatment with HG (50–50) and HG (no media change) for 5 d resulted in the differ-
ential regulation of Akt and P38 MAPK activities (Figure 1). Whereas HG (50% media
replacement every 24 h) treatment resulted in the increased phosphorylation (both at
Ser473 and Thr308) of Akt (Figure 1B–E) and decreased phosphorylation of P38 MPAK
(Threonine-180/Tyrosine-182) levels (Figure 1F,G), HG (no change) treatment effects of
HRECs were paradoxical. Interestingly, both the HG conditions significantly increased
CLDN5 expression in HRECs (Figure 2A–C). Although there was a trend in the upregulated
expression of VE-cadherin with either of the HG treatments in HRECs, the data were not
significant (Figure 2D,E).
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Figure 1. HG treatments in two different conditions differentially modulate Akt and P38 MAPK
phosphorylation in HRECs. Two conditions of HG treatments (50–50 change every 24 h versus no
change in media for (5 d) were performed in HREC monolayers. (A) Representative Western blot
images of HREC lysates treated with two different conditions of HG (30 mM) showing changes in
the expression of phosphorylated Akt and P38 MAP kinase compared to their respective controls.
(B,C) Bar graph showing band densitometry analysis of pSer473-Akt expression in HRECs treated
with HG (50–50 (n = 6) versus no change (n = 14), (5 d) compared to respective untreated controls.
(D,E) Bar graph showing band densitometry analysis of pThr308-Akt expression in HRECs treated
with HG (50–50 versus (n = 3) no change (n = 3), (5 d) compared to respective untreated controls.
(F,G) Bar graph showing band densitometry analysis of pP38 MAPK expression in HRECs treated
with HG (50–50 (n = 6) versus no change (n = 16), (5 d) compared to respective untreated controls.
Data are presented as Mean + SEM. * p < 0.05; # p < 0.001.
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Upon treatment of primary HRECs with TNFα at 10 ng/mL for 24 h, there was a 
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Figure 2. HG treatments in two different conditions differentially modulate HREC-barrier protein
expression in vitro. (A) Representative Western blot images of HREC lysates treated with two
different conditions of HG (30 mM) for 5 d showing changes in the expression of AJ protein VE-
cadherin and TJ protein CLDN5. (B,C) Bar graph showing band densitometry analysis of CLDN5
expression in HRECs treated with HG (50–50 (n = 4) versus no change (n = 15), (5 d) compared to
respective untreated controls. (D,E) Bar graph showing band densitometry analysis of VE-cadherin
expression in HRECs treated with HG (50–50 (n = 6) versus no change (n = 3), (5 d) compared to
respective untreated controls. Data is presented as Mean + SEM. * p < 0.05.

3.2. TNFα Induces Modest Changes in Cell-Junction Protein Expression in HRECs

Upon treatment of primary HRECs with TNFα at 10 ng/mL for 24 h, there was a
significant increase in the phosphorylation of Akt (Figure 3B,C) and P38 MAPK (Figure 3D).
Interestingly, CLDN5 expression was modestly but significantly reduced by TNFα treat-
ment in HRECs (Figure 3E) but the expression of VE-cadherin was elevated considerably
(Figure 3F).
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Akt (n = 3) expression in HRECs treated with TNFα compared to untreated controls. (D) Bar graph 
showing band densitometry analysis of pP38 MAPK expression in HRECs treated with TNFα 
compared to untreated controls (n = 14). (E,F) Bar graph showing band densitometry analysis of 
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Interestingly, although the CLDN5 expression appeared to be increased with 25 and 50 
μg/mL AGE, we observed a sharp decrease in CLDN5 expression with 100 μg/mL 
treatment (Figure 4E). Intriguingly, the expression of VE-cadherin was increased with 100 
μg/mL of AGE treatment (Figure 4F) with no significant effect on other doses. 

Figure 3. TNFα treatment of HRECs reduces CLDN5 and increases VE-cadherin expression. (A) Rep-
resentative Western blot images of HREC lysates treated with TNFα (10 ng/mL) for 24 h showing
changes in the expression of phosphorylated Akt and P38 MAP kinase, VE-cadherin, and CLDN5.
(B,C) Bar graph showing band densitometry analysis of pSer473-Akt (n = 5) and pThr308-Akt (n = 3)
expression in HRECs treated with TNFα compared to untreated controls. (D) Bar graph showing
band densitometry analysis of pP38 MAPK expression in HRECs treated with TNFα compared to
untreated controls (n = 14). (E,F) Bar graph showing band densitometry analysis of CLDN5 (n = 12)
and VE-cadherin (n = 8) expression in HRECs treated with TNFα compared to untreated controls.
Data are presented as Mean + SEM. * p < 0.05; ** p < 0.01.

3.3. Treatment with BSA-Bound AGE Modulates CLDN5 Expression in HRECs

Primary HRECs upon treatment with BSA-bound AGE showed a dose-dependent
increase in the phosphorylation of Akt (Figure 4A–C) and P38 MAPK (Figure 4D). Inter-
estingly, although the CLDN5 expression appeared to be increased with 25 and 50 µg/mL
AGE, we observed a sharp decrease in CLDN5 expression with 100 µg/mL treatment
(Figure 4E). Intriguingly, the expression of VE-cadherin was increased with 100 µg/mL of
AGE treatment (Figure 4F) with no significant effect on other doses.
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Treatment of HRECs with LPS resulted in significantly reduced Akt phosphorylation 

at both Serine-473 and Threonine-308 residues (Figure 5A–C) associated with increased 

Figure 4. Treatment with AGE activated Akt and P38 MAPK and increased VE-cadherin expression
in HRECs. (A) Representative Western blot images of HREC lysates treated with AGE (25, 50, and
100 µg/mL) for 24 h show changes in phosphorylated Akt and P38 MAP kinase expression VE-
cadherin, and CLDN5. (B,C) Bar graph showing band densitometry analysis of pSer473-Akt (n = 6)
and pThr308-Akt (n = 4) expression in HRECs treated with AGE compared to untreated controls.
(D) Bar graph showing band densitometry analysis of pP38 MAPK expression in HRECs treated with
AGE compared to untreated controls (n = 6). (E,F) Bar graph showing band densitometry analysis
of CLDN5 (n = 5) and VE-cadherin (n = 4) expression in HRECs treated with AGE compared to
untreated controls. Data are presented as Mean + SEM. * p < 0.05; ** p < 0.01; # p < 0.001.

3.4. LPS Treatment Suppresses CLDN5 Expression with No Changes in VE-Cadherin

Treatment of HRECs with LPS resulted in significantly reduced Akt phosphorylation
at both Serine-473 and Threonine-308 residues (Figure 5A–C) associated with increased
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P38 MAPK (Threonine-180/Tyrosine-182) phosphorylation (Figure 5A,D). LPS treatment
for 24 h robustly decreased CLDN5 expression (Figure 5A,E) with a modest increase in
VE-cadherin expression (Figure 5A–F) specifically when treated with 0.1 µg/mL dose for
24 h.

Life 2021, 11, x FOR PEER REVIEW 8 of 18 
 

 

P38 MAPK (Threonine-180/Tyrosine-182) phosphorylation (Figure 5A,D). LPS treatment 
for 24 h robustly decreased CLDN5 expression (Figure 5A,E) with a modest increase in 
VE-cadherin expression (Figure 5A–F) specifically when treated with 0.1 μg/mL dose for 
24 h. 

 
Figure 5. Treatment of HRECs with LPS reduced expression of CLDN5 but not VE-Cadherin. (A) 
Representative Western blot images of HREC lysates treated with LPS (0.1, 0.5, and 1 μg/mL) for 24 
h showed changes in phosphorylated Akt and P38 MAP kinase expression VE-cadherin, and 
CLDN5. (B,C) Bar graph showing band densitometry analysis of pSer473-Akt (n = 6) and pThr308-
Akt (n = 3) expression in HRECs treated with LPS compared to untreated controls. (D) Bar graph 
showing band densitometry analysis of pP38 MAPK expression in HRECs treated with LPS 
compared to untreated controls (n = 5). (E,F) Bar graph showing band densitometry analysis of 
CLDN5 (n = 10) and VE-cadherin (n = 6) expression in HRECs treated with LPS compared to 
untreated controls. Data are presented as Mean + SEM. * p < 0.05; ** p < 0.01; # p < 0.001. 

3.5. Modulators of Diabetes and Infection Associated Inflammation Have Distinct Effects and 
Mechanisms to Modulate the HREC Barrier 

Measurement of HREC barrier resistance by ECIS assay revealed an increase in 
monolayer barrier strengthening with HG treatment for 24 h (Figure 6A). HREC 

Figure 5. Treatment of HRECs with LPS reduced expression of CLDN5 but not VE-Cadherin. (A) Rep-
resentative Western blot images of HREC lysates treated with LPS (0.1, 0.5, and 1 µg/mL) for 24 h
showed changes in phosphorylated Akt and P38 MAP kinase expression VE-cadherin, and CLDN5.
(B,C) Bar graph showing band densitometry analysis of pSer473-Akt (n = 6) and pThr308-Akt (n = 3)
expression in HRECs treated with LPS compared to untreated controls. (D) Bar graph showing
band densitometry analysis of pP38 MAPK expression in HRECs treated with LPS compared to
untreated controls (n = 5). (E,F) Bar graph showing band densitometry analysis of CLDN5 (n = 10)
and VE-cadherin (n = 6) expression in HRECs treated with LPS compared to untreated controls. Data
are presented as Mean + SEM. * p < 0.05; ** p < 0.01; # p < 0.001.

3.5. Modulators of Diabetes and Infection Associated Inflammation Have Distinct Effects and
Mechanisms to Modulate the HREC Barrier

Measurement of HREC barrier resistance by ECIS assay revealed an increase in mono-
layer barrier strengthening with HG treatment for 24 h (Figure 6A). HREC monolayers
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treated with TNFα for 24 h displayed no significant changes in barrier resistance in an ECIS
assay (Figure 6A). In comparison to TNFα, treatment with LPS showed a substantial reduc-
tion in HREC-barrier resistance compared to the control (Figure 6A). Like HG, treatment of
HREC monolayers with 50 µg/mL dose of AGE exhibited a significant reduction in barrier
resistance compared to control (Figure 6B).
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Since we specifically saw increased activation of Akt in HRECs treated with HG and 
AGE, we determined the effect of TCBN, an Akt inhibitor, on reversing the impact of HG 
and AGE on HREC monolayers and cell-barrier normalization in a 24 h ECIS assay. Co-
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a significant effect in increasing barrier resistance. Western blot analysis of AGE-

Figure 6. HG, AGE, LPS, and TNFα differentially modulated HREC-barrier resistance. (A) Graph
showing real-time changes in HREC-barrier resistance after treatments with HG (30 mM), TNFα
(10 ng/mL), and LPS (0.1 µg/mL) for 24 h compared to saline-treated control as measured using ECIS
equipment (n = 4). (B) Graph showing real-time changes in HREC-barrier resistance after treatments
with 50 µg/mL AGE and/or 10 µM TCBN for 24 h compared to saline-treated control as measured
using ECIS equipment (n = 4). (C,D) Representative Western blot images and the densitometry
analysis of HRECs treated with 50 µg/mL AGE and/or 10 µM TCBN (Akt inhibitor) for 24 h showing
changes in pSer308Akt phosphorylation normalized to total Akt and GAPDH (n = 4). Data are
presented as Mean + SEM. * p < 0.05; ** p < 0.01; # p < 0.001.

Since we specifically saw increased activation of Akt in HRECs treated with HG and
AGE, we determined the effect of TCBN, an Akt inhibitor, on reversing the impact of
HG and AGE on HREC monolayers and cell-barrier normalization in a 24 h ECIS assay.
Co-treatment of HRECs with TCBN prevented the loss of AGE (50 µg/mL)-induced barrier
resistance (Figure 6B). Interestingly, treatment of HREC monolayers with TCBN alone had
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a significant effect in increasing barrier resistance. Western blot analysis of AGE-Treatment
of HRECs showed a consistent increase in Akt phosphorylation at Threonine-308 residues
(Figure 6C,D), which was reversed upon co-treatment with 10 µM TCBN [29,30,35,36].

Next, we treated HREC monolayers with HG, AGE, TNFα, TCBN, and LPS for 24 h,
and performed immunostaining analysis to study the intracellular distribution of CLDN5
(TJ) and β-catenin (AJ). In our analysis, treatment with TNFα for 24 h resulted in an abnor-
mal pattern of CLDN5 distribution in HRECs. The loss of CLDN5 in HREC-junctions was
evident with LPS treatment (Figure 7). Interestingly, although TCBN treatment indicated
reduced CLDN5 distribution in HREC junctions, there were no developed gaps visible in
the HREC junctions, indicating that, despite reduced CLDN5 in cell junctions, TCBN treat-
ment increased HREC-barrier resistance as determined by the ECIS analysis. In contrast to
LPS but in agreement with the Western blot results, treatment with AGE and HG resulted
in increased CLDN5 expression but its distribution altered, both of which were reversed
and normalized by co-treatment with TCBN (Figure 7).

Apart from the TJ proteins, we determined the changes in β-catenin localization in
HREC monolayers post-treatment with HG, AGE, TNFα, TCBN, and LPS 24 h. Treatment
with TNFα showed an intact AJ with normal β-catenin localization in the cell–cell junctions
(Figure 8). By contrast, treatment with LPS exhibited reduced β-catenin localization and
increased gap formation in the HREC-barrier junctions, but no changes were observed in
β-catenin localization with TCBN treatment. Interestingly, treatments with AGE and HG
resulted in altered localization of β-catenin in HREC-barrier junctions, which was reversed
and normalized by co-treatment with TCBN (Figure 8). Together, these results demonstrate
distinct effects of HG, AGE, TNFα, and LPS and Akt inhibitor TCBN on HREC-barrier
junctions.
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4. Discussion

Regardless of the etiology and molecular mechanisms, vision disorders are associated
with injury to the BRB, recurrent episodes of inflammation, vascular permeability, and
edema [3,37]. Whereas BRB damage in DR is driven by hyperglycemia, AGE, and VEGF [27],
bacterial infections injure the BRB through the endotoxin-mediated EC and epithelial cell
damage [33,38].

In both conditions, TNFα plays a significant role in inducing inflammation, both
pre- and post-tissue injury [39]. Unlike the endotoxin-induced BRB injury and vascular
permeability in pathologies such as uveitis, BRB damage in DR is biphasic, characterized by
an early vascular loss in the retina followed by hypoxia-induced abnormal neovasculariza-
tion [40], causing vascular hyperpermeability and tuft formation in the proliferative stages
of DR [40]. The underlying molecular mechanisms of various vision disorders, specifically
on the direct modulators in HREC-barrier protein expression, remain largely unclear. There
are no existing reports on how LPS affects the Akt pathway and barrier junction protein
expression in HRECs. In the current study, we demonstrated that mediators of diabetes
such as HG and AGE modulate HREC-barrier function, cell-junction protein turnover, their
intracellular distribution, and phosphorylation of Akt and P38 MAPK differently compared
to treatment with bacterial LPS and TNFα.

Despite the rich literature on the effect of HG on ECs in vitro, the outcome varies
based on the context, species, vascular bed, micro- vs. macrovascular, and the experimental
conditions such as dose, duration, and frequency of treatments, and media change, etc.
HG inhibits migration [41,42], and induces apoptosis [43–45] and permeability [46] in
various cell types. In ECs, HG suppresses proliferation in HUVEC [19], human pulmonary
artery ECs [20], human dermal microvascular ECs [21], porcine aortic ECs [22], and bovine
RECs [23]. Conversely, there have been conflicting reports on REC response to HG. Several
studies have reported enhanced mouse REC-migration when exposed to HG with no effects
on apoptosis and capillary morphogenesis [47]. Intriguingly, studies have also reported
HG-induced REC proliferation [24–26] as a mechanism driving the vascular proliferative
stage of DR [48]. While HG treatment of HUVEC resulted in increased P38 MAPK activity
and suppressed proliferation [49], P38 MAPK activity was not affected, and VEGF expres-
sion was unaltered when RECs were cultured in HG medium [47]. In our analysis, HG
treatments elicited distinct responses in two different conditions. Whereas five days of
HREC treatment with HG with no media change suppressed Akt and activated P38 MAPK,
replenishing 50% of the HG-containing media every 24 h activated Akt and suppressed P38
MAPK. Surprisingly, in both conditions, HG treatment increased CLDN5 expression. These
variations and unaltered HREC-barrier resistance by HG in our ECIS analysis suggest that
further changes in experimental conditions may be required in modeling HG as a suitable
in vitro model of DR.

Although alterations in several pathways coincide with the physiological and patho-
logical cell-barrier modulations, protein turnover in AJs and TJs is primarily regulated by
the Src and Akt pathways, respectively, with some mutual cross-talk [5,12]. Activation of
P38 MAPK that drives the cell stress and inflammation [50] has also been reported to modu-
late AJs via the GSK3-β-catenin pathway [51,52]. Src-mediated VE-cadherin internalization
and AJ breakdown promote short-term vascular permeability by VEGF [29]. Interestingly,
long-term activation of Akt by VEGF is essential to restore the barrier function, which
is achieved through AJ stabilization by inhibiting the GSK3-β-catenin pathway and TJ
stabilization by transcriptional upregulation of CLDNs [29,30]. Sustained Src or P38 MAPK
activation and chronic inhibition of Akt lead to EC dysfunction [53]. Although it is known
that Akt inhibition will result in the loss of barrier integrity [36], overexpression of Akt
(myrAkt) has also proven to cause retinal vascular malformations [54]. Activation of the
PI3K/Akt pathway activity has been indicated to promote HG-induced ECM secretion and
cellular hypertrophy [55,56]. The enhanced vascular tuft formation in DR could be due to
the hyperactivation of Akt and overexpression of TJ proteins coinciding with abnormal neo-
vascularization, together causing vascular malformations. Since consistent Akt activation
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with HG and AGE in diabetes has been demonstrated [57,58], targeting Akt was suggested
as a therapeutic strategy to treat DR [59]. This suggests that a fine-tuning of Akt, as well as
AJ and TJ protein expression, may be crucial in retinal vasculature physiology. Alluding to
this, we observed hyperactivation of Akt increased expression and junctional accumulation
of CLDN5 with AGE and HG treatment in HRECs, and impaired HREC barrier-resistance
in vitro by AGE. The effect of the Akt inhibitor, TCBN, to reverse the adverse effects of HG
and AGE on HRECs further supports this view.

The next obvious question would be an alternative of a suitable in vitro model to
study diabetic complications in RECs. Although the HG is a preferred model, like any
other experimental model, HG also comes with some limitations such as different con-
ditions used by various laboratories, and discrepancies in the endpoints associated with
it. In the retina, AGE induces oxidative stress and inflammation to promote vascular
dysfunction [60]. Intravenous administration of AGEs in non-diabetic rats led to their
accumulation in the retinal blood vessels and induced pathophysiological hallmarks of DR
such as mitochondrial swelling, thickening of the retinal basement membrane, and pericyte
loss, etc. [61]. Deposition of AGE adducts in mice induced REC-barrier disruption and
retinal capillary hyperpermeability [31,62] through VEGF production [63], suggesting AGE
might be a better candidate to mimic DR effects in ECs in culture. Agreeing with this, we
observed impaired barrier resistance associated with the activation of Akt and P38 MAPK
and increased CLDN5 expression in HRECs with AGE treatment.

Although inflammation and vascular permeability occur in DR and uveitis, the retinal
vascular pathology and the involvement of EC-junctions in each condition appear to be
quite different. Furthermore, proinflammatory cytokines such as TNFα are elevated in
both conditions [64,65]. TNFα has been shown to induce REC permeability by reducing the
expression of TJ proteins through activation of PKCζ and NF-κB [32]. Where continuous
TNFα is antiangiogenic, a pulse of TNFα has been shown to prime ECs and is proangio-
genic [66]. By contrast, another study reported that a TNFα increase did not contribute to
BRB breakdown in early DR but led to BRB breakdown at later time points, suggesting
that the BRB loss in the advanced DR could be a result of other factors, such as advanced
lipoxidation end products (ALE) [67], AGE and VEGF [68]. In our analysis, we did not
see any significant effect of TNFα on HREC-barrier protein modulation or monolayer
resistance. Interestingly, we observed abnormal distribution of CLDN5 but not β-catenin
with TNFα treatment on HREC monolayers, however, with an intact cell-barrier. Together,
our findings suggest that the role of TNFα is likely to prepare the HREC monolayer for
inflammation rather than directly modulating the cell junctions.

In contrast to HG and AGE, treatment of RECs with LPS resulted in reduced expression
of VE-cadherin and CLDN5, increased gap formation in the monolayers, and reduced
monolayer barrier resistance. The literature indicates that knocking down TLR4, a receptor
for LPS [69], results in increased ZO-1 and occludin levels in RECs subjected to HG [70],
implying that TLR4 may be directly involved in REC-barrier regulation [34,71]. The effect of
LPS on Akt suppression and CLDN5 downregulation has also been demonstrated in human
lung EC cells [35]. In our analysis, we also observed a decrease in Akt phosphorylation in
HRECs with LPS treatment, the possible reason for decreased CLDN5 expression.

In summary, the current study offers novel insights into the different molecular mech-
anisms by which HG, AGE, TNFα, and LPS modulate primary HREC-junction protein
turnover, their distribution within the cells, and the monolayer barrier resistance in vivo.
Since most studies until today have been focused on the LPS-induced inflammation in the
retina, the current study is a first report on how LPS modulates claudin-5, VE-cadherin,
and β-catenin in HRECs. Furthermore, our study indicates the need for a fine tuning in the
Akt activity and HREC-junction protein expression to maintain barrier integrity. However,
the study comes with a few limitations, the major one being that this is an in vitro study,
and hence does not simulate perfect conditions of the disease in vivo. It is likely possible
that each of the stimuli used in our study may elicit a different response in vivo, where they
mediate their effects in conjunction with other molecules and conditions. Nevertheless, the
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study has laid a foundation to further explore the mechanisms leading to retinal diseases
such as DR and uveitis, a reliable model in AGE to mimic diabetes effects on HRECs, and
a potential candidate in TCBN to treat proliferative DR. Single-cell sequencing [72,73] of
HRECs treated with various growth factors and cytokines in the future will yield more
reliable information to help with therapeutic development for vision disorders.
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Appendix A

Table A1. List of antibodies and their dilutions used in the study.

Antibody Working Dilution (Primary) Working Dilution (Secondary)

pSer 473 Akt 1:1000 1:2000
Pan Akt 1:1000 1:2000

pP38 MAPK 1:1000 1:2000
Total P38MAPK 1:1000 1:2000

CLDN5 1:2000 1:5000
VE-Cadherin 1:1000 1:2000

GAPDH 1:5000 1:10,000
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