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OBJECTIVE—Nitric oxide (NO) is a key metabolic and vascular
regulator. Its production is stimulated by insulin. A reduced
urinary excretion of NO products (NOx) is frequently found in
type 2 diabetes, particularly in association with nephropathy.
However, whether the decreased NOx excretion in type 2 diabe-
tes is caused by a defective NOx production from arginine in
response to hyperinsulinemia has never been studied.

RESEARCH DESIGN AND METHODS—We measured NOx
fractional (FSR) and absolute (ASR) synthesis rates in type 2
diabetic patients with diabetic nephropathy and in control sub-
jects, after L-[15N2-guanidino]-arginine infusion, and use of pre-
cursor–product relationships. The study was conducted both
before and after an euglycemic hyperinsulinemic (�1,000–1,200
pmol/l) clamp.

RESULTS—In type 2 diabetes, NOx FSR was reduced both
under basal (19.3 � 3.9% per day, vs. 22.9 � 4.5% per day in
control subjects) and hyperinsulinemic states (24.0 � 5.6% per
day, vs. 37.9 � 6.4% per day in control subjects; P � 0.03 by
ANOVA). Similarly, in type 2 diabetes, NOx ASR was lower than
in control subjects under both conditions (basal, 0.32 � 0.06 vs.
0.89 � 0.34 mol per day; hyperinsulinemia, 0.35 � 0.07 vs. 1.15 �
0.38 mol per day; P � 0.01 by ANOVA). In type 2 diabetes, the
ability of insulin to stimulate both the FSR (4.7 � 3.2% per day)
and the ASR (0.03 � 0.04 mol per day) of NOx was several-fold
lower than that in control subjects (15.0 � 2.9% per day and
0.25 � 0.07 mol per day, P � 0.03 and P � 0.02, respectively).
Also the fraction of arginine flux converted to NOx (basal, 0.22 �
0.05% vs. 0.65 � 0.25%; hyperinsulinemia, 0.32 � 0.06% vs. 1.03 �
0.33%) was sharply reduced in the patients (P � 0.01 by ANOVA).

CONCLUSIONS—In type 2 diabetic patients with nephropathy,
intravascular NOx synthesis from arginine is decreased under
both basal and hyperinsulinemic states. This defect extends the
concept of insulin resistance to NO metabolism. Diabetes 59:
2152–2159, 2010

N
itric oxide (NO) is a key regulatory molecule
with extensive metabolic, vascular, and cellular
effects (1–6). The regulation of NO metabolism
is particularly important in type 2 diabetes,

because activation of NO synthase (NOS) is under insulin
control through the Akt pathway (3,5). Thus, disturbances
of NO generation may be a consequence of insulin resis-

tance affecting also the vascular response (3). An impaired
NO metabolism is found in type 2 diabetes (7–10), in
particular in the presence of nephropathy (11). A reduced
urinary excretion of nitric oxide–related products, such as
nitrites and nitrates, collectively termed as [NOx], has
been reported in type 2 diabetic patients with nephropathy
(12,13). Conversely, microalbuminuria is associated with
impaired endothelial function in type 2 diabetic subjects
(14). Hyperglycemia may also play a role in the decreased
NO production in type 2 diabetes, because high glucose
per se inhibited endothelial NOS activity in the glomeruli,
through a protein kinase C–associated mechanism (15).
Moreover, high glucose and/or the associated advanced
glycosylation end products decreased NOS expression
(11). Urinary NOx production is reduced in nondiabetic
renal disease (16), although also increased plasma nitrate
concentrations have been reported in type 2 diabetes, as
well as in the Metabolic Syndrome (17,18), thus question-
ing the validity of urinary methods to assess whole-body
NOx production.

Because the stimulation of NOS activity by insulin is
impaired in muscle of type 2 diabetic patients (19), inves-
tigations on the response to the hormone of whole-body
NO production in type 2 diabetes is of key relevance. An
impaired NO generation in type 2 diabetes may be another
feature of insulin resistance (3).

We recently developed a precursor–product, stable iso-
tope method to measure whole-body synthesis of NO-
related compounds in vivo (20). Therefore, the aim of this
study was twofold: 1) to measure NOx production rate
(both fractional and absolute), as well as the rate of
arginine conversion to NOx, in type 2 diabetic patients
with diabetic nephropathy and 2) to study the effects of
acute hyperinsulinemia on these parameters.

RESEARCH DESIGN AND METHODS

Eight male type 2 diabetic patients with diabetic nephropathy and ten male
nondiabetic healthy volunteers, comparable for age and BMI, were recruited.
Their clinical and biochemical characteristics are reported in Table 1. All
subjects had been adapted for at least one month to a diet containing �50%
calories as carbohydrate, �20% as proteins, and �30% as lipids. Protein intake
was �80–100 g per day and was not restricted in any subject. In the day before
the study, all subjects consumed a low-nitrate diet to minimize the contribu-
tion of exogenous nitrates to whole-body NOx turnover.

All the diabetic subjects and five control subjects were hypertensive (the
latter affected by essential hypertension) and treated with combinations of
hypotensive drugs, such as ACE inhibitors (in three type 2 diabetes and five
control subjects), ARBs (in five type 2 diabetes subjects), calcium antagonists
(in three type 2 diabetes subjects), �-blockers (in three type 2 diabetes and
two control subjects), and diuretics (in three type 2 diabetes and two control
subjects). Four diabetic subjects and one control subject were also treated
with statins. All drugs were suspended the night before the study day. The
antidiabetic treatment in the patients consisted of diet alone (two subjects),
oral hypoglycemic agents (four subjects, two with glybenclamide, one with
metformin, and one with glybenclamide, metformin, and pioglitazone), inter-
mediate-acting insulin plus metformin (one patient), and split insulin doses
(one patient). The antidiabetic therapy was suspended the night before the
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study day. The control subjects had no history of either diabetes or impaired
glucose tolerance, and their fasting plasma glucose, HbA1c, and general blood
chemistry were normal. The urinary albumin excretion rate was measured on
at least two 12-h urine collections. The type 2 diabetic patients had, by
definition, an increased albumin excretion rate (five in the macroalbuminuria
and three in the microalbuminuria range). The glomerular filtration rate (GFR)
in the diabetic subjects was determined by 51Cr–EDTA infusion (21), and in
both study groups it was estimated also using the Cockcroft-Gault formula
(22). The type 2 diabetic patients had either a normal (GFR � 80 ml/m2 � min,
n � 5) or a moderately impaired renal function (i.e., a GFR between 60 and 80
ml/m2 � min, n � 3).

Aims, benefits, and potential risks of the study were explained in detail, and
each subject signed an informed consent. The protocol was approved by the

Ethical Committee of the Medical Faculty at the University of Padova, Italy,
and it was performed according to the Helsinki Declaration (as revised in
1983).

All subjects were admitted to the Metabolic Unit of the Department of
Metabolic Diseases at 7:00 A.M. on the study day, after the overnight fast. The
diabetic subjects were moderately hyperglycemic (Table 1). An 18-gauge
polyethylene catheter was placed in an antecubital vein of the right arm, for
isotope, insulin, and glucose infusion. A contralateral wrist vein was cannu-
lated in a retrograde fashion, and the hand was placed in a box heated at 55°C
throughout the study, for venous-arterialized blood sampling.

After a baseline blood sample (Figs. 1 and 2), a primed (2.4 �mol/kg),
continuous (0.04 �mol/kg � min) infusion of L-[15N2-guanidino]-arginine (15N2-
arginine, sterile and pyrogen-free) (MassTrace, Woburn, MA; isotope purity �
99%) was started at �07:30 A.M. (defined as �180 min). Blood samples were
drawn every 30 min for �2 h, to assess the achievement of steady state in
blood isotope enrichment (data not shown). In the diabetic group, after 100
min from the start of isotope infusion, five blood samples were collected every
20 min (i.e., between �80 min and 0 min), for measurements of whole-blood
isotope enrichments of NOx and arginine, as well as for plasma substrate and
hormone concentrations (Figs. 2 and 3, upper panels). In the control group,
there were minor changes in blood sampling, which started 120 min after the
initiation of isotope infusion (i.e., at �60 min) and was spaced by 15-min
intervals (i.e., five samples) for blood isotope enrichments of NOx, and by
30-min intervals (three samples) for blood arginine, plasma substrate, and
hormone concentrations (Figs. 2 and 3, lower panels).

Thereafter, an euglycemic hyperinsulinemic clamp was started as de-
scribed elsewhere (20) (Fig. 1). Briefly, regular insulin (Humulin R, Eli Lilly,
Indianapolis, IN) was infused at the rate of 1.9 mU/kg � min�1 for 180 min. In
the first 10 min, the rate of insulin infusion was doubled to rapidly prime the
insulin pool. Plasma glucose concentration was monitored every 10 min. In
the nondiabetic subjects, euglycemia (between 4.7 and 5 mmol/l) was main-
tained by a variable exogenous 20% dextrose infusion, whereas in the diabetic
subjects, blood glucose was allowed to decrease from the basal values and
reached the euglycemic range within 74 � 9 min. Thereafter, blood glucose
values were maintained between 4.7 and 5 mmol/l by dextrose infusion, for an
additional 120 min. Therefore, the total duration of the clamp period was 180
min in the control subjects and �195 min in the diabetic patients (Figs. 1 and
2). After �120 min–135 min from the start of the insulin infusion, five
additional blood samples were again drawn every 15 min, for the measure-
ments at the new steady state.
Analytical measurements. Blood (3 ml) was collected into preweighed
chilled tubes containing 3 ml of 20% perchloric acid (w/vol), vigorously
shaken, and immediately kept on ice. An additional 2 ml of blood were
collected into preweighed chilled tubes containing 4 ml of absolute ethanol,
gently shaken and kept on ice. Another 2 ml of blood were also collected into
chilled tubes containing 50 �l of EDTA (6% w/vol), gently mixed, and kept on

TABLE 1
Clinical and biochemical characteristics of the type 2 diabetic
and control subjects studied

T2DM
(n � 8)

Control
subjects
(n � 10)

Age (years) 63 � 3 52 � 6
BMI (kg/m2) 28.9 � 0.8 26.4 � 0.8
Disease duration (years) 17 � 2
HbA1C (%) 8.38 � 0.29† 5.44 � 0.23
Fasting glucose (mmol/l) 12.1 � 1.0† 4.8 � 0.1
Fasting insulin (pmol/l) 99 � 18† 46 � 8
Plasma creatinine (�mol/l) 105 � 11† 75 � 2
Glomerular filtration rate

(measured) (ml/m2 � min) 85 � 6
Glomerular filtration rate

(calculated) (ml/m2 � min) 86 � 9 117 � 13
Albuminuria (g/day) 1.9 � 0.6† �0.03
Total cholesterol (mmol/l) 4.9 � 0.3 4.9 � 0.3
HDL cholesterol (mmol/l) 1.2 � 0.1 1.3 � 0.1
Triglycerides (mmol/l) 1.8 � 0.4 1.1 � 0.2
TNF-	 (pg/ml) 150 � 50 80 � 14
IL-6 (pg/ml) 68 � 49 10 � 3
IL-8 (pg/ml) 72 � 12† 27 � 5
IL-10 (pg/ml) 0.37 � 0.09 0.44 � 0.11
hsCRP (mg(L) 3.73 � 1.48 0.73 � 0.23

*P � 0.05. †P � 0.02 or less vs. control subjects. T2DM, type 2
diabetic subjects.

Experimental design 
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FIG. 1. Schematic depiction of the experimental design.
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ice. All tubes were centrifuged within 1 h and reweighed, and the supernatant
was stored at �80°C until assay.

Whole-blood 15N2-arginine enrichment was measured from 1 ml of the
perchloric acid extract, titrated to alkaline pH with 6 N KOH and eluted
through an AG 50W-X8 resin with 4 N NH4OH. The eluate was analyzed by gas
chromatography mass spectrometry (model 5,973, Agilent, Palo Alto, CA) as
trifluoroacetyl derivative using positive chemical ionization, by monitoring the
fragments (m/z) [479/477]. Enrichments were expressed as tracer-to-tracee
ratio (TTR) (23). Whole-blood NOx enrichments were determined in the
supernatant of the ethanol-containing tubes as nitrobenzene derivative (24),
by gas chromatography combustion-isotope ratio mass spectrometry (Delta
Plus GC-C-IRMS, ThermoElectron, Bremen, Germany), as described in detail
elsewhere (20). Blood NOx concentrations were determined from the ethanol
supernatant (25), using a commercial assay (Nitrate/Nitrite Colorimetric
Assay kit, Cayman Chemical Co., Ann Arbor, MI), after correction of blood
dilution by weight differences, and accounting for blood specific weight.

Plasma insulin and amino acid concentrations were determined as reported in
ref (20). TNF-	, IL-6, Il-8 and Il-10, and hsCRP were measured using commer-
cial assays. hsCRP was measured by an automated immunonephelometric
assay (Dade-Behring, Marburg, Germany). TNF-	, IL 6, Il-8, and Il-10 were
measured by an ELISA (Biosciences, MD).
Calculations. The arginine rate of appearance (Ra) was calculated according
to a standard steady-state formula (20,23):

Arg Ra � i � TTRi/TTRw (1)

where i is L-[15N2-guanidino]-arginine tracer infusion rate (in �mol/kg � min);
TTRi is the isotope enrichment (as TTR) of the infused tracer; and TTRwb is
whole-blood 15N2-arginine TTR (corrected for the natural preinfusion value),
in either the basal or the insulin infusion period. A near steady state in blood
arginine TTR was attained in both the basal and the hyperinsulinemic periods
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(Fig. 2). Arginine flux was also expressed on a 24-h basis to calculate the
fraction of daily 15NOx production from [15N2]-arginine (see below).

The fractional synthesis rate (FSR) of NOx conceptually corresponds to
the percent of the circulating pool newly synthesized over the unit of time
(20,23), and it was calculated as follows:

NOx FSR � [dTTR(15NOx)/dt]/15N-Arg TTR 
 1,440 
 100 (2)

where: dTTR(15NOx) is the derivative with respect to time (dt) of the change
of whole-blood NOx TTR values, which were calculated on 4–5 time points in
the basal state as well as in the insulin-infusion period, respectively (Figs. 1
and 2). The 15N-Arg TTR is the mean blood 15N-arginine TTR within the same
experimental periods. The factor (1,440) converts the results to 24 h, and (100)
expresses them on a percent basis.

The absolute synthesis rate of NOx (ASR) (in mmol per day) is then
calculated by multiplying FSR times the total NOx pool, which is the product
between the average whole-blood NOx concentration (in mmol/l) of each
experimental period and the nitrate distribution volume (in liters), taken as
28% of body weight (26).

Statistical analysis. The two-way ANOVA for repeated measurements was
used to compare basal and clamp periods between diabetic and control
subjects. The post hoc Tukey test was used to test changes versus basal within
each group. The two-tailed Student t test for unpaired data was used to
compare two sets of single data points (i.e., the delta changes versus basal
after the clamp). Analyses were performed on the log transformations when
data distribution was not normal. Regression analysis was performed using
simple linear relationships, by the Statistica Software (Version 6, StatSoft,
Tulsa, OK). A P value � 0.05 was considered statistically significant. Data have
been expressed as mean � SE.

RESULTS

Substrates, hormones, insulin-mediated glucose dis-
posal, and isotope enrichments. In the fasting state, the
type 2 diabetic subjects had significantly greater glucose,
HbA1c, insulin, and creatinine plasma concentrations than
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control subjects (Table 1). In the type 2 diabetic patients,
the mean albumin excretion rate was �2 g per day, and
their GFR was �25% lower (albeit not significantly, P �
0.05) than the calculated values in control subjects.

During the clamp, plasma insulin was acutely raised by
�10 times versus basal values in both the diabetic (to
1,240 � 70 pmol/l) and the control subjects (to 1,037 � 117
pmol/l), to similar values in both groups. In the type 2
diabetic patients, plasma glucose was slowly decreased to
near euglycemia (�4.7–5 mmol/l) that was then main-
tained at this level throughout the study. At steady-state
(i.e., in the last 30 min of the clamp period, average
values), plasma glucose concentrations were similar be-
tween the type 2 diabetes (4.83 � 0.05 mmol/l) and the
control subjects (4.96 � 0.12 mmol/l), whereas the insulin-
mediated glucose disposal (i.e., the “M” value) was 4.48 �

0.56 mg/kg � min in the type 2 diabetes subjects and 6.98 �
0.84 mg/kg � min in the control subjects (P � 0.032
between the two groups), indicating insulin resistance in
type 2 diabetes. Similar results were obtained when the
glucose disposal rate was normalized over the average
insulin concentration (expressed as the [M/I] value, i.e., in
mg/kg/�U of plasma insulin) (type 2 diabetes, 0.0262 �
0.0030; control subjects, 0.0519 � 0.0069; P � 0.01 be-
tween the two).

Plasma amino acid concentrations are reported in Table
2. Hyperinsulinemia reduced, as expected, the concentra-
tions of most amino acids. Interestingly, arginine de-
creased significantly in the control but not in the type 2
diabetes group. Taurine concentrations were greater,
whereas those of asparagine and threonine were lower in
type 2 diabetes than in control subjects. No differences
between the groups in total and branched-chain amino
acids were detected. As a group, the type 2 diabetic
subjects had increased concentrations of inflammatory
cytokines (Table 1), although only the difference in IL-8
levels was significant.
NO and arginine kinetics. Near steady-state conditions
in blood 15N-arginine enrichments were attained in both
periods (Fig. 2). In subjects with type 2 diabetes, postab-
sorptive whole-blood NOx concentrations (81 � 18
�mol/l) were �50% lower (P � 0.05) than in control
subjects (162 � 35 �mol/l). After hyperinsulinemia, NOx
concentrations were significantly decreased in the latter
(to 128 � 24 �mol/l, P � 0.05 vs. basal), whereas the
decrease in the patients (to 65 � 10 �mol/l) was not
significant (P � 0.15 vs. basal). There was an overall
significant difference between the two groups in NOx
concentrations (P � 0.025 by ANOVA, group effect).

In the type 2 diabetic patients, basal arginine flux was
not different from that of control subjects, and it was
suppressed by hyperinsulinemia, to the same extent in
both groups (Table 3). Blood 15NOx TTR increased pro-
gressively with time in both groups (Fig. 3), with this
increase being satisfactorily described by linear relation-
ships with a mean correlation coefficient (r) of �0.9 in
both groups (Table 3). In the type 2 diabetic subjects, the
increase of 15NOx TTR versus time during the clamp was
significantly lower (P � 0.01 by ANOVA for interaction)
than that in control subjects. To translate these figures
into the NOx FSR, the slopes need to be divided over the
steady-state 15N-arginine enrichment, as described in the
Research Design and Methods section (see Eq. 2).

In the fasting state, NOx FSR in the type 2 diabetic
patients (19.3 � 3.9% per day) was �15% lower than that in

TABLE 2
Plasma amino acid average concentrations (in �mol/l) in the
postabsorptive state and after the euglycemic hyperinsulinemic
clampa

Basal Clamp

T2DM
(n � 8)

Control
subjects
(n � 10)

T2DM
(n � 8)

Control
subjects
(n � 10)

Taurine 126 � 12‡ 61 � 9 137 � 20‡ 47 � 6
Asparagine 9 � 2‡ 20 � 4 7 � 1‡ 13 � 2*
Threonine 99 � 7† 116 � 6 63 � 6*† 67 � 5*
Serine 87 � 3 107 � 9 63 � 4* 65 � 4*
Glycine 154 � 9 173 � 13 143 � 9 134 � 7
Alanine 306 � 16 303 � 25 254 � 9 226 � 11*
Citrulline 35 � 3 31 � 2 24 � 1* 18 � 1*
Valine 250 � 12 227 � 17 173 � 11* 133 � 12*
Methionine 17 � 1 20 � 2 9 � 1* 14 � 2*
Isoleucine 70 � 5 58 � 4 30 � 4* 18 � 2*
Leucine 129 � 5 137 � 11 61 � 5* 69 � 8*
Tyrosine 49 � 4 55 � 4 29 � 2* 29 � 2*
Phenylalanine 49 � 2 46 � 2 34 � 2* 29 � 2*
Ornitine 62 � 4 57 � 4 40 � 6* 43 � 4*
Lysine 173 � 5 176 � 10 131 � 7* 122 � 11*
Histidine 68 � 3 67 � 4 58 � 2* 52 � 4*
Arginine 68 � 3 91 � 16 48 � 6 50 � 7*
Total AA 1,749 � 26 1,726 � 61 1,304 � 57* 1,117 � 49*
BCAA 447 � 20 423 � 31 264 � 20* 220 � 20*
aBCAA � Branched-chain amino acids. Glutamine, glutamate, and
proline were not determined. *P � 0.05 or less vs. basal (by ANOVA,
post hoc Tukey test). †P � 0.05. ‡P � 0.02 or less, type 2 diabetic vs.
control subjects (by ANOVA, either interaction or group effect).
T2DM, type 2 diabetic subjects.

TABLE 3
Steady-state, average isotope TTR of whole-blood 15N arginine; change (i.e., the slope) of whole-blood 15NOx TTR vs. time (dt, in min)
(x 103); and their correlation coefficients (R); arginine Ra (in �mol/kg � min); and whole-blood average NOx concentrations (in
�mol/l), in the basal state and after the hyperinsulinemic hyperglycemic clamp, in the type 2 diabetic and control subjects

Basal Clamp

T2DM (n � 8)
Control subjects

(n � 10) T2DM (n � 8)
Control subjects

(n � 10)
15N-Arginine TTR 3.24 � 0.16 3.35 � 0.21 4.41 � 0.24§ 4.43 � 0.18§
15NOx slopes 0.438 � 0.090‡ 0.520 � 0.098 0.688 � 0.126*‡ 1.133 � 0.166§
R of the 15NOx slopes 0.92 � 0.03 0.90 � 0.02 0.92 � 0.03 0.89 � 0.02
Arginine flux 1.13 � 0.06 1.28 � 0.05 0.84 � 0.06§ 0.98 � 0.04§
NOx concentrations 81 � 1† 162 � 36 65 � 10† 128 � 24§

*P � 0.05 and §P � 0.015 or less, clamp vs. basal (by ANOVA, post hoc Tukey test). †P � 0.025 and ‡P � 0.01 or less, type 2 diabetic vs.
control subjects (by ANOVA, either interaction or group effect). T2DM, type 2 diabetic subjects.

INSULIN RESISTANCE TO NO METABOLISM IN TYPE 2 DIABETES

2156 DIABETES, VOL. 59, SEPTEMBER 2010 diabetes.diabetesjournals.org



control subjects (22.9 � 4.5% per day) (Fig. 4). After
hyperinsulinemia, NOx FSR did not increase in the pa-
tients (to 24.0 � 5.6% per day, not significant versus
baseline), whereas it increased significantly in the control
subjects (to 37.9 � 6.4% per day, P � 0.001 vs. baseline by
the paired t test; P � 0.03 by ANOVA between groups,
interaction effect). These differences between groups were
maintained also when subject #2, who exhibited somehow
extreme data, as reported in the lower panel of Fig. 3, was
excluded. An inverse relationship between NOx FSR dur-
ing the clamp and plasma creatinine within the entire
subjects’ set was found (R � �0.52, P � 0.05).

Basal NOx ASR in the type 2 diabetes patients (0.32 �
0.06 mol per day) was �1/3 of the control value (0.89 �
0.34 mol per day), and it increased only by �10% (to
0.35 � 0.07 mol per day, not significant versus basal), as
opposed to a �30% increase in control subjects (to 1.15 �
0.38 mol per day, P � 0.01 vs. basal; P � 0.01 by ANOVA,
group effect) (Fig. 4).

The fraction of arginine converted to NOx was signifi-
cantly increased by hyperinsulinemia in the control but
not in the diabetic group (Fig. 5). In the patients, such a
change was �three- to fourfold lower (basal, 0.22 � 0.05%,
versus clamp, 0.32 � 0.06%) than the corresponding values
in the control subjects (basal, 0.65 � 0.25%, versus clamp,
1.03 � 0.33%, respectively; P � 0.01 by ANOVA, interaction
effect).

When the data of the diabetic subjects (all with hyper-
tension) were compared just with those of the five hyper-
tensive, nondiabetic subjects, the differences between the
two groups were somewhat blunted but still significant as
regards both the increase of NOx FSR after the clamp
(�12.0 � 4.4% per day in the hypertensive control sub-
jects, versus 4.68 � 3.2% per day in the type 2 diabetes
patients; P � 0.05) and the fractional arginine conversion
to NOx (still twofold greater in control subjects; P � 0.05
by ANOVA for interaction), whereas NOx concentrations
and ASR were of intermediate values and no longer
significantly different from those of the type 2 diabetes
group. Interestingly, in the nondiabetic, hypertensive sub-
jects, the insulin-mediated glucose disposal (5.01 � 0.33
mg/kg � min) was no longer different from that of the type
2 diabetic patients (4.48 � 0.56 mg/kg � min), showing a
comparable degree of insulin resistance.

DISCUSSION

This study shows that, in type 2 diabetic patients with
nephropathy, whole-body NOx synthesis is decreased and
is not appropriately stimulated by hyperinsulinemia. The
fractional conversion of arginine to NOx is also impaired
and not normally enhanced by insulin. This is the first
study directly showing a decreased whole-body NOx syn-
thesis and a decreased conversion of arginine to NOx, in
type 2 diabetes in response to insulin.

Nitric oxide is likely to be involved in the defective
insulin-mediated stimulation of blood flow in type 2 dia-
betes (3,27) as well as in the pathogenesis of diabetic
nephropathy (11). The stimulation of NOS activity is a
downstream effect of Akt activation by insulin; therefore,
insulin resistance may be the cause of the reduced nitric
oxide production in type 2 diabetes. Insulin insufficiently
stimulated NOS activity in skeletal muscle of type 2
diabetic subjects (19). Our whole-body data agree with
previous reports in muscle. Because arginine concentra-
tions (Table 2) and flux (Table 3) were similar in both
groups, the impaired NOx production was not substrate-
limited, but rather related to a defective arginine conver-
sion to NOx.

The site of NOx production is likely the endothelial
cells, which express the bulk of constitutive NOS activity
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responsible for NO release into the bloodstream (3,5). In
vascular endothelial cells, insulin stimulates NO produc-
tion in a dose-dependent fashion through the phosphati-
dylinositol 3 (PI-3)-kinase/protein kinase B (Akt) pathway
(28). In arteriolar muscle cells, NOS activation by insulin is
dependent on a normally responsive IRS-1/PI-3 pathway
(28). Conversely, insulin resistance at this level impairs
insulin-mediated vasodilation and results in endothelial
dysfunction (29). Because muscle is a key site of insulin
resistance in diabetes, it can be suggested that the endo-
thelial cells involved are mainly those of skeletal muscle.
Indeed, basal and insulin-stimulated muscle NOS activity
was impaired in well-controlled type 2 diabetic subjects,
paralleling the severity of insulin resistance (19). In our
study, we did not measure the activity of the IRS-1/PI-3/
Akt pathway, because no muscle biopsy was performed.
However, the previously referenced reports would indi-
cate muscle endothelial cells as key sites of such
resistance.

NOx concentrations were reduced by hyperinsulinemia
despite the increase of NOx synthesis. Such an observa-
tion may indicate that insulin, besides its stimulatory effect
on NOx production, also increased NOx removal. Such an
hypothesis is intriguing and not directly proven so far.
Alternatively, other insulin-induced changes (such as the
exogenous glucose infusion, the modification of plasma
amino acids and other substrate concentrations, or others)
might be involved and need to be specifically investigated.
On the other hand, because high glucose inhibits NOS
activity per se (15), the acute insulin-induced glucose
decrease was not responsible for the blunted increase of
NO production observed in the patients.

The diabetic subjects were treated with hypoglycemic
agents. Moreover, all of them, and half of the control
subjects too, were also treated with pressure-lowering
agents and with statins. These drugs may affect NOS
activity (30–33). Nevertheless, the type 2 diabetic patients,
who were more heavily and extensively treated than the
control subjects, exhibited a decreased NOx production,
suggesting that, despite therapy, they had an impaired
NOS activity.

Whether the observed defects in NOx metabolism are
due to diabetes itself, to the accompanying nephropathy,
or to insulin resistance, possibly amplified by hypertension
(34), cannot be concluded from our experiments. In order
to account at least in part for hypertension as a potentially
confounding factor, we enrolled in the nondiabetic, con-
trol group also hypertensive subjects (five of ten), other-
wise clinically and metabolically healthy. When compared
with the diabetic group, the NOx and arginine kinetic data
of these nondiabetic, hypertensive subjects were some-
how intermediate with respect to the whole control group.
Nevertheless, significant differences versus the type 2
diabetic patients, in both NOx FSR and in the fractional
arginine conversion to NOx, were maintained. Interest-
ingly, these nondiabetic, hypertensive subjects were insu-
lin resistant as regards glucose disposal, as much as the
type 2 diabetic subjects. Thus, it cannot be excluded that
hypertension per se (and/or the associated insulin resis-
tance) played at least a partial role in the defects observed
in type 2 diabetes. Hypertension, however, is an invariable
finding in type 2 diabetes with nephropathy (35); therefore,
it would be impossible to distinguish between the effects
of diabetes per se from those of hypertension in these
patients. The relationships between hypertension and NO
turnover should be further investigated.

We intentionally chose to study type 2 diabetic subjects
who were also likely to exhibit alterations in NOx ho-
meostasis and metabolism, i.e., patients with nephropathy.
It is possible that nephropathy itself had some effect. In
this respect, we found an inverse relationship between
NOx FSR during the clamp and plasma creatinine within
the entire subjects’ set. Additional studies in type 2 dia-
betic patients without nephropathy, as well as in nondia-
betic subjects with other forms of nephropathy, are
required to answer this question, particularly as regards
the insulin effect. In this regard, we previously reported a
decreased basal NOx synthesis in type 2 diabetic patients
without nephropathy (10), although the response to insu-
lin was not tested.

The increase of inducible NOS by endotoxin and/or
inflammatory states is associated with impaired insulin-
stimulated muscle glucose uptake (36–40). Although our
type 2 diabetic patients did not exhibit overt signs of
inflammation, measured cytokines tended to be greater in
the patients than in control subjects, although only the
increase of IL-8 was significant (Table 1). However, an
increased inducible NOS activity would be associated with
an increased NOS generation, opposite to what was ob-
served in our study.

Plasma amino acid concentrations were grossly not
different between diabetic and control subjects (Table 2),
and they were roughly suppressed to the same extent in
both groups, with the exception of taurine (greater in the
diabetic group) and asparagine and threonine (lower in the
patients). None of these amino acids are known to modu-
late NOx metabolism. Plasma taurine concentrations may
be increased in insulin-resistant states (41). Asparagine
was found to be increased in type 2 diabetic patients,
contrary to our findings (42). The reasons for these
discrepancies are unknown, possibly depending on the
patients’ specific characteristics. To our knowledge, no
data on plasma threonine concentrations in response to
insulin are available. On the other hand, total, branched-
chain, and most other amino acid plasma concentrations
were not significantly different between the groups. There-
fore, plasma amino acid levels should not be related to any
of the basic findings on NOx metabolism of our study.

In conclusion, whole-blood NOx production from argi-
nine, and its response to insulin, are decreased in type 2
diabetes with nephropathy, likely representing an addi-
tional feature of insulin resistance. Such a defect can be
responsible for the decreased NOx concentration and
the altered vascular responses found in type 2 diabetes,
and it can be linked to the pathophysiology of diabetic
nephropathy.
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