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Rationale: There are widespread histaminergic projections throughout the brain, including hypoglossal nuclei, that modulate
pharyngeal muscle tone and respiratory control. Hence, histaminergic stimulation pharmacologically may increase pharyngeal muscle
tone and stabilize respiratory control (loop gain) to reduce obstructive sleep apnea (OSA) severity. Antimuscarinics also increase REM
pharyngeal muscle tone in rats. Thus, a combination of histaminergic and anti-muscarinic drugs may be a novel target for OSA
pharmacotherapy. However, this has not been investigated. Accordingly, we aimed to test the effects of betahistine (Beta), an H3-
autoreceptor antagonist which thereby increases histamine levels, in combination with the antimuscarinic oxybutynin (Oxy), on OSA
severity, OSA endotypes, polysomnography parameters and next-day sleepiness and alertness.
Methods: Thirteen adults with OSA received either Beta-Oxy (96–5mg) or placebo according to a randomized, crossover, double-
blind design, prior to polysomnography. Participants completed the Karolinska Sleep Scale and Leeds Sleep Evaluation Questionnaire
and a driving simulation task to quantify next-day sleepiness and alertness. OSA endotypes were estimated through validated
algorithms using polysomnography.
Results: Compared to placebo, Beta-Oxy increased respiratory control sensitivity (loop gain) (0.52[0.24] vs 0.60[0.34], median [IQR],
P = 0.021) without systematically changing OSA severity (34.4±17.2 vs 40.3±27.3 events/h, mean±SD, P = 0.124), sleep efficiency,
arousal index or markers of hypoxemia. Beta-Oxy was well tolerated and did not worsen next-day sleepiness/alertness.
Conclusion: Rather than stabilize breathing during sleep, Beta-Oxy increases loop gain, which is likely to be deleterious for most
people with OSA. However, in certain conditions characterized by blunted respiratory control (eg, obesity hypoventilation syndrome),
interventions to increase loop gain may be beneficial.
Keywords: pharmacotherapy, respiratory control, histamine, sleep disordered breathing, upper airway, endotyping

Plain Language Summary
In light of observations that histaminergic receptors are highly expressed at the hypoglossal level and that antimuscarinics increase
pharyngeal muscle tone in REM sleep, we tested the combination of betahistine (Beta), to increase histamine levels, with the
antimuscarinic oxybutynin (Oxy) on obstructive sleep apnea (OSA) severity and endotypes. Beta-Oxy increased the sensitivity of
the respiratory control system (loop gain) in the absence of an effect on AHI, which makes this combination unsuitable for most OSA
patients, but may be promising for disorders characterized by reduced chemosensitivity.

Introduction
Obstructive sleep apnea (OSA) is a common breathing disorder characterized by repetitive narrowing or occlusion of the
upper airway during sleep.1 Impairment in the anatomical components of the upper airway (eg, a narrow/collapsible
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pharynx) and other physiological traits/endotypes, such as respiratory control stability/loop gain, the respiratory arousal
threshold, and upper airway muscle function, play a major role in mediating the propensity for OSA.2 Impaired upper
airway muscle function or elevated loop gain, via destabilization of upper airway patency and breathing, are estimated to
be key pathogenic contributors for more than half of all OSA patients.2 Current treatments however, such as continuous
positive airway pressure (CPAP), mandibular advancement devices, and surgery, primarily target the anatomical
endotype, with variable efficacy, compliance and patient outcomes.3

Recent research has shown that pharmacotherapy that targets one or more of the non-anatomical OSA endotypes can
reduce OSA severity and thus may have a potential future role in personalized treatment for OSA.3–9 Key background
findings stemmed from animal studies that demonstrated several neurotransmitters play a major role in upper airway
stabilization during sleep.10,11 Hypoglossal nuclei express abundant concentrations of H1-receptors in rats12 and guinea
pigs.13,14 H2-receptors have been identified in the medulla.15 H3-autoreceptors may also modulate hypoglossal motor-
nuclei activity.16 Histamine administration at the hypoglossal motor nucleus significantly increased tonic (ie, expiratory)
activity of the largest upper airway dilator muscle, genioglossus, in both non-REM and REM sleep via activating H1-
receptors in rats17,18 and cats.19 However, histamine neurons become largely silent at sleep onset during natural
sleep.20,21 In humans, knowledge on the role of histaminergic stimulation on upper airway stability is limited.
Desipramine, which reduced upper airway collapsibility in healthy controls and OSA patients,22,23 had minimal effects
on the AHI overall,22 likely due to a wide, non-specific spectrum of target activity, including antagonism of histaminergic
receptors.24 Pitolisant, an H3-autoreceptor inverse agonist with wake promoting properties, increases daytime alertness in
people with OSA.25,26 However, the effects of histaminergic mechanisms on upper airway stability and respiratory
control in people with OSA have not been investigated.

Betahistine, a drug commonly used in clinical practice for Ménière syndrome, is a mild H1-agonist and a potent H3-
autoreceptor antagonist/inverse agonist.27 H3-autoreceptor blockage increases brain levels of histamine.28 Additionally,
H3 antagonism can potentiate the activity of other neurotransmitters in the central nervous system, including
norepinephrine,29 highly expressed at the hypoglossal motor nuclei, and acetylcholine.30

Recent studies indicate that noradrenergic agents, which, like histamine agonists, also have wake promoting proper-
ties, can reduce OSA severity when combined with an antimuscarinic.4,6,31,32 An antimuscarinic would be an ideal
candidate to combine with histamine for several reasons: 1) animal data suggest that antimuscarinics directly increase
pharyngeal muscle tone during REM sleep;10 2) antimuscarinics also have mild sleep promoting effects4,6,31–33 and this
property may be beneficial to counteract, at least in part, the wake promoting properties of other agents (such as
betahistine in the current work) when used in combination therapy for OSA; 3) an antimuscarinic may offset H3-
mediated cholinergic stimulation effects.30

In this randomized, double-blinded, placebo controlled, crossover study we aimed to investigate the effects of
betahistine combined with the antimuscarinic oxybutynin (Beta-Oxy) on OSA severity (primary outcome). This pre-
viously untested combination of theoretically synergic drugs may provide insight into new treatment targets for OSA.
Secondary outcomes were to investigate the effects of the combination on OSA endotypes, other standard polysomno-
graphy parameters and next-day sleepiness and alertness.

Methods
Participants
Thirteen people with a diagnosis of OSAwithin the past year (apnea/hypopnea index [AHI] >15 events/hr) aged 18 to 75
years were recruited. Participants on CPAP therapy were asked to suspend treatment during the trial and for one week
prior to the first study visit. Exclusion criteria included any acute or chronic condition other than controlled hypertension
and hypercholesterolemia; hypersensitivity to the study drugs; class 3 obesity; any medication known to influence
breathing, sleep/arousal, muscle physiology, or to interact with mono amino oxidases; and current treatment with tricyclic
antidepressants.

The study was approved by the Southern Adelaide Clinical Research Ethics Committee (248.20), a joint committee of the
Southern Adelaide Local Health Network and Flinders University, was prospectively registered (ACTRN12621000158864)

https://doi.org/10.2147/NSS.S362205

DovePress

Nature and Science of Sleep 2022:141064

Messineo et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


and was performed in accordance with the principles of the Declaration of Helsinki. All participants provided written informed
consent prior to enrolment. Participants studied at Adelaide Institute for Sleep Health, Flinders University.

Protocol
Participants were asked to come to the sleep laboratory twice, one week apart, to undertake two overnight sleep studies. Prior to
lights-out (based on the participant’s usual bedtime and kept constant between study nights), participants received 96 mg
betahistine plus 5mg oxybutynin or placebo according to a double-blind, randomized, crossover design (Figure 1). The study
pharmacist, separate to the study site, provided the randomization code and maintained allocation concealment throughout the
study. Studymedications were placed in identical capsules that could not be identified by study personnel or participants. Prior to
sleep, participants were instructed to sleep on their back as much as possible and were given a standardized 8-hour sleep
opportunity during each study visit.

Participants slept with standard clinical polysomnography equipment including a nasal cannula attached to a pressure
transducer to estimate airflow.34

On the first night, ~30 mins after arrival, participants completed the Insomnia Severity Index and the Epworth
Sleepiness Scale questionnaires. Systemic blood pressure and the Karolinska Sleepiness Scale (KSS) were recorded
during both visits, ~30 min before bed and ~30 min after wake time. In addition, participants completed a 30-minute
alertness test using the AusEd driving simulator35 and the Leeds Sleep Evaluation Questionnaire (LSEQ) during the next

Figure 1 CONSORT diagram that shows recruitment, randomization, and analysis procedures for the trial.
Notes: Adapted from: Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised
Trials. PLoS Med. 2010;7(3):e1000251.58 Copyright: © 2010 Schulz et al. Creative Commons Attribution License.
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morning following each study night. Potential side effects (eg, dry mouth, dysuria, etc.) were also investigated in the
morning after each sleep study and on arrival back to the laboratory after the one-week washout period.

Data Analysis
All analyses were conducted blinded to the study interventions. Respiratory events and arousals were scored using
standard American Academy of Sleep Medicine 2020 criteria.36 OSA endotypes (ie, loop gain, arousal threshold,
upper airway collapsibility (Vpassive), markers of pharyngeal muscle compensation (Vactive and Vcomp) and the
ventilatory response to arousal) were estimated from the polysomnography-derived flow signal using previously
validated algorithms.37–39 In brief, loop gain was calculated as the response to disturbance of different frequencies:
one cycle/minute (ie, loop gain1) and the frequency that would lead to periodic breathing onset (ie, loop gain at
natural frequency [loop gainn]). Arousal threshold was calculated as the average estimated ventilation during sleep
prior to arousals (ie, maximum ventilatory drive). Vpassive was defined as the ventilation during sleep at eupneic
ventilatory drive when the pharyngeal muscles are relatively passive. Vactive was defined as the level of ventilation at
maximum drive (ie, arousal threshold). Vcomp was taken as the difference between ventilation at maximal drive and
as an estimate of pharyngeal muscle compensation. All traits, except for loop gain, which is dimensionless, were
expressed as percent of the estimated eupneic ventilation (Veupnea).

Statistical Analysis
An a priori power calculation indicated that 12 participants were required to detect a minimally important change in AHI of 10
events/hour (SD = 10) with >80% power at an alpha level = 0.05 (two-tailed paired t-test), allowing for a 20% drop-out rate.

Continuous data were expressed as mean±SD, or median [interquartile range] for non-normally distributed data. Statistical
significancewas inferred if p<0.05.According to our statistical analysis plan, datawere analyzed using two-tailed paired Student’s
t-tests or a Wilcoxon signed-rank test as appropriate. A mixed model analysis was also carried out (random effect: participants;
fixed effects: treatment and percent supine sleep) to explore potential effects of sleep positions on theAHI (effect size [confidence
interval]). Exploratory linear regression assessed the association between baseline loop gain and change in AHI between the
nights. Analyses were performed using Graph Pad Prism 6.0 (Graph Pad Software, La Jolla, CA) and SPSS 23.00 (IBM,
Armonk, NY).

Results
Thirteen participants were recruited to allow for a potential drop out to reach our recruitment target of n = 12. However,
all 13 participants successfully completed both nights and were included in the analyses (Figure 1). Baseline participant
characteristics are shown in Table 1. Participants were recruited from October 2020 to May 2021.

Effect of Beta-Oxy on OSA Severity
Beta-Oxy did not systematically alter OSA severity versus placebo (Figure 2), including when separated according to
sleep stage (Table 2). The supine AHI also did not change between study nights (51.0±22.8 on placebo versus 51.0±31.1
events/h on Beta-Oxy, P = 0.37). When adjusting for sleeping body position (Table 2) and missing values in the supine
position (in N = 2 nights there was no recorded supine sleep data), there was no effect of the combined drugs on OSA
severity (AHI: +6.33 [–0.93, 13.60] events/h, mean [CI], P = 0.08). Overnight desaturation profiles were also not
significantly different between the two treatment arms (Table 2).

Effect of Beta-Oxy on OSA Endotypes
Beta-Oxy significantly increased loop gain1 compared to placebo (Table 3). Loop gainn was also greater on Beta-
Oxy versus placebo in all but one of the study participants (Figure 3). The other OSA endotypes did not change
between nights (Table 3). Notably, the change in AHI between the nights was directly associated with loop gain
on the placebo night such that OSA severity increased in those with higher loop gain values (Figure 4).
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Effect of Beta-Oxy on Other Polysomnography Parameters, Next-Day Sleepiness and
Alertness, and Safety
Beta-Oxy changed sleep architecture as reflected via an increase in N1 sleep versus placebo (Table 2). No other
significant differences were detected between nights for overall sleep efficiency, total sleep time, wake after sleep
onset or arousal index (Table 2).

Beta-Oxy did not change next-day sleepiness or alertness according to KSS, LSEQ scores or to the AusEd driving
simulation task versus placebo (Table 4). Overall, the drug combination was well tolerated. Three participants had minor
complaints following study visits. One participant reported vertigo and visual aura in the morning following the Beta-
Oxy night, another reported a longer than usual menstrual phase on return to the laboratory during the washout week
following the placebo night.

Three participants reported feeling rested/wide awake after Beta-Oxy single-night treatment versus one after placebo
(P = 0.194). Similarly, only one participant reported feeling very tired after Beta-Oxy versus three participants after the
placebo night (P = 0.139). Four participants on Beta-Oxy versus six on placebo felt that the corresponding laboratory
night was worse/much worse than sleeping at home (P = 0.619). Perceived sleep latency was comparable between
placebo and Beta-Oxy (29±18 min v. 44±60 respectively, P = 0.397).

Table 1 Baseline Characteristics

Characteristic

Age, years 61±6
Sex, M:F 6:7

Neck circumference, cm 39.1±3.9

Waist circumference, cm 106.9±17.3
Body mass index, kg/m2 31.1±5.2

Mallampati index 3±1

Insomnia severity index 11±5
Epworth sleepiness scale 7±4

Note: Data are mean ± standard deviation, or counts for sex.

Figure 2 There was no systematic difference in apnea-hypopnea index (AHI) between study nights (34.4±17.2 vs 40.3±27.3 events/h sleep, P = 0.124). Bars represent mean
± standard deviation.
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Discussion
This is the first proof-of-concept, mechanistic study to investigate the effects of a histaminergic agent, together with an
anti-muscarinic, on OSA severity in humans. Beta-Oxy led to a physiologically important increase in loop gain, without
changing the AHI, other sleep parameters or next-day sleepiness/alertness. These findings provide novel physiological
insight and, if confirmed in larger follow-up studies, may have implications for certain respiratory diseases where blunted
respiratory control is a feature.

Table 2 Polysomnography Parameters

Characteristic Placebo Beta-Oxy P value

NREM AHI, events/h 41.7±20.0 46.6±24.7 0.096
REM AHI, events/h 32.0±20.3 38.4±29.9 0.268

Total sleep time, h 7.1±0.9 7.0±0.8 0.641

Sleep efficiency 84.4±8.7 83.4±9.0 0.608
Sleep onset latency, min 6.5 [6.0] 10.0 [7.7] 0.719

Wake after sleep onset, min 59.5 [36.2] 60.5 [41.2] 0.893

Percent supine, % total sleep time 49.5±38.6 52.4±31.6 0.707
Obstructive apnea index, events/h 1.8 [3.6] 0.9 [2.5] 0.825

Mixed apnea index, events/h 0 [0] 0 [0.0] 0.500
Central apnea index, events/h 0 [0] 0 [0.0] 0.500

Hypopnea index, events/h 24.7 [23.0] 24.7 [22.4] 0.366

N1, % total sleep time 9.4 [18.9] 15.5 [17.7] 0.049
N2, % total sleep time 42.6±8.6 41.1±8.2 0.537

N3, % total sleep time 22.1±9.5 22.1±10.7 0.988

REM sleep, % total sleep time 21.3±5.6 19.3±7.2 0.252
Arousal index, events/h 23.3 [9.6] 23.5 [9.9] 0.735

Respiratory event duration, s 24.4±6.7 23.6±4.9 0.515

O2 desaturation index, events/h 18.7±14.0 27.6±26.0 0.093
Mean O2 saturation during sleep, % 94.0±1.0 93.9±1.7 0.721

Nadir O2 saturation, % 87.0 [7.0] 83 [8.0] 0.064

Sleep time spent <90%SpO2, %total 0.9 [1.9] 1.0 [1.5] 0.464
Systolic blood pressure, mmHg 133.9±15.2 133.2±12.9 0.807

Diastolic blood pressure, mmHg 88.8±8.7 87.7±8.3 0.988

Heart rate during sleep, beats/min 71.5±12.1 70.1±10.8 0.704

Notes: Data are mean ± standard deviation or median [interquartile range] where appropriate, and were compared with a two-
tailed paired Student’s t-test or a Wilcoxon signed rank test accordingly. Bold was used to highlight statistically significant findings.
Blood pressure measurements refer to next-morning values.
Abbreviations: REM, rapid eye movement; NREM, non REM.

Table 3 Polysomnography-Estimated OSA Endotypes

Characteristic Placebo Beta-Oxy P value

Loop gain1 (at 1 cycle/min frequency) 0.52 [0.24] 0.60 [0.34] 0.021
Arousal threshold (%Veupnea) 116.4 [18.2] 120.8 [11.4] 0.057

Vpassive (%Veupnea) 93.9 [2.7] 93.6 [5.9] 0.216

VActive (%Veupnea) 102.2 [10.8] 105.3 [13.2] 0.414
VCompensation (%Veupnea) 8.0 [9.6] 11.5 [12.2] 0.216

Ventilatory response to arousal (%Veupnea) 36.4±23.7 36.0±13.1 0.938

Notes: Data are mean ± standard deviation or median [interquartile range] where appropriate and were compared with
a two-tailed paired Student’s t-test or a Wilcoxon signed rank test accordingly. Vpassive represents passive upper airway
collapsibility, namely when the upper airway muscles are not activated (ventilation at eupneic ventilatory drive). Vactive
indicates active upper airway collapsibility, when the pharyngeal muscles are activated (immediately prior to arousal). Vcomp
is the difference between Vpassive and Vactive and provides an estimate of the pharyngeal muscle responsiveness. Except for
loop gain (dimensionless), values are expressed as a % Veupnea. Bold was used to highlight statistically significant findings.
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Figure 3 Beta-oxy significantly increased loop gain at the natural frequency of resonance (loop gainn) by a physiologically meaningful margin (>10%; Δchange = 0.06±0.05
[mean±SD], P = 0.001, asterisk).

Figure 4 Relationship between change in apnea-hypopnea index (AHI) and loop gain (placebo visit). Change in AHI and loop gain1 (upper panel) and loop gainn (lower panel)
is illustrated. Individual participants are indicated by dots and solid line indicates the calculated relationship from linear regression.
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Novel Physiological Insights
The response to a respiratory disturbance during sleep (reduced ventilation) consists of an accumulation of ventilatory
drive that generally matches increased hypoxic—and hypercapnic—demand to generate a subsequent ventilatory
compensation response.40 The main effectors of this process, a constituent component of loop gain,41 are the chemor-
eceptors, that project to the nucleus tractus solitarii in the brainstem and are influenced via a wide supply of
neurotransmitters, including histamine.42 In rats, histaminergic modulation through H1-receptor stimulation42 or H3-
receptor blockade in the brain,43 augments chemoreflex control. A similar effect was observed in goats44 and cats.45

However, its human translatability was only putative. This study shows that loop gain is almost invariably increased with
Beta-Oxy in people with OSA, indicating that this potent chemosensitivity excitatory modulation is also present in
humans during sleep.

Conversely, it is not clear why Beta-Oxy did not have an effect on estimated pharyngeal muscle compensation despite
the strong neurobiological rationale behind our study hypothesis. One explanation could be that the dose of betahistine
was not high enough to produce a detectable effect on this endotype. 96 mg was selected in this study as it is twice as
high as a typical dose administered clinically, although up to 200 mg was well tolerated in other studies with no
significant complications.46 A second explanation is that betahistine did lead to an increase in genioglossus muscle
activity (not directly measured in this study) but its potential beneficial effect on OSAwas offset by the more pronounced
increase in loop gain and thus was not detectable via our indirect measurement technique. Indeed, Vcomp is the most
challenging endotype to accurately quantify using polysomnography-based estimates.37 Accordingly, it will be important
in future studies to directly measure pharyngeal muscle activity, including different doses, to investigate the effects of
betahistine definitively.

Clinical and Physiological Implications
A drug that increases loop gain without altering pharyngeal pathophysiology could have disparate effects in clinical
practice. The prokinetic domperidone has been shown to increase chemosensitivity and loop gain in animal models47,48

and early reports in healthy humans.49 However, this effect is presumably only mediated at the peripheral chemoreceptors
as domperidone poorly penetrates the blood brain barrier.50 Betahistine could exert its effects on either central or
peripheral chemoreceptors, and this may unveil therapeutic implications for conditions in which central chemosensitivity
is impaired or depressed, such as obesity hypoventilation syndrome,51 congenital central hypoventilation52 and opioid-
induced respiratory depression.53–56 Thus, the use of betahistine in these conditions is worthy of further investigation in
light of the current novel findings on respiratory control.

Conversely, although there was no overall increase in AHI in the current study, any agent that increases loop gain in
people with OSAwhere blunted respiratory control is not a feature, especially in the more than one-third of patients who

Table 4 Next-Day Perceived Sleepiness and Objective Alertness

Characteristic Placebo Beta-Oxy P value

Karolinska sleepiness scale 6±1 5±2 0.180
Leeds Sleep Evaluation Questionnaire

Getting to sleep 5.0±0.7 5.0±1.18 0.984

Quality of sleep 4.5±1.8 4.5±1.4 0.889
Awake following sleep 4.3±1.3 5.2±1.2 0.079

Behavior following sleep 4.2±1.2 4.4±1.1 0.647

AusEd driving simulator
Deviation from median of lane, cm 39.5±27.6 38.7±19.9 0.932

Deviation from 60–80 km/h, km/h 0.5±2.0 0.7±1.6 0.952
Breaking time, s 1.0±0.3 1.1±0.3 0.503

Crashes, n 0±1.0 0±0.5 0.937

Notes: Data are mean ± standard deviation or median [interquartile range]. Conditions were compared with a two-tailed
paired Student’s t-test.
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already have high loop gain,2 is likely to be deleterious. Our finding that Beta-Oxy was associated with increased OSA
severity in participants with high loop gain on placebo and vice versa provides initial support for this concept. Thus, the
use of betahistine in most people with OSA should be cautioned until further endotype-specific studies are performed to
separate out the characteristics of those who may experience beneficial versus deleterious effects.

Despite well-known histamine-related arousal facilitation,57 Beta-Oxy did not worsen sleep efficiency or increase the
arousal index or the arousal threshold. However, there was a small increase in lighter N1 stage sleep. While these
findings may provide support that betahistine (widely used worldwide at any time of the day) is unlikely to disrupt sleep,
it may also be that potential sleep disruption effects were alleviated by oxybutynin which can serve as a mild sleep
promotion aid.4,6,31–33 This will require further investigation with betahistine studied in isolation rather than in
combination with oxybutynin.

Methodological Considerations
This study has several limitations. 1) As highlighted, betahistine and oxybutynin were not tested separately, and we
cannot, therefore, confidently discriminate the effects of the single drugs. However, when studied in a single drug trial,
oxybutynin alone did not increase loop gain.4 Thus, the effect on loop gain observed in this study is likely to be solely
attributable to the increase in histaminergic tone. 2) Due to the clinical setting of the polysomnography studies, we did
not record end-tidal CO2 and the different components of loop gain (eg, plant gain, controller gain) were not calculated.
Also, tidal volume was not recorded. Yet, based on the neurobiological signaling attributed to H3-receptor blockade from
animal data, betahistine effects on loop gain are likely to be predominantly mediated by increased chemosensitivity
(controller gain). 3) We also did not assess whether the histaminergic mediated changes took place in the central,
peripheral chemoreceptors or both. 4) All endotypes were collected using polysomnography-derived signals that provide
estimates of gold-standard measurements. As highlighted, the current findings provide initial physiological insight to
guide future more detailed physiological research investigations.

Conclusions
The combination of betahistine, a histaminergic drug, and the antimuscarinic oxybutynin increases loop gain in people with
OSA, without major accompanying systematic effects on OSA severity, sleep architecture or next-day alertness and sleepiness.
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