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Abstract

Reliable prediction of free energy changes upon amino acid substitutions

(ΔΔGs) is crucial to investigate their impact on protein stability and protein–
protein interaction. Advances in experimental mutational scans allow high-

throughput studies thanks to multiplex techniques. On the other hand, geno-

mics initiatives provide a large amount of data on disease-related variants that

can benefit from analyses with structure-based methods. Therefore, the com-

putational field should keep the same pace and provide new tools for fast and

accurate high-throughput ΔΔG calculations. In this context, the Rosetta

modeling suite implements effective approaches to predict folding/unfolding

ΔΔGs in a protein monomer upon amino acid substitutions and calculate the

changes in binding free energy in protein complexes. However, their applica-

tion can be challenging to users without extensive experience with Rosetta.

Furthermore, Rosetta protocols for ΔΔG prediction are designed considering

one variant at a time, making the setup of high-throughput screenings cumber-

some. For these reasons, we devised RosettaDDGPrediction, a customizable

Python wrapper designed to run free energy calculations on a set of amino acid

substitutions using Rosetta protocols with little intervention from the user.

Moreover, RosettaDDGPrediction assists with checking completed runs and

aggregates raw data for multiple variants, as well as generates publication-
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ready graphics. We showed the potential of the tool in four case studies, includ-

ing variants of uncertain significance in childhood cancer, proteins with

known experimental unfolding ΔΔGs values, interactions between target pro-

teins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is

available, free of charge and under GNU General Public License v3.0, at

https://github.com/ELELAB/RosettaDDGPrediction.
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1 | INTRODUCTION

Predicting the impact of amino acid substitutions in a
protein or at a protein–protein interface is becoming
more and more relevant as high-throughput sequenc-
ing data reveal a high rate of sequence polymor-
phisms of uncertain functional significance in protein-
coding regions (Federici & Soddu, 2020). In this con-
text, multiplex-based assays provide massive data that
can be complemented by structural studies on the
effects of protein variants (Anderson et al., 2022;
Cagiada et al., 2021; Gasperini et al., 2016; Ollodart
et al., 2021; Weile & Roth, 2018). Furthermore, satura-
tion mutagenesis is experimentally accessible thanks
to the advances in multiplex technologies. Therefore,
molecular modeling approaches must keep the same
pace and continue developing toward high-throughput
applications.

A convenient and quantitative manner for assessing
the impact of amino acid substitutions related to coding
variants is based on estimating the changes in Gibbs free
energy of folding/unfolding or binding. In this context,
several computational approaches based on the analysis
of protein structures are available to predict free energy
changes upon mutation (ΔΔGs) in protein structures
(Barlow et al., 2018; Delgado et al., 2019; Frenz
et al., 2020; Geng et al., 2019; Kortemme & Baker, 2002;
Kumari et al., 2014; Park et al., 2016; Schymkowitz
et al., 2005; Seeliger & de Groot, 2010; Smith &
Kortemme, 2008). These measurements can be used to
classify the effect of disease-related variants on protein
structural stability. As a consequence, they provide pre-
dictions of potential alterations in the protein cellular
level, propensity to aggregation or proteasomal degrada-
tion (Gerasimavicius et al., 2020; Stein et al., 2019). In
addition, they can also pinpoint functional effects due to
local changes in the interactions with other proteins or
biomolecules (Degn et al., 2022; Fas et al., 2020; Jepsen
et al., 2020).

Rosetta provides a variety of protocols to estimate
changes in free energy in terms of binding and folding/
unfolding (Barlow et al., 2018; Frenz et al., 2020; Kellogg
et al., 2011; Kortemme & Baker, 2002; Park et al., 2016).
Most of these protocols estimate the change in free
energy as an average over the free energy changes calcu-
lated in an ensemble of paired wild-type/mutated
structures.

Three features generally characterize Rosetta proto-
cols for the prediction of free energy changes upon muta-
tion: (i) the sampling method employed to generate the
structural ensemble, (ii) the energy function used to
quantify the free energy associated with each structure,
and (iii) the degree of flexibility allowed in the structure
to accommodate the mutation.

Currently, three state-of-the-art strategies are avail-
able in Rosetta to estimate the change in either folding or
binding free energy upon mutation. The first one, pre-
sented by Park and coworkers (Park et al., 2016) and
referred to as cartddg, is designed to work on monomeric
proteins. In this protocol, a sampling in the Cartesian
space (as opposed to internal dihedrals sampling) is car-
ried out, allowing small local backbone movements in a
three-residue window around the mutation site, together
with side-chains movements within a 6 Å radius from the
mutation site. The second protocol, cartddg2020, repre-
sents an updated variant of cartddg (Frenz et al., 2020).
The third protocol, developed by Barlow and coworkers
(Barlow et al., 2018) and named here flexddg, deals with
estimating the changes in binding free energy upon
mutation in a protein complex. It applies the “backrub”
sampling method (Smith & Kortemme, 2008) to recapitu-
late local backbone motions observed in crystal lattices.
The flexddg protocol seems to perform better with the
talaris2014 energy function (Barlow et al., 2018). This
protocol for binding free energies relies on a local sam-
pling of backbone and side chains for residues within an
8 Å radius from the mutation, followed by global optimi-
zation of the side chains.
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Rosetta is a feature-rich software suite under active
development, backed by a sizable community of users,
and built over roughly 20 years. Running the protocols
mentioned above directly with Rosetta requires an exten-
sive computational background and prior exposure to
several Rosetta features. These requirements may dis-
courage users with a more biology-oriented skillset,
despite the benefit that accurate predictions of free
energy changes upon mutations may bring to their
research. Furthermore, Rosetta protocols for ΔΔG predic-
tion are designed to be run considering one mutation at a
time exclusively, making high-throughput screenings
cumbersome to set up. We recently faced a similar chal-
lenge with implementing high-throughput scans based
on the FoldX free energy function to make them paralle-
lizable, more easily approachable, and applicable to
structural ensembles. This led to the development of
MutateX (Tiberti et al., 2022). FoldX, however, is known
to suffer from limitations due to backbone stiffness dur-
ing the sampling (Usmanova et al., 2018) and often low
accuracy in predicting mutations with stabilizing effects,
even though most prediction methods are biased toward
destabilizing mutations (Buß et al., 2018; Usmanova
et al., 2018). Rosetta-based calculations could offer a valu-
able complement to the ΔΔG estimates currently accessi-
ble with MutateX. Thus, we developed
RosettaDDGPrediction, a Python wrapper to perform
Rosetta-based protocols for ΔΔG prediction. Roset-
taDDGPrediction's outputs can also be converted to a for-
mat compatible with the MutateX plotting system,
allowing for an expanded visualization toolkit. Here, we
illustrate the applications and limits of the approach to
four different cases of study, covering both methodologi-
cal and biological applications. We focused on the com-
parison with experimentally determined unfolding ΔΔG
values (Case Study 1). We showed an example of the
application of RosettaDDGPrediction to the study of
protein–protein interactions and posttranslational modi-
fications (PTMs) (Case Study 2). We then evaluated the
influence of using AlphaFold2 models as starting struc-
tures for the calculations (Case Study 3). We then used
models from AlphaFold2 to assess the functional impact
of mutations identified by whole genome sequencing to
address cancer predisposition (Case Study 4).

2 | RESULTS

2.1 | Overview of the package

RosettaDDGPrediction is a pure Python package provid-
ing a uniform and easily accessible command-line inter-
face to flexddg, cartddg, and cartddg2020 protocols for

calculating free energy changes upon mutation. It is
devised to help users unfamiliar with the Rosetta suite
perform mutational scans and collect, aggregate, and
visualize data from those scans in an intuitive fashion. In
RosettaDDGPrediction, a “protocol” is intended as a set
of Rosetta runs and Python-based processing steps. Each
protocol takes as inputs the three-dimensional
(3D) structure of the protein of interest and a list of muta-
tions to be performed, finally returning the predicted free
energy changes associated with each input mutation. The
flexddg protocol consists of only one call to the rosetta_-
scripts executable for each mutation, which performs all
the necessary calculations as defined by Barlow and
coworkers (Barlow et al., 2018). On the other hand, the
cartddg protocol first energetically relaxes the input struc-
ture by using the Rosetta relax program to generate an
ensemble of relaxed conformations, followed by the selec-
tion of the most suitable one. Finally, it uses the carte-
sian_ddg application to relax the structure further and
perform the free energy calculations. The cartddg2020
protocol represents an updated version of the original
cartddg protocol. Here, the relaxation is performed by a
Rosetta script passed to the rosetta_scripts executable,
and then cartesian_ddg is run on the lowest energy struc-
ture produced by the relaxation. It is worth noting that
the relaxation procedure produces only one structure, as
per the original files provided with the work first describ-
ing the cartddg2020 protocol (Frenz et al., 2020). How-
ever, if the user decides to produce several relaxed
structures, the most suitable one (according to user-
selected criteria) will then be passed to cartesian_ddg.
The standard protocols are described in specific YAML
files provided with the package. With these files, expert
users can still tap into the full potential of the Rosetta
interface by providing virtually any Rosetta-compatible
option to the executables used by each protocol.

RosettaDDGPrediction consists of four main execut-
ables (rosetta_ddg_run, rosetta_ddg_check_run, roset-
ta_ddg_aggregate, rosetta_ddg_plot) performing different
tasks (Figure 1). Their behavior is controlled by a set of
configuration files, which can be fully customized to fine-
tune the parameters of each protocol, aggregation
options, and plot aesthetics.

rosetta_ddg_run is the executable responsible for run-
ning a Rosetta protocol to predict free energy changes
upon mutation over a set of selected mutations. Given a
protein structure in PDB format and a set of mutations, it
generates all the data structures and configuration files to
perform several runs in parallel, making them straight-
forward to perform and making the most of modern
many-cores computing infrastructures.

In rosetta_ddg_run, the user can specify the amino
acid substitutions to be performed in two different ways.
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In details, it is possible to provide a list of mutations con-
taining both the positions and the residues to which such
positions should be mutated (i.e., every single mutation is
uniquely identified by the protein chain, the wild-type
residue, the position of the residue in the chain, and the
mutated residue). As an alternative, the user can specify
multiple mutations to be performed simultaneously on
different protein residues. On the other hand, the user
can also pass a list of residues (each one identified by the
protein chain, the wild-type residue, and the position of
the residue in the chain) and a list of residue types. In the
latter case, all the residues specified in the first list will be
mutated, one at a time, to each residue type specified in
the second list. This allows RosettaDDGPrediction to
implement saturation mutagenesis scans alongside scans
of specific mutations.

The rosetta_ddg_run executable can optimize the
workload distribution over the available resources to
ensure efficient scheduling of the runs, thanks to the
Dask Python package operating under the hood. roset-
ta_ddg_run easily handles multistep protocols, requiring
sequential Rosetta calls and possibly processing the out-
put data between the steps. For example, for the afore-
mentioned cartddg and cartddg2020 protocols,
rosetta_ddg_run takes care of both Rosetta calls and the
processing steps.

Once the runs are completed, users can perform a
sanity check on the calculations using rosetta_ddg_-
check_run, which identifies problematic runs by scraping
the Rosetta output files. Finally, rosetta_ddg_aggregate
can aggregate raw data from the large numbers of col-
lected mutation runs into easily readable CSV table files
for successfully completed runs. These aggregate files
contain, together with the calculated differences in free
energy, additional information about each mutation, the
Rosetta energy function used, and the number of struc-
tures generated. rosetta_ddg_aggregate also allows gener-
ating aggregate outputs compatible with the MutateX
plotting system. Indeed, MutateX offers additional visual-
ization tools, including density plots, logo plots, distribu-
tion plots, and summary tables that can be easily
navigated (Tiberti et al., 2022).

Finally, rosetta_ddg_plot provides plotting utilities to
explore the aggregated data through several visualization
types, such as one-dimensional or two-dimensional heat-
maps. The latter is particularly convenient when a satura-
tion mutagenesis scan is run on a set of positions. In
addition, the contribution of each term of the energy
function to the final ΔΔG values can be visualized as
stacked bar plots, where positive and negative contribu-
tions add up on the corresponding semiaxes. Finally,
since all protocols implemented so far in

FIGURE 1 The RosettaDDGPrediction workflow and schematized plot types. The first step consists in running the rosetta_ddg_run

executable to obtain the predicted ΔΔG values for the changes in folding free energy (for monomeric proteins) or binding free energy (for

protein complexes). Then, rosetta_ddg_check can be used to ensure that all runs have been completed successfully. Data aggregation can

then be performed with rosetta_ddg_aggregate, and aggregate data can finally be visualized in different ways (heatmaps, bar plots, swarm

plots) using rosetta_ddg_plot.
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RosettaDDGPrediction determine the ΔΔG value associ-
ated with a mutation by averaging over the values pro-
duced by an ensemble of structures, the user may want to
visualize the distribution of such values to investigate the
source of potential outliers that may bias the average. In
this case, a swarm plot displaying such values as separate
data points constitutes a very insightful overview pro-
vided by rosetta_ddg_plot.

To guide the user on the number of cores and time
required for calculation, depending on the RosettaDDG-
Prediction protocol, energy function, and protein size, we
reported the results for different saturation scans in
Table 1.

2.2 | Case Study 1: Prediction of changes
in folding free energy upon mutations and
comparison with experimental values from
the ThermoMut database

To illustrate the performance of the ref2015 energy func-
tion, we performed folding free energy calculations with
both the cartddg (Figure 2) and the cartddg2020
(Figure S1) protocols and compared them to experimen-
tally determined unfolding ΔΔG values. The following
section illustrates, as an example, our findings when
using the cartddg protocol. We downloaded the Thermo-
Mut database (ThermoMutDB) (Xavier et al., 2021) and
selected four proteins as detailed in Section 4. In particu-
lar, we selected two bacterial enzymes with 117 and
597 mutations, respectively: Enterobacteria phage T4
Endolysin, ENLYS (UniProt ID: P00720), and Staphylo-
coccus aureus Thermonuclease, NUC (P00644). In addi-
tion, we performed the calculations on two human
proteins of interest in health and disease, that is, TP53

(P04637) and FKBP1A (P62942), with 45 and 68 muta-
tions with structural coverage, respectively. We applied
the secondary structure definition of PDBe (Varadi, Any-
ango, Armstrong, et al., 2022) and annotated each posi-
tion as either ɑ-helix, β-sheet, or loop in the wild-type
structures. This case study investigates the relationship
between experimental and predicted values per-mutation
when the data from all four proteins are pooled, allowing
us to achieve better statistical power than considering
each protein separately.

We performed a preliminary data exploration to
understand the agreement between the experimentally
determined and the predicted stability. Interestingly, data
points from the experimental and prediction dataset were
similarly distributed (Figure 2a), as corroborated by the
Kolmogorov–Smirnov test (p = 0.21).

We then investigated the relationship between pre-
dicted and experimental data using a simple linear
regression model (SLM), assuming that a perfect agree-
ment between the experimental and predicted values
would have an intercept of 0 and a coefficient of 1. The
SLM regression line had an intercept of 0.81 and a slope
of 0.719 (Figure 2b). The variance of the linear model (σ2)
is 3.95, and the model produced an R2 of 0.44, a Pearson
correlation coefficient (PCC) of 0.66, and a mean absolute
error (MAE) between the predicted and experimental
ΔΔGs (MAE) of 1.39. The residuals plot for this model
showed how the poor R2 value was at least partially due
to systematic bias (Figure S2). This illustrates that a lin-
ear model does not entirely explain the variance in
the data.

To better understand this behavior, we tried to fit the
data using a generalized additive model (GAM)
(Figure 2d). The resulting model had a roughly linear
behavior in the �0–5 kcal/mol range but becomes less so

TABLE 1 Examples of

performances of RosettaDDGPrediction

for different protein sizes, the number

of cores, and protocols applied

Protein size Number of cores Protocol Time (h)

120 16 cartddg (ref2015) 33

250 24 cartddg (ref2015) 67

250 8 cartddg (talaris2014) 89

340 16 cartddg (ref2015) 160

340 16 cartddg (talaris2014) 70

340 1 Relax 16

600 1 Relax 40

900 1 Relax 65

120; 17a 40 flexddg (talaris2014) 67

Note: In the case of complexes, the “protein size” column includes two values, that is, one value for each

protein/peptide in the complex. Calculations were run on servers equipped with either dual Xeon 6142
processors or dual Xeon 6242 processors. Each processor features 32 cores. The estimate refers to
calculations done with Rosetta version 3.12.
aThe one for which the saturation mutational scan was carried out.
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at lower or larger ΔΔG values. Similarly, the confidence
interval is very narrow in the linear regime interval, and
it is wider for large and small ΔΔG values, for which we
have fewer data points. This observation is in alignment

with Høie et al. (Høie et al., 2022), who found that ΔΔG
predictions made with ref2015 and the cartesian2020 pro-
tocol in 29 proteins correlated with altered protein func-
tions for ΔΔG > 4.5 kcal/mol, but the severity of the

FIGURE 2 Legend on next page.
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impact did not increase remarkably beyond this point.
We then assessed the impact of the secondary structure
on the performance of the prediction by building a SLM
for each of the secondary structure groups, divided into
ɑ-helices, β-sheets, and loops (Figure 2c). Residues
involved in structured regions are more likely to be part
of the protein core, less flexible, and more sensitive to
mutation with respect to solvent-accessible unstructured
loops. According to the PCC, MAE slope, σ2, and R2

values, the prediction was less consistent for the unstruc-
tured regions. Indeed, the loop subset featured a low PCC
score (0.58), indicating a poor linear relationship. On the
other side, the loop subset also resulted in the lowest
MAE value (0.33) between predicted and experimental
data, which could imply a better fit to the model. The low
MAE is, however, an artifact of the comparatively low
ΔΔG values observed in the loop regions. Loop regions
are often flexible and less sensitive to changes in folding/
unfolding ΔΔG upon mutation. This caused all the pre-
dicted or experimentally determined values to be grouped
close together (Figure 2c), which caused lower MAE
values than what observed for the ɑ-helix or β-sheet sub-
sets. In the loop dataset, we noticed several outliers in
which amino acid substitutions are predicted to have a
large destabilizing impact, whereas the experiments
found the same variants to be neutral or mildly destabi-
lizing. The experimental findings mostly align with the
expectation that substitutions in flexible loops have mild
effects on stability. However, some loop substitutions
may extend or create secondary structure elements, for
example, as a result of substitutions from proline (Pires
et al., 2019). The difference witnessed in this dataset was
likely due to Rosetta allowing local main chain flexibility,
which might not be enough to represent the conforma-
tional heterogeneity that disordered regions experience
in solution. We noticed similar behavior in applying

FoldX, which we could mitigate using ensembles of struc-
tures generated, for example, by molecular dynamics sim-
ulations (Fas et al., 2020; Nygaard et al., 2016; Tiberti
et al., 2022). It should be noted that the ɑ-helix mutations
dataset also contains outliers. This dataset, however, had
an overall better correlation with the experimental data-
set, and the coefficient of its regression line is closer to
1. This suggests that changes in loops are more difficult
to predict.

We then evaluated the performance of the predictions
in classifying mutations into destabilizing, neutral, and
stabilizing classes. We did so by classifying all mutations
causing stability changes above 1 kcal/mol as destabiliz-
ing, all mutations causing stability changes between
1 and �1 kcal/mol as neutral, and all mutations causing
stability changes below �1 kcal/mol as stabilizing (Frenz
et al., 2020; Park et al., 2016) and constructing a confu-
sion matrix (Figure 2e). This confusion matrix yielded an
accuracy of 0.74. The prediction accuracy was best for the
destabilizing class (0.76), with high sensitivity (0.83),
while the accuracy of the stabilizing class was only 0.56,
with a sensitivity of 0.17, indicating that the destabilizing
class is more likely to be correctly identified as compared
to the stabilizing class. The low accuracy could also be
expected due to the imbalanced dataset available for the
study, where a low number of stabilizing mutations is
available. While this dataset is not balanced, this may not
explain the bias in full, as the methodology itself could
have been developed on a biased dataset (Bæk &
Kepp, 2022; Pancotti et al., 2022). The neutral class per-
formed similarly to the destabilizing class (Table S1).

We performed the same analyses on the dataset
obtained using the cartesian2020 protocol, which showed
similar trends overall (Figure S1). Additionally, for com-
parison, we used a recent deep learning tool, which aims
at simulating the cartddg protocol, that is, RaSP

FIGURE 2 Comparison of changes in structural stability predicted with the ref2015 cartddg protocol and experiments. (a). Distribution

of the predicted and experimental stability changes in kilocalorie per mole. (b) Scatterplot of the ΔΔG values predicted by the ref2015

cartddg protocol and experimental values for the corresponding mutations. The blue line indicates a perfect correspondence between the

variables. The green line is the fitted simple linear model. The model has an intercept of 0.81, a slope of 0.72, a variance (σ2) of 3.95, and a R2

of 0.44, a Pearson's correlation coefficient (PCC) of 0.66, and a mean absolute error between the predicted and experimental ΔΔGs (MAE) of

1.39. (c) Scatterplots dividing the data by the wild-type secondary structure of the mutated position. The blue line indicates a perfect

correspondence between the variables for each plot. The green line is the fitted simple linear model. Here, it is evident how the structured

sections have a better correlation when compared to the loops. This is likely due to the flexibility of the unstructured sections. ɑ-helices:
PCC = 0.70, slope = 0.68, σ2 = 3.63, R2 = 0.49, MAE = 1.53. β-sheets: PCC = 0.70, slope = 0.99, σ2 = 4.98, R2 = 0.49, MAE = 1.38. Loop:

PCC = 0.58, slope = 0.45, σ2 = 1.99, R2 = 0.33, MAE = 1.22. (d) Generalized additive model (GAM) modeling the response variable, the

experimental ΔΔG value, to a predictive variable, the predicted ΔΔG value, by estimating a smooth function, smooth (predict). The smooth

function has an effective degree of freedom of 6.5, quantifying the complexity of the line. The dotted black lines indicate the confidence

interval, which is sufficiently narrow in the ΔΔG interval 0–5 kcal/mol (indicated with red dotted lines) to indicate that a linear relationship

is present in this interval. (e) Confusion matrix where the experimental values are annotated as the reference values. The threshold used to

define the classes is a ΔΔG of <�1 kcal/mol for stabilizing mutations, �1 < ΔΔG < 1 kcal/mol for neutral mutations and ΔΔG > 1 kcal/

mol for destabilizing mutations. The resulting accuracy is 0.74.
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(Blaabjerg et al., 2022) (Figure S3). Here, we also noticed
a remarkable performance both compared to both the
experimental values and the Rosetta predictions.

In conclusion, the Case Study 1 showed a good linear
correlation between predicted and experimental values,
especially in the range of 0–5 kcal/mol, where the trend
is generally conserved. Outside this range, the relation-
ship between the predicted and the experimental values
is less direct. We also show how predictions are more
reliable for structured regions of the protein while corre-
lation values are lower for unstructured regions.

2.3 | Case Study 2: Prediction of changes
in binding free energy for protein-short
linear motifs interactions

Within the protein–protein interaction landscape, intrin-
sically disordered proteins (IDPs) or regions (IDRs) have
been proven to play an essential role in different biologi-
cal events. IDPs and IDRs include functional motifs
known as short linear motifs (SLiMs) that are important
for the binding between IDPs and their target proteins
(Davey, 2019; Davey et al., 2011; van Roey et al., 2014).
An example is the LC3 interacting region (LIR), that is, a
class of SLiMs involved in selective autophagy (Sora
et al., 2020). One of the main features for regulating LIR
binding to proteins of the LC3 family is through PTMs,
especially through phosphorylation (Sora et al., 2020).
Here, we aim to show an application of the flexddg proto-
col to capture the changes in binding free energy upon
phosphorylation or mutations in the core region of LIR-
containing proteins.

First, we selected two examples of experimentally
characterized phospho-regulated LIRs for which the
structures were available on the Protein Data Bank,
that is, FUNDC1 in complex with LC3B (PDB entry
2N9X; Kuang et al., 2016) and PIK3C3 in complex with
GABARAP (PDB entry 6HOG; Birgisdottir et al., 2019).
Experimental data from isothermal titration calorimetry
(ITC) or peptide arrays are available for these two com-
plexes and include phosphorylations or phospho-
mimetics (Birgisdottir et al., 2019; Kuang et al., 2016;
Lv et al., 2017). We applied the flexddg protocol with
the talaris2014 Rosetta energy function to investigate
the effects of single and multiple phospho-mimetic
mutations at the known phosphosites (see Section 4).
Indeed, Rosetta does not provide parameters for phos-
phorylated residues. In addition, we included a compar-
ison with the estimates provided by FoldX using the
binding free energy protocol implemented in MutateX.
The results are described in detail below and reported
in Figure 3.

FUNDC1 is a mitophagy receptor that mediates the
selective removal of damaged mitochondria. It contains a
canonical LIR (core region, 18-YEVL-21), which is neces-
sary for interacting with LC3 and its role in mitophagy
(Kuang et al., 2016). FUNDC1 presents three experimen-
tally validated phosphosites in the surroundings of its
LIR motif: S13, S17, and Y18 (Figure 3a). ITC experi-
ments with different FUNDC1 LIR peptides and LC3B
reported a Kd of 0.40 ± 0.06 μM for the wild-type variant.
Phosphorylation at the S13 site resulted only in a slight
decrease of the LC3B affinity (Kd = 0.60 ± 0.05 μM) with
respect to the wild type. On the other hand, Y18 phos-
phorylation caused a five-fold Kd increase (Kd = 1.72
± 0.30 μM). This increase is slightly augmented if both
phosphorylations are combined (Kd = 2.00 ± 0.37 μM)
(Kuang et al., 2016). Additionally, another work reported
that S17 phosphorylation has an opposite effect and
increases the binding affinity for LC3B by three folds (Lv
et al., 2017). The flexddg protocol predicted the S13D and
S13E substitutions to have neutral effects on the binding,
in agreement with experiments (i.e., average
ΔΔG < 0.25 kcal/mol). However, the average ΔΔGs for
the S17E and S17D mutations are also low, suggesting
that, in this other case, the prediction cannot capture the
changes in the binding affinity observed experimentally
(Figure 3a). In the case of the single phospho-mimetic
mutations at Y18 and S13, the predicted ΔΔG sign was in
overall agreement with the effect measured experimen-
tally. Although, we noticed that, in this case, to use
trypthophan as a phospho-mimetic residue for phosphor-
ylated tyrosine does not efficiently capture the destabiliz-
ing effects of the PTM.

Surprisingly, the combination of phospho-mimetic
mutations at S13 and Y18 sites (i.e., S13E_Y18E and
S13E_Y18W) resulted in negative ΔΔG values, suggesting
a stabilizing effect in disagreement with what observed
experimentally (Figure 3b). Nevertheless, we observed
that the associated standard deviations are very high not
allowing for quantitative conclusions.

We then studied PIK3C3, a class III phosphoinositide
3-kinase enzyme of the PtdIns3K complexes, involved in
autophagy initiation. PIK3C3 presents a canonical F-type
LIR (250-FELV-253) required for the interaction with
GABARAP and GABARAPL1 (Birgisdottir, et al., 2019).
The effect of a double phosphorylation at S244 and S249
was studied with ITC. In these experiments, the substitu-
tion of both the phosphosites with glutamate caused a
17-fold increase in GABARAP binding (Kd = 2.9
± 0.1 μM) compared to the wild-type variant (Kd = 49.5
± 3.9 μM). Moreover, peptide array experiments showed
an increase in the binding affinity of the LIR peptide with
all the LC3 family members for the S249E variant
(Birgisdottir et al., 2019).
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To assess the potential of the flexddg protocol in cap-
turing the effects induced by the phosphorylations of the
PIK3C3 LIR, we modeled the S249E variant and a variant
including phosphomimetic mutations at both the S244
and S249 sites (i.e., S244E_S249E; Figure 3c). We also
tested the effect of the S249D substitution as a possible
phosphomimetic, even if no experimental data are avail-
able for this mutation. We noticed that using S249D as a
phosphomimetic provides different result than introduc-
ing a glutamate (Figure 3d). This supports the notion that
aspartate and glutamate cannot always be used as

phosphomimetics in an interchangeable manner. The
S249E variant had a slightly stabilizing effect on the bind-
ing (average ΔΔG = �0.59 kcal/mol) and, in general,
values of ΔΔG lower than 0 across the 35 independent
runs (Figure 3d). This is in partial agreement with the
peptide array results mentioned above. The results for
the double mutant variant S244E_S249E are in agree-
ment with the expected increase in binding affinity
observed experimentally, even if with large deviations
across measurements, suggesting that the flexddg proto-
col could provide, in some cases, a qualitative

FIGURE 3 Prediction of changes in binding free energy using the flexddg protocol for protein interactions mediated by short linear

motifs. (a) FUNDC1 LIR peptide (blue) in complex with LC3B (gray) in the structure associated with the PDB entry 2N9X. The S13, Y18, and

S17 phosphosites are shown as sticks and colored in yellow. (b) We report the predicted binding ΔΔGs for the single and double

phosphomimetic mutations for the FUNDC1 LIR phosphosites for which experimental data are available for comparison, along with the

same single mutations predicted with MutateX. For every variant, we also included the ΔΔG values obtained from experimental Kd of the

phosphorylated variants (pS13, pS17, pY18, and pS13_pY18). (c) PIK3C3 LIR peptide (blue) in complex with GABARAP (gray) in the

structure associated with the PDB entry 6HOG. The S244 and S249 phosphosites are shown as sticks and colored in yellow, while the

residues for binding to the GABARAP HP1 and HP2 pockets are shown as red and blue sticks, respectively. (d) We report the predicted

binding ΔΔGs for single and double phosphomimetic mutations, along with mutations to alanine in the core motif of the PIK3C3 LIR, for

which experimental data are available for comparison, along with the same single mutations predicted with MutateX. We also included the

ΔΔG value obtained from the experimental Kd of a S244E_S249E varian.t
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understanding of the effects of multiple amino acid sub-
stitution if they are located at structural proximity. We
noticed that FoldX failed in identifying the stabilizing
effect of the mutation on the binding and predicted
slightly destabilizing effects despite the possibility to
model the phosphorylated variant of the residue.

Furthermore, we evaluated whether the flexddg proto-
col could provide insights into the effects of mutations in
SLiMs where PTMs are not involved. In the case of LIRs,
the interaction between an LIR-containing protein and
an LC3 family member is mainly driven by two residues
of the LIR motif, which bind to the hydrophobic pocket
1 (HP1) and the hydrophobic pocket 2 (HP2) residues of
the LC3 protein, respectively (Sora et al., 2020). Thus, we
tested the capability of the flexddg protocol with the
talaris2014 energy function to predict the impact of the
known detrimental mutations F250A (residue for interac-
tion with HP1 pocket) and V253A (HP2 pocket) of PIK3C
in complex with GABARAP (PDB entry, 6HOG;
Birgisdottir et al., 2019). We observed a good agreement
between Rosetta- and FoldX-based calculations in identi-
fying these mutations as detrimental for binding to
GABARAP (Figure 3d) (Sora et al., 2020).

Overall, Case Study 2 illustrates the potential and lim-
itations of the RosettaDDGPrediction workflow. We iden-
tified as main challenges the prediction of increased
binding affinity (i.e., stabilizing mutations), to study com-
bined mutations and the usage of phosphomimetic muta-
tions instead of phosphorylated residues. Moreover, we
noticed that the results from RosettaDDGPrediction are
more consistent with the ΔΔGs from the ITC experi-
ments with respect to the ones obtained from the Muta-
teX protocol with the FoldX free energy function despite
FoldX allows to include phosphorylated residues. The
estimates provided by FoldX seem to capture variants
destabilizing for the binding to the target protein but
with highest ΔΔG than experimentally measured.

2.4 | Case Study 3: Influence of the
source of initial structures for the
calculations

Using structural models to perform prediction of ΔΔGs is
a tantalizing perspective because of intrinsic limitations
in the availability of experimental structures. This has
been shown to be reliable to a good extent—for instance,
using homology models with Rosetta allowed to achieve
similar performance when comparing predictions with
experimental ΔΔGs, as long as the sequence identity of
the template to the target protein was at least of 40%
(Valanciute et al., n.d.) and results obtained using Rosetta
are relatively robust to the use of models (Blaabjerg

et al., 2022; Valanciute et al., n.d.). The advent of Alpha-
Fold has revolutionized molecular modeling and struc-
tural biology (Jumper et al., 2021), resulting in models of
3D structures of proteins with quality comparable to that
achievable with experimental approaches and useful in
the context of computational biology, including the pre-
diction of changes of free energy (Akdel et al., 2022). The
current version (release 4) of the AlphaFold Protein
Structure Database contains over 214 million predicted
protein structures, corresponding to most proteins in
Uniprot 2021_4 and including 48 complete proteomes
(Varadi, Anyango, Deshpande, et al., 2022), providing a
rich source of structures for in silico mutational scans.

Here, we evaluated the influence of using a model
based on AlphaFold2 with respect to an x-ray structure of
the same protein with good resolution. For this goal, we
used as a case study the DNA binding domain (DBD) of
p53, for which experimental data are also available on
31 mutant variants from ThermoMutDB (Xavier
et al., 2021). We evaluated the agreement between our
calculated and experimentally available data using the
same parameters and energy functions, either the cartddg
or cartddg2020 protocol, and the two different starting
structures. We also included a variant of cartddg in which
we increased the number of runs per mutation up to
10 to determine whether it would improve our results. As
the final ΔΔG depends on the values obtained by the sin-
gle runs, we expect that increasing the number of sam-
ples might lead to better converged final ΔΔG values. We
measured the agreement through several metrics, such as
the Pearson correlation coefficient, MAE, and a ROC
curve. We performed most of our comparison considering
runs performed with the cartddg protocol. Therefore, in
this section, we will refer to the cartddg protocol unless
stated otherwise.

We obtained a similar pattern when comparing pre-
dictions and experiments using the experimental struc-
ture and the Alphafold2 model (Figure 4a) with a
positive linear correlation, as quantified by the Pearson
correlation coefficient (Figure 4b). The highest Pearson
correlation coefficient obtained was 0.79 using the scor-
ing function talaris2014 with the AlphaFold2 model and
10 runs (Figure 4b). However, all runs, including the
ones using the cartddg2020 protocol, achieved a correla-
tion in the range of 0.57–0.79. Values ranging from 0.74
to 0.79 were obtained by all runs using the x-ray structure
and by talaris2014 with AlphaFold2 using 3 or 10 runs.
Using ref2015 with the AlphaFold2 model led to a slightly
worse correlation of 0.57 for 3 runs and 0.68 for 10 runs.
The runs with ref2015 energy function and the cartddg
protocol (x-ray structure) using 10 runs had the smallest
MAE of 0.90 kcal/mol (Figure 4c). This result suggests
that this combination featured the lowest average
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FIGURE 4 Legend on next page.
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distance between predicted and target values among all
the different tested methods. It was closely followed by
talaris2014 with the AlphaFold2 structure using 3 and
10 cycles with 0.92 and 0.91, respectively. The rest of the
combinations had a MAE between 0.95 and 1.28.

Considering the ROC curve, we used the experimen-
tal free energy changes from ThermoMutDB as ground
truth. We partitioned our dataset into destabilizing and
nondestabilizing mutations depending on whether our
prediction or ground truth had ΔΔG > = 1.2 kcal/mol
(Degn et al., 2022). The best area under the curve (AUC)
was achieved by using the scoring function ref2015 using
the cartdgg protocol and the x-ray structure, yielding a
value of 0.97 (Figure 4d). In general, the different scoring
functions and structures behaved similarly.

The usage of the experimental x-ray structure or the
AlphaFold2 model did not affect the prediction perfor-
mance. The only exception was the combination of the
ref2015 energy function and the cartddg protocol with the
AlphaFold2 model, which had a lower correlation and
ROC AUC with respect to the other cases. Increasing the
number of runs also slightly improved the performance,
but with the trade-off of a considerably increased com-
puting time. Finally, we obtained mixed results when
comparing the ref2015 x-ray three-cycles with cartddg
with the corresponding cartddg2020 run. We did not see
any appreciable improvement when using cartddg2020
on the x-ray structure, as the cartddg2020 run has a
slightly lower correlation (0.74 vs. 0.76), higher MAE
(1.25 vs. 0.99 kcal/mol), and lower AUC (0.95 vs. 0.97)
considering the experimental data. Nonetheless, using
cartddg2020 with the AlphaFold2 model rescued the sub-
par performance of ref2015, as all its performance mea-
sures are more similar to those of the other cases.

It should be noted that the DNA-binding domain in
the p53 AlphaFold2 model, ranging from residues 91 to
289, features a good per-residue confidence score
(pLDDT) score, mostly above 70. This implies that more
tests on models or regions with lower quality should be
carried out in the future to determine whether our find-
ings can be generalized. It has been shown that protein
regions predicted with a confidence score lower than
50 are less in agreement with experimental data, possibly

due to the low-confidence regions including more often
disordered regions with a higher tolerance to mutations
affecting stability (Akdel et al., 2022).

2.5 | Case Study 4: Variants predisposing
to childhood cancer

In a recent study, 198 samples from different childhood
cancer types were analyzed in terms of germline variation
and cancer predisposition (Byrjalsen et al., 2020). Among
these, different variants of uncertain significance (VUS)
have been found with a frequency of <1% in the healthy
population. Approximately, 20% of the patients investi-
gated had VUS in DNA repair pathway genes. In addi-
tion, we carried out new analyses on a larger dataset
accounting for more than 550 germline samples from
Danish children. The selection criteria for the proteins
and the variants included in the study are described in
detail in Section 4 and in Figures S4 and S5. We retained
14 proteins, that is, ERCC4, BLM, FANCA, FANCE,
FANCF, FANCG, FANCI, FANCL, MLH1, MSH2,
MSH6, NBN, RAD51C, and RFWD3 for structure-based
calculations of the changes in folding ΔΔGs for the VUS.
All these genes are classified as tumor suppressor genes
in the COSMIC Cancer Gene Census v96 (Sondka
et al., 2018) or from the literature, in the case of FANCI
(Zhang et al., 2016) and RAD51C (Somyajit et al., 2010).

Since mutations in tumor suppressor genes are gener-
ally causing loss-of-function in cancer (Wang
et al., 2018), we were interested in identifying VUS that
could destabilize the protein structure and result in posi-
tive predicted ΔΔG values upon mutation. These variants
could be relevant to investigate further in terms of geno-
mic alterations predisposing to cancer. To this aim, we
retained the variants with structural coverage in Alpha-
Fold2 and high confidence scores for a total of 126 vari-
ants analyzed (Figures 5–7 and Table S2). According to
searches in ClinVar (Landrum et al., 2014, 2020), some of
the variants were annotated as benign or likely benign
but not related to childhood cancer. On the other hand,
only T1131A in FANCA was found as pathogenic. The
remaining were not deposited in ClinVar or annotated as

FIGURE 4 Comparison of experimental and predicted ΔΔGs using p53 as a case study. ΔΔG values were predicted using Rosetta

version 3.12 with the ref2015 and talaris2014 scoring functions, and the cartddg and cartddg2020 protocols (referred to as “C2020” in the

figure). We used the x-ray structure (PDB entry 2XWR) and a model from the AlphaFold2 database for the residues 91–289 of p53 as initial
structures, using our default number of runs (3) or 10 runs. (a) Experimental versus predicted ΔΔG values. (b) Pearson's correlation

coefficient between experimental and predicted values. (c) Mean absolute error (MAE) between experimental and predicted values.

(d) Receiver operator characteristic (ROC) curve. The classification for this curve was done by considering the changes of free energy values

reported in ThermoMutDB as ground truth, using 1.2 kcal/mol as ΔΔG cut-off to distinguish between destabilizing and nondestabilizing

mutations (see Section 4). The same criterion was used for the predicted mutations.

12 of 25 SORA ET AL.



FIGURE 5 Trimmed AlphaFold structures of the FA (Fanconi Anemia) proteins selected for the Case Study 4. Cartoon representation

of (a) FANCA37–1441, (b) FANCI1–1279, (c) FANCE12–534, (d) FANCF2–369, (e) FANCG12–616, and (F) FANCL1–375. The proteins are colored

according to the AlphaFold2 pLDDT score: very low (orange, pLDDT < 50), low (yellow, 50 < pLDDT < 70), confident (light blue,

70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as

spheres and labeled.
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uncertain significance or with conflicting evidence,
emphasizing the importance of additional analyses to
understand the effects at the protein level.

In this example, we applied the cartddg2020 protocol,
which considers the ΔΔG value referring to the mutant
structure with the lowest total energy. At first, we
retained, as predicted destabilizing, the variants with
ΔΔG values >1 kcal/mol (see Section 4) and confirmed
destabilizing by calculations with MutateX (Table 2).
Indeed, the foldX5 energy function, which is applied in
the MutateX protocol, is effective in capturing loss-of-
function mutations (Gerasimavicius et al., 2022; Nielsen
et al., 2017; Scheller et al., 2019). Of note, the pathogenic
variant T1131A is not predicted to destabilize the struc-
ture of FANCA by both Rosetta and FoldX calculations.
We hypothesize that the detrimental effects triggered by
this variant could be due to other properties such as
impaired activity, interactions, or PTMs at the cellular
level. Experimental studies at the cellular level confirm
that the T1131A substitution does not affect the protein
levels, in agreement with a neutral effect on the folding
ΔΔGs (Wilkes et al., 2017) and that the phenotype
reflects a functional impairment that has a mild impact
on drug sensitivity and the monoubiquitination of
another protein (Adachi et al., 2002; Wilkes et al., 2017).
T1131A could be further investigated using our recently
proposed multilayered structural framework for variant
annotations in proteins, that is, Multilayered Assessment
of VarIants by Structure for proteins(MAVISp) (Arnaudi
et al., 2022).

We also observed that one variant annotated as
benign in ClinVar (i.e., L605F FANCI) has predicted
changes in folding ΔΔG higher than 3 kcal/mol and is,
therefore, classified as destabilizing for the structural sta-
bility by our analysis. The variant has been characterized
with cellular assays, showing decreased protein levels
when compared to the wild type, which confirms our pre-
diction (Fierheller et al., 2021). On the other hand, the
variant P55L (predicted folding ΔΔG < 2.0 kcal/mol) was
expressed at the same level as the wild-type variant. In
addition, other benign variants in ClinVar resulted in
changes in free energy in the range of 1–2 kcal/mol
(Table 2). This observation suggests that variants for
which the predicted changes in stability are within 1–
3 kcal/mol should be further investigated to evaluate
whether they could result in neutral effects in terms of
protein levels in the cell or propensity for degradation. In

the case of MSH2 and MLH1, for example, it has been
shown that a predicted destabilization of more than
3 kcal/mol is sufficient to cause cellular degradation of
the proteins (Abildgaard et al., 2019; Nielsen et al., 2017).
Similar observations have been recently done in another
recent work on different proteins with benign variants
featuring predicted changes in stability in the range of
0.9–2.7 kcal/mol (Blaabjerg et al., 2022).

According to the results in Table 2 and the observa-
tion above, if we consider folding ΔΔG values higher
than 3 kcal/mol, our analyses suggest a number of VUS
that could predispose to loss-of-function through destabi-
lization of the protein structure and have a high REVEL
score which further support their possible pathogenic
impact (i.e., A797T in BLM, I706T in ERCC4, W410C
and F603S in FANCA, L329P in FANCF, V180G in
MLH1, V606F in MSH2, and G1072D in MSH6). Of note,
L329P in FANCE has been suggested to disrupt the sta-
bility of the catalytic module of the protein in a previous
structural study (Shakeel et al., 2019).

3 | DISCUSSION

We developed RosettaDDGPrediction moved by the need
to provide easy and scalable access to Rosetta-based
approaches to predict free energy changes in proteins
upon mutations. The possibility to perform mutational
scans in an efficient and scalable manner allows to have
a new systematic and large-scale approach at such data.
The fact that other implementations of this process have
been released in recent years (e.g., https://github.com/
KULL-Centre/PRISM/tree/main/software/rosetta_ddG_
pipeline) is a testament to its utility.

RosettaDDGPrediction takes care of the whole pro-
cess by performing a large number of ΔΔG predictions in
an efficient and scalable manner, making a high-
throughput calculations with Rosetta accessible, which is
helpful for both extensive mutational scans and struc-
tured benchmarks.

RosettaDDGPrediction is, to our knowledge, the first
wrapper devised to integrate state-of-the-art Rosetta-
based protocols for the predictions of free energy changes
upon mutation on binding and stability under a uniform
framework.

Furthermore, the software checks the success of the
runs, aggregates the data in CSV tables that are easy to

FIGURE 6 Trimmed AlphaFold structures of the of the DNA mismatch repair proteins selected for the Case Study 4. Cartoon

representation of (a) MLH11–341 and MLH1501–756, (b) MSH21–934 and (c) MSH6362–1360. The proteins are colored according to the

AlphaFold2 pLDDT score: very low (orange, pLDDT < 50), low (yellow, 50 < pLDDT < 70), confident (light blue, 70 < pLDDT < 90), and

very high (blue, pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as spheres and labeled.
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FIGURE 7 Trimmed AlphaFold structures of the proteins promoting the double-strand break (DBS) repair (RAD51C, RFWD3, ERCC4,

and NBN) and RECQ helicase (BLM) selected for proteins used for the Case Study 4. Cartoon representation of (a) RAD51C13–350,

(b) RFWD3284–774, (c) ERCC412–914, (d) BLM368–1290, and (e) NBN1–749. The proteins are colored according to the AlphaFold2 pLDDT score:

very low (orange, pLDDT <50), low (yellow, 50 < pLDDT < 70), confident (light blue, 70 < pLDDT < 90), and very high (blue,

pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as spheres and labeled.
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TABLE 2 Summary of predicted ΔΔGs for predicted destabilizing variants in childhood cancer

Variant ClinVar Predicted folding ΔΔG (kcal/mol) REVEL

BLM- L788I Conflicting interpretations of pathogenicity 2.233 0.503

BLM -A797T Entry N.A. 3.045 0.893

BLM - K846T Uncertain significance 1.227 0.136

BLM - Y1024C Uncertain significance 1.776 0.590

ERCC4 - R267C Uncertain significance 1.495 0.470

ERCC4 - P379S Conflicting interpretations of pathogenicity 2.051 0.526

ERCC4 - R576T Uncertain significance 1.012 0.274

ERCC4 - I706T Conflicting interpretations of pathogenicity 3.242 0.609

FANCA - F276I Entry N.A. 1.922 0.160

FANCA - W410C Entry N.A. 4.169 0.622

FANCA - F603S Uncertain significance 6.111 0.631

FANCA - A746S Benign/likely benign 1.696 0.374

FANCA - P1086L Entry N.A. 1.012 0.775

FANCE - A104P Entry N.A. 5.691 0.319

FANCE -L326W Uncertain significance 1.620 0.154

FANCE - M437T Conflicting interpretations of pathogenicity 1.930 0.134

FANCF - L329P Uncertain significance 8.170 0.417

FANCF - Y287C Uncertain significance 2.732 0.195

FANCF - Y274C Uncertain significance 3.526 0.193

FANCF- L129V Uncertain significance 1.086 0.069

FANCF - L80V Entry N.A. 2.001 0.104

FANCG - P545T Entry N.A. 1.918 0.465

FANCI - I275T Uncertain significance 3.041 0.22

FANCI - M363T Entry N.A. 2.593 0.242

FANCI - P471R Uncertain significance 1.730 0.837

FANCI - M525V Conflicting interpretations of pathogenicity 2.137 0.487

FANCI - L605F Benign/Likely benign 3.773 0.238

FANCI - C742S Benign 1.084 0.075

FANCI - Y923C Uncertain significance 3.806 0.391

MLH1 - P285S Uncertain significance 1.373 0.838

MLH1 - K618E Benign/Likely benign 1.296 0.874

MLH1 - V180G Uncertain significance 3.847 0.91

MSH2 - N127S Benign 2.172 0.741

MSH2 - L128V Conflicting interpretations of pathogenicity 2.309 0.613

MSH2 - L513V Uncertain significance 2.595 0.829

MSH2 - I577T Likely benign 2.067 0.928

MSH2 - V606F Entry N.A. 5.096 0.889

MSH2 - I770V Conflicting interpretations of pathogenicity 1.043 0.417

MSH6 - L396V Benign 1.369 0.322

MSH6 - S503C Entry N.A. 1.288 0.413

MSH6 - V878A Benign 2.073 0.155

MSH6 - G1072D Uncertain significance 6.349 0.623

MSH6 - V1253E Uncertain significance 2.986 0.952

(Continues)
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mine, and generates visual reports. As these steps are
independent, the aggregation and visualization tools can
be used on different datasets. In addition, we support
additional output formats compatible with the MutateX
plotting scheme (Tiberti et al., 2022). At the same time,
raw or aggregated data can be easily manipulated exter-
nally. RosettaDDGPrediction also devotes particular
attention to ensuring technical reproducibility by being
controlled through configuration files. Further develop-
ments of RosettaDDGPrediction will focus on integrating
its functionalities within MutateX, to provide a method-
agostic container to perform and collect high-throughput
mutational scans in a reproducible, automatized, and sus-
tainable manner.

In this context, the performances of RosettaDDGPre-
diction and MutateX are only as good as those of the
Rosetta- and FoldX-based methods that they incorporate.
Indeed, Rosetta-based protocols implemented so far rely
on different sampling methods to obtain models of the
mutant variant structures and on scoring the resulting
structures via knowledge-based energy functions to pre-
dict changes in the folding and binding free energy upon
mutation (O'Meara et al., 2015; Park et al., 2016). How-
ever, more rigorous strategies are available to predict
both the effect of mutations on the folding free energy
and the binding free energy (Benedix et al., 2009; Kumari
et al., 2014b; Seeliger & de Groot, 2010; Siebenmorgen &
Zacharias, 2020). For example, approaches leveraging
enhanced sampling along reaction coordinates designed
to study binding and unbinding events are available
(Bertazzo et al., 2021; Raniolo & Limongelli, 2020; Wing-
bermühle & Schäfer, 2020).

The time and computational resources needed by
these methods still prevent their usage for investigations
going beyond a few mutations. In these contexts, which
include, for instance, saturation mutagenesis scans,
Rosetta- and FoldX-based protocols represent a good
trade-off between accuracy and speed.

Nevertheless, Rosetta still presents a challenge when
noncanonical residue types are considered. Indeed, while

most noncanonical amino acids are supported, mutations
to phosphorylated residues cannot be performed in either
protocol to predict free energy changes. For this reason,
including strategies circumventing this issue would
greatly expand the application of RosettaDDGPrediction.

Furthermore, a milestone in structural bioinformatics
has been reached lately, with the release of AlphaFold2
and its outstanding performance in the CASP14 chal-
lenge (Jumper et al., 2021). Originally developed to solve
the long-standing protein folding problem, AlphaFold2
has already seen many spin-off studies to assess its poten-
tial (Evans et al., 2022; Porta-Pardo et al., 2022;
Robertson et al., 2021; Ruff & Pappu, 2021; Tsaban
et al., 2022). So far, evidence suggests that AlphaFold2
cannot effectively predict changes in folding free energy
upon mutation (Buel & Walters, 2022; McBride
et al., 2022; Pak et al., 2021). However, more studies are
needed to explore this possibility fully.

Our wrappers have been devised to be inherently
extensible. As stated earlier, a long-term perspective
may include transforming them into a more general
platform for structure-based methods to predict free
energy changes upon mutation based on freely accessi-
ble, open-source software. This will also allow us to
support other energy functions or schemes for free
energy calculations, as well as to include support to
transmembrane proteins including protocols as the one
developed by Tiemann et al. (Tiemann et al., n.d.).
Moreover, the results obtained here and in the original
publication (Blaabjerg et al., 2022) with the deep-
learning method RaSP pinpoints this approach as an
additional candidate to include in a unified framework
together with the support to FoldX- and Rosetta-based
calculations.

The efforts of centralizing the development of soft-
ware for in silico deep mutational scans using free
energy functions will help to move a step forward
toward a unified framework for high-throughput
structure-based calculations of free energy changes
upon mutation.

TABLE 2 (Continued)

Variant ClinVar Predicted folding ΔΔG (kcal/mol) REVEL

NBN - D95N Conflicting interpretations of pathogenicity 1.448 0.583

NBN - I171V Conflicting interpretations of pathogenicity 1.133 0.398

RFWD3 - Q577H Entry N.A. 1.469 0.162

Note: We did not report RAD51C and FANCL in the table since all the variants analyzed here for these proteins were predicted with neutral effects for stability.
We reported the full list of VUS in Table S2. Here, we included those variants that are predicted destabilizing by both Rosetta- and FoldX-based estimates,
using a threshold of folding ΔΔG of 1 kcal/mol. This is a threshold often used to discuss the effects of mutations on structural stability applying Rosetta- or
FoldX-based methods. We observed that there are variants that resulted in changes of ΔΔG above the threshold but with a benign Clinvar classification. This

suggests that a ΔΔG threshold of approximately 2–3 kcal/mol could be more suited to pinpoint pathogenic variants. NA indicates “not available.”
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4 | METHODS

The data and documentation on the case studies are
reported in the OSF repository, https://osf.io/84kwe/
(10.17605/OSF.IO/84KWE).

4.1 | Case Study 1

The ThermoMut database (Xavier et al., 2021) was
downloaded on April 22, 2022, as a JSON file. We pro-
cessed the database following four main steps: (i) For
each reported protein, we retained only the entries
including single mutations with an experimental value
of ΔΔG discarding entries with multiple mutations with
a combined ΔΔG; (ii) we reversed the sign of all the
ΔΔG values to fit the sign provided by the outputs of
RosettaDDGPrediction, (iii) we retained information on
pH values and experimental methods as metadata, and
(iv) we removed protein entries for which <10 muta-
tions were reported. Upon processing, we identified
133 proteins. We then searched for 3D structures avail-
able for each protein in the Protein Data Bank. In this
step, we retained matches that covered at least one
mutation of interest. We retained only protein structures
in their free state (i.e., not in a complex with other
interactors) for a total of 121 target proteins, effectively
removing 12 proteins where no structure or free state
was found. We selected two enzymes that included a
large number of amino acid substitutions with structural
coverage (i.e., ENLYS and NUC as represented by the
PDB structures 1P7S; Mooers et al., 2003 and 1EY0;
Chen et al., 2000, and two human proteins of interest in
health and disease; p53 and FKB1A as represented by
the PDB structures 2XWR; Natan et al., 2011 and 2PPN;
Szep et al., 2009 as case studies for this work). All are
used as simplistic monomeric structures and chosen
based on the coverage, quality, and lack of interactors.
The experimental values obtained in an acidic or alka-
line experimental setting (pH < 6 and pH > 8) were
excluded, as the ref2015 Rosetta energy function
(Cartesian space version) is simulating an environment
at pH 7.

This leaves 845 observations across the four proteins
for pH values 6, 7, and 8 and three methodologies, two
chemically denaturant-induced protein unfolding experi-
mental protocols, guanidine hydrochloride (GdnHCl),
Urea Denaturation (Urea), and one thermal denaturation
protocol (Thermal). We modeled the experimental and
predicted values using a simple linear model, analyzed
the contribution of secondary structures, and built a gen-
eralized additive model, thereby defining the limitations
of the model. Furthermore, we constructed a confusion

matrix based on the thresholds ΔΔG < �1 kcal/mol for
the stabilizing group, �1 kcal/mol > ΔΔG < 1 kcal/mol
for the neutral group, and ΔΔG > 1 kcal/mol for the
destabilizing group. Calculations were carried out with
Rosetta 3.12.

In addition, we applied the rapid protein stability pre-
diction (RaSP) (Blaabjerg et al., 2022) for comparison. We
used the Colab version of the software (https://colab.
research.google.com/github/KULL-Centre/papers/blob/main/
2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=
Z8nUmHI5rgjy). We used the resulting score_ml as a
proxy for the ΔΔG values. We applied a simple linear
model to compare RaSP predicted ΔΔG values to the
experimentally derived ΔΔGs and to the ΔΔG values pre-
dicted by the Rosetta-based protocols implemented in
RosettaDDGPrediction. Additionally, to explore the
model limitations, we built a generalized additive model.

4.2 | Case Study 2

We started from the phospho-regulated LIRs reported in
our previous review article (Sora et al., 2020) and other
literature search, and, for each of them, we verified if a
complex with one of the LC3/GABARAP family members
was available to use as starting structure for the muta-
tional scan. We retained for the analyses the following
complexes: LC3B:FUNCD1 (PDB entry 2N9X; Kuang
et al., 2016) and GABARAP: PIK3C3 (PDB entry 6HOG;
Birgisdottir et al., 2019).

We reconstructed missing coordinates in the struc-
tures using MODELER version 10.1 (Webb & Sali, 2016).

We used the flexddg protocol, as implemented in
RosettaDDGPrediction, with the talaris2014 energy func-
tion and Rosetta 3.12. Rosetta energy units (REUs) were
converted to kilocalorie per mole with the conversion fac-
tors provided for this energy function (Park et al., 2016).
We modeled the phosphorylated residues using phospho-
mimetic mutations to aspartic acid and glutamic acid for
each phosphosite and included also tryptophan for
phospho-tyrosine to identify possible effects due to steric
hindrance. In the calculations, we used 35,000 backrub
trials and an absolute score threshold for minimization
convergence of 1 REUs. We generated an ensemble of
35 structures for each mutant variant and calculated the
average ΔΔGs and the standard deviation among the
individual binding free energies.

For the MutateX runs, we calculated changes in bind-
ing free energy using the Build Model and Analyze Com-
plex functions of FoldX5 suite and averaging over five
runs. The standard deviation for the ΔΔG values pre-
dicted with RosettaDDGPrediction and MutateX have
been calculated using the GraphPad Prism 9 software.

SORA ET AL. 19 of 25

https://osf.io/84kwe/
https://colab.research.google.com/github/KULL-Centre/papers/blob/main/2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=Z8nUmHI5rgjy
https://colab.research.google.com/github/KULL-Centre/papers/blob/main/2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=Z8nUmHI5rgjy
https://colab.research.google.com/github/KULL-Centre/papers/blob/main/2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=Z8nUmHI5rgjy
https://colab.research.google.com/github/KULL-Centre/papers/blob/main/2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=Z8nUmHI5rgjy


We derived the ΔΔG values for each experimental Kd

by using the following Gibbs free energy and constant
equilibrium equations:

ΔΔG¼�RTlnKeq

Keq ¼ 1
Kd

We combined the equations in order to compute the
ΔG for the mutant and the WT as follows:

ΔG¼RTlnKd

The 44G has been calculated subtracting the ΔG of
the WT to the ΔG of the mutant:

ΔΔG¼RTlnKd__mutant�RTlnKd__WT

ΔΔG¼RTln
Kd__mutant

Kd__WT

The standard deviations associated with the Kd mea-
surement have been propagated for the ΔΔG calculations
by using Uncertainty Calculator (https://
uncertaintycalculator.com) and Propagation-of-Uncer-
tainty-Calculator (https://nicoco007.github.io/
Propagation-of-Uncertainty-Calculator/).

4.3 | Case Study 3

We retrieved experimental ΔΔG values from point muta-
tions of the p53 DNA-binding domain from Thermo-
MutDB. Since ThermoMutDB stores ΔΔGu values, they
were converted to ΔΔGf by changing the sign to make
them easily comparable with Rosetta output values. A
total of 31 mutations were selected, and when multiple
experimental values were reported for the same variant,
the average of their ΔΔGf was used.

We used two different structures. The first one con-
sists of the x-ray crystallography of the PDB entry 2XWR,
with a resolution of 1.68 Å, which covers the DNA-
binding domain from residues 91 to 289 and includes the
zinc ion. The water molecules were removed using
PyMOL (http://www.pymol.org/pymol). We also used
the model from the AlphaFold2 database, which was
trimmed to cover the same residues as the experimental
x-ray structure, from 91 to 289. The missing zinc ion was
added using PyMOL, identifying its coordinates by rigid
body superimposition with the original structure. Before,
we verified that the residues, which coordinate the zinc
ion (C176, H179, C238, and C242), had a good alignment

and similar rotamer conformations between the two
structures.

For the ΔΔG predictions, we mostly used the cartddg
protocol with the ref2015 and talaris2014 scoring func-
tions, each with 3 and 10 sampling runs and Rosetta 3.12.
We also used the cartddg2020 protocol on both struc-
tures, but only using the ref2015 scoring function and
three runs.

The performance was measured by Pearson correla-
tion coefficient, MAE, and area under the curve (AUC) of
the ROC curve. For the ROC curve, we used a threshold
of 1.2 kcal/mol for the ThermoMutDB averaged values,
meaning that mutations associated with a free energy
change higher than 1.2 kcal/mol were considered desta-
bilizing, according to the threshold selection proposed for
p53 in our previous study (Degn et al., 2022). In compari-
son, mutations associated with a free energy change
lower than the threshold were classified as nondestabiliz-
ing. The MAE was calculated using the following
equation:

ξ¼
Pn

i¼1 jyi�byij
n

Here, yi is the experimental values and byi is the predicted
values.

4.4 | Case Study 4

We retrieved relevant VUSs from germline WGS data
on 566 children with cancer included in an in-house
dataset and published, in part, in a previous study
(Byrjalsen et al., 2020). In addition, we analyzed a data-
set including 566 samples from Danish children with
different cancer types and whole genome sequencing
data. An illustration of the workflows for analyzing the
sequencing data and annotating the called variants is
provided in Figures S4 and S5. The sequencing data
have been processed with a pipeline based on Sentieon
using the reference genome reference genome Grch38/
hg38 from GATK resource bundle (ELELAB/sen-
tieon_wgs_pipeline). Reads were aligned with BWA-
MEM to the reference genome, and duplicate reads
were removed. Reads were realigned around indels, and
we applied Base Quality Score Recalibration together
with the Haplotyper algorithm for variant calling
(equivalent to the GATK Haplotype; van der Auwera &
O'Connor, n.d.). Then, as suggested by GATK best prac-
tices, we used Variant Quality Score Recalibration,
which is an advanced filtering technique used on the
variant call set that models the technical profile of vari-
ants in a training set using machine learning and filters
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out potential artifacts from the callset. The filtered vari-
ants were uploaded to an in-house mySQL database
where we linked them with information about genomic
context (ENSEMBL v95), ENSEMBL consequences,
deleteriousness-scores (CADD 1.6, REVEL, SIFT, Poly-
Phen) and variant frequency in the healthy population
(gnomAD v3; Karczewski et al., 2020) based on their
genomic position and alternate allele (Figure S3). To
this purpose, we annotated our variants with the gno-
mAD popmax allele frequency, that is, the maximum
allele frequency in all the the continental populations
(Gudmundsson et al., 2022), along with the allele fre-
quency of the non-Finnish European population.

In particular, we annotated the REVEL
score(Ioannidis et al., 2016) associated with the genomic
mutation by using the publicly available dataset of pre-
computed scores, by matching genomic coordinates,
annotated transcript for the mutation and alternate
nucleotide. We could not annotate a REVEL score for
four of the identified variants, most likely as they were
not missense. Two of them caused early translation ter-
mination by introducing a stop codon in the reference
BRCA2 transcript (13:g.32337185A>T and 13:
g.32398489A>T, corresponding to p.Lys944* and
p.Lys3326* at protein level).The other two (2:
g.47607407G>A and 2:g.47607446G>A, corresponding to
p.Arg923Gln and p.Gly936Asp in MSH2 at protein level
for the reference transcript) were annotated as both mis-
sense and nonsense-mediated decay in our dataset,
meaning they are annotated as nonsense-mediated decay
for at least some of the MSH2 transcripts, and this is
probably the reason they were not available in the
REVEL database.

We retained, as VUS to investigate, those variants
located in the coding regions and found with an allele
frequency in the non-Finnish European population lower
than 1% in gnomAD v3 (build 38) as a proxy for a healthy
population. This threshold has been selected according to
the guidelines for clinical VUS studies (Richards
et al., 2015). An illustration of the workflow for analyzing
the sequencing data is provided in Figure S4.

We searched each variant in the selected 14 genes for
the study in ClinVar (Landrum et al., 2014; Landrum
et al., 2020) and retrieved annotations on them to verify
if they are VUS, variants with conflicting evidence, or not
reported yet in the database. To select the proteins and
variants that can be investigated with RosettaDDGPredic-
tion, we then searched in the AlphaFold2 database
(Varadi, Anyango, Deshpande, et al., 2022) for the corre-
sponding protein structures and retained those that had
structural coverage for the variants in regions with high
confidence (pLDDT > 70) trimming the N-terminal or C-
terminal tails. For MLH1, we used the structure of the

two protein domains, for the other proteins, we retained
cases in which the pLDDT score was low but located in
loops that connect structured regions of folded domains.
These regions are often very flexible in a protein struc-
ture, and it is thus expected that they could have a lower
pLDDT score. We analyzed 14 proteins and 126 variants
in total.

We excluded mutations either not covered by our
trimmed models or derived from an isoform different from
the one available in the AlphaFold2 database. Concerning
MSH2, we did not analyze G936D since our isoform had
934 residues, while R293Q refers to the A0A2R8Y-
G02_HUMAN isoform (Hillier et al., 2005). In the case of
MSH6, T1125M was removed since derived from the
A0A494C0M1_HUMAN transcript (Hillier et al., 2005).
Furthermore, the following seven variants found in
FANCL were also disregarded: S356N, S356N, G322V,
F257C, T229A, I199V, and V181I. These variants were
generated from FANCL isoform 2 (ENST00000402135.8,
Q9NW38–2, 380aa), which did not match the AlphaFold
model for FANCL (ENST00000233741.9, Q9NW38,
375aa).
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