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Abstract

Background: Analysis of genomic sequence allows characterization of genome content and organization, and access
beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions
are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic
coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique
genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of
these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library
allows targeted access to large genomic regions.

Methodology/Principal Findings: We characterize ,1.3 Mb of genomic sequence around 11 selected genes expressed in B.
anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of
expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion
of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome
allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA
sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental
genes).

Conclusions: The general properties and organization of the available B. anynana genomic sequence are similar to the
lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new
interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with
higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs,
and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in
multiple developmental processes including wing pattern formation.
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Introduction

Accumulation of genomic sequence data for different species is

allowing an in-depth understanding of genome properties and

evolution. Analysis of whole genomes of target species enables a

detailed characterization of genome content and structure, and

comparative analysis of genomic sequence across species provides

insights about different aspects of genome dynamics and evolution

(e.g., [1]). Widening phylogenetic representation of genomic data

has allowed in silico identification of new protein-coding and

miRNA genes, and regulatory sequence (e.g., [2,3]). However, and

despite the increasing number of eukaryotic assembled genomes in

the public depository [4], we are still far from representative

coverage of biological diversity. This is especially so for groups

with larger genomes whose full sequencing still requires a

significant investment, and/or where repetitive or polymorphic

sequence renders genome assembly a bioinformatic challenge.

Bacterial Artificial Chromosomes (BACs), where large (typically

around 150 Kb) fragments of genomic DNA are cloned and can

be accessed individually, are a valuable resource for species where

a complete genome sequence is not (yet) available. They allow

focus on particular genomic regions (often around genes of

interest), and have been used successfully for different ends such as

sequence annotation (including access to gene coding and

regulatory regions, physical mapping, development of genetic

markers, analysis of synteny, or to assist whole genome assembly
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(e.g., [5,6]). BAC libraries are available for many species, including

different lepidopterans (the insect order of butterflies and moths)

which have relatively large and typically repetitive genomes [7].

This is one of the most diverse groups of animals and includes

many agricultural pests and one of only two domesticated insects,

the silkworm Bombyx mori.

The Lepidoptera have an unusual set of genetic properties,

combining holocentric chromosomes, heterogametic females, and

male-restricted meiotic recombination, whose consequences for

genome evolution remain largely unexplored. The genome of

B. mori is completed [8,9] and provides an invaluable reference for

comparative genomics in this group (e.g., [10,11]). However, this is

the only genome publicly available for this relatively vast and

ancient group, with more than 150,000 described species [12,13].

Butterflies have diverged from moths some 140 MYA [14] and,

despite growth in genomic resources [15], no full genome

sequence has yet been made available for any species in this

group. Butterflies have interesting biological properties (such as

color vision and novel wing color patterns) and include many

textbook examples of studies in ecology and evolution – for

example, long distance migrations of monarchs [16], mimicry in

Papilio and Heliconius [17,18,19], mutualistic relationships between

lycaenids and ants [20], and wing pattern plasticity and evo-devo

in Bicyclus and Junonia [21]. Bicyclus anynana has been established as

a butterfly model in the study of the evolution and development of

wing color pattern elements called eyespots [21,22,23,24]. This

species has a large collection of expressed gene sequences and the

densest gene-based linkage map available to date for any butterfly

species [25,26]. A BAC library available for B. anynana [27] allows

access beyond the coding regions of genes of interest, including

genes involved in wing pattern formation.

Here, we analyze large genomic regions in BAC clones selected

for containing 11 genes expressed during B. anynana wing

development, at stages relevant for color pattern formation [25].

The selected genes include those encoding signaling molecules

proposed as candidate morphogens in the induction of eyespots

(Decapentaplegic, Dpp, and Wingless, Wg; [23]) as well as some of

their regulators possibly responsible for pattern variation (APC-

like, APC, and Naked cuticle, Nkd; [28]), transcription factors

implicated in eyespot ring patterning (Distal-less, Dll, and

Engrailed, En; [29,30,31]) as well as other transcription regulators

(Apterous, Ap, and DP transcription factor, Dp), enzyme

Vermilion (V) presumably involved in pigment synthesis on

developing wings [32], Ecdysone receptor (EcR) involved in wing

pattern plasticity [33,34], and the antioxidation gene Superoxide

dismutase 2 (Sod2; [35]). Our annotation of the BAC sequences

enabled the identification of repetitive DNA and transposable

genetic elements, and prediction of putative protein-coding genes,

including the 11 target genes as well as the genes around them.

The comparative analysis to orthologous regions in other

lepidopteran species allowed us to assess fine-scale conservation

of gene order (synteny) and also of nucleotide sequence in

predicted protein coding and non-coding DNA.

Results and Discussion

We analyzed ,1.3 Mb of genomic sequence for the butterfly

Bicyclus anynana, an emerging model in the study of wing pattern

evolution and development [36]. This sequence was part of 11

BAC clones selected (from a library available for the species [27])

for containing 11 genes (Table 1) expressed in developing wings

during the stages relevant for color pattern formation [25].

Assembled BAC sequences were characterized and annotated in

relation to a number of criteria (see Methods), including detection

of repetitive elements and prediction of protein-coding genes

(Table 1, Figure 1). Comparison of gene content with the available

gene-based linkage map of B. anynana [26], shows that the BACs

analyzed correspond to regions on nine different chromosomes

(Table 1). The annotated genomic regions were used for a

comparative analysis of gene order in relation to the lepidopteran

reference genome (Figure 1), and for a comparative analysis of

nucleotide sequence in relation to this and other lepidopteran

species with relevant sequence available (Figure 2).

CG content, repetitive sequence, and mobile elements
We used a combination of web-available and custom-designed

bioinformatic tools and extensive manual curation to characterize

different aspects of the target genomic sequence (details in

Methods). Similar to observations in other lepidopterans

[10,37,38], the GC content was ,36.1% for the total sequence

analyzed (with some variation between regions; Table 1) and

,45.4% for the 55 validated predicted protein-coding genes (see

below). This is consistent with studies in Drosophila where

functional (coding) regions exhibit higher GC content than

presumably less constrained regions [39], possibly relating to the

fact that preferred codons often end in C or G [40].

We used RepeatMasker [41] to identify and characterize

repetitive regions, including the type and extent of different

repetitive elements. We identified a total of 857 repeats larger than

20 bp, corresponding to ,2.73% (35567 bp) of the sequence

analyzed (Table 1 and S1). The majority (721) of those repetitive

elements were characterized as low complexity (i.e. poly-purine/

poly-pyrimidine stretches or regions of .87% AT or .89% GC),

and ,0.49% of the total genomic sequence corresponded to

simple repeats (duplications of, typically, 1–5 bp). While the

overall ,2.73% estimated repetitiveness for B. anynana is lower

than the .20% estimate for Heliconius butterflies [10,37], the

proportion of that corresponding to low complexity repeats is

higher than estimates for other lepidopteran species and the % of

simple repeats is comparable between all [10,37,38]. Because our

estimates are based on BACs selected for carrying specific genes,

rather than sequence from randomly-selected BACs, it avoids

gene-less regions and might under-estimate the extent of

repetitiveness in the whole genome. Aside the repetitive elements

identified by RepeatMasker, we also specifically looked for the

nine novel types of repeated elements identified in other model

butterflies [10] (see Methods). We found sequence similar to two of

these in the available B. anynana genomic sequence (Table 1), and

also in nucleotide sequences available for other lepidopteran

species in NCBI’s sequence depository (Table S2).

Using a combination of tools (RepeatMasker, Kaikogaas,

CENSOR and manual BLAST; see Methods), we identified

sequences related to transposable elements (TEs; Table 1). These

included DNA transposons (Tc1-IS630-Pogo and DNA/Mariner),

retroelements encoding for a reverse transcriptase (three

NonLTR/RTEs, one NonLTR/DMRT and one NonLTR/

CR1), and two LTR-retrotransposons (one LTR/BEL and one

LTR/Gypsy) (see Table 1 and Figure 1). Only one of these nine

TEs (Tc1-IS630-Pogo in BAC AC239116) was identified by

RepeatMasker, and was, thus, within the sequence that was

masked before further annotation (see Methods). This element is,

thus, not in Figure 1 or Table S3. Some of the TEs identified are

located inside introns (e.g., in glycosyltransferase in AC239115, and

Adh-4 in AC239114; Figure 1), and some are located near areas

where synteny between B. anynana and B. mori is disrupted (e.g.,

inversion in AC239118, and transposition of cytosolic ovarian

carcinoma antigen 1 in AC239121; Figure 1). This is especially

interesting because TEs are thought to play an important role in
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genome evolution, including contributing to chromosomal rear-

rangements [42] and to the appearance of new exons and introns

(albeit possibly to a lesser degree in invertebrates [43]).

In silico annotation and manual curation of protein-
coding genes

For the in silico gene prediction we chose to use Kaikogaas [44],

a web-available tool designed for annotation of genomic sequence

of Bombyx mori, the lepidopteran reference [45]. This resulted in a

total of 398 predicted peptides (Table 1 and S3). Of these, fewer

than 10% (38) had any type of annotation (i.e. a putative gene

name or function) beyond ‘‘hypothetical protein’’ (HP). To identify

potential false positives and other issues with the in silico

predictions, we manually curated the list of 398 Kaikogaas-

derived genes extensively (details in Methods). In our conservative

validation procedure we started by dismissing 111 predicted

peptides shorter than 60 amino acids. We then used BLAST to

check the remainder for sequence similarity in relation to relevant

publicly-available gene collections. Only 55 predicted peptides

(including the eight TEs not identified by RepeatMasker; see

above) had significant similarity with proteins on NCBI and were

kept for further analysis (Table 1, Figure 1 and Table S3). The

curated 55 predicted genes in the 11 BAC sequences correspond to

an average of 4.2 genes per 100 Kb which, despite our very

conservative manual curation, falls well within published estimates

for other insects (Figure S1), and is greater than that for other

lepidopterans (,2.5 genes/100 Kb in Heliconius butterflies [10]

and ,3.4 genes/100 Kb in the silkworm B. mori [46]). Note that

gene density in the B. mori scaffolds orthologous to the available B.

anynana sequence (the regions represented in Figure 1) is 4.5 genes/

100 Kb, which is very close to that in B. anynana. Our manual

curation strategy, designed to dismiss false positives at the expense

of possibly generating false negatives, is expected to generate a

conservative estimate of gene number. On the other hand, gene

density in genomic regions selected for containing specific protein

coding genes is probably higher than that in the whole genome as

selection of gene-containing BACs avoids possible ‘‘gene deserts’’.

The manual curation also allowed a more in-depth annotation

of the predicted protein-coding genes. By annotating individual

predicted exons we: 1) established that 41 of the 55 predicted

genes had the complete putative coding sequences, 2) identified

errors with the automated annotation process whereby exons of

the same gene had been identified as different genes (e.g.,

Kaikogaas’ HP12 gene in AC239120 corresponds to one of the

exons of Ecdysone receptor; Table S3), and 3) highlighted instances of

exon duplications, including cases of duplicated exons with (exons

Figure 1. Annotation of B. anynana genomic regions and fine-scale synteny with B. mori. Each B. anynana BAC sequence is represented,
with the corresponding scaffold in B. mori (including information on chromosomal location). Each putative gene is represented by a different color:
B. anynana gene names in bold correspond to those on which BAC selection was based (Table 1), and B. mori gene names reflect SilkDB annotation
(e.g., 010572 is SilkDB gene BGIBMGA010572). Exons are explicitly annotated for B. anynana as stripes of the same color (darker shade for
duplicated exons). Arrows indicate the direction of transcription of each gene, and fine lines are used for highlighting chromosomal rearrangements.
The figure contains a legend for the representation of sequence length, and for the protein-coding genes, repetitive sequence, transposable
elements, and microRNA identified in this study. Details on all B. anynana predicted peptides can be found in Table S3.
doi:10.1371/journal.pone.0023778.g001
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11–15 of p80 katanin in AC239115, and Brahma in AC239121) and

without (exons 2 and 3 of Sod2 in AC239114, and exons 5 and 6 of

cell cycle progression in AC239122) non-sense mutations (Table S3).

Validation of in silico gene prediction using expressed
sequence data

To match in silico gene predictions with expression data (see

Methods), we used all B. anynana UniGenes (unique genes) from

the available assembly of EST sequences [25,26]. The results of

this analysis are displayed graphically in a custom web-available

database [47]. This approach allowed us not only to assess our

annotation of protein-coding sequence, but also to assess EST

assembly. We identified EST-derived UniGenes for most of our

predicted peptides (Table S3), but also many UniGenes matching

genomic regions with no predicted peptide (see [47]). We

identified EST-derived UniGenes for 44 of the 55 predicted

protein-coding genes; 17 with a single UniGene match and 27

with two to seven. In 23 of the 27 cases with more than one

UniGene corresponding to the same predicted peptide, these

UniGenes were at least partly overlapping. This reflects under-

assembly of the ESTs, possibly due to polymorphisms in these

sequences [25,26,48]. On the other hand, UniGenes in regions

with no predicted peptides presumably correspond to false

negatives of our conservative annotation. For example, Kaiko-

gaas-predicted genes HP7 and HP35 in AC235115 and HP13 in

AC239121 were discarded in the manual curation process

(including one case under the 60-aminoacids long threshold).

One UniGene corresponding to a putative transposable element

not identified by Kaikogaas was detected in two BAC clones

(AC239116 and AC239124). Still, the majority of UniGenes that

did not match any predicted gene seemed to fall in repetitive

regions identified and masked by RepeatMasker.

Alcohol dehydrogenase expansion and sequence similar
to lepidopteran miRNAs

We identified an interesting case of gene duplication. Among

the predicted genes, we identified five putative Alcohol dehydrogenase

(Adh) genes in tandem in BAC AC239114 (Figure 1). BLAST

analysis (see Methods) allowed us to identify seven orthologs in

chromosome 10 (BGIBMGA002939-45; minimal e-value 1e-30) of

the B. mori lepidopteran reference genome, also annotated as Adh

genes [49]. Phylogenetic analysis of the 12 corresponding Adh

proteins, and including the Adh and Adh-related proteins of D.

melanogaster as outgroups (see Methods), showed that all B. anynana

paralogs cluster together and separated from the cluster of B. mori

paralogs (Figure 3). This pattern of higher similarities within

than between species may result from either of two types of

scenarios: 1) independent duplications of Adh having occurred after

the separation of the lineages of B. mori and B. anynana, or

2) duplications having occurred prior to the split of the lineages

with subsequent concerted evolution of paralogs (gene conversion;

see [50]). Unlike what has been shown for converted duplicates in

other species [51], CG content in the five B. anynana Adh genes

(average 6 standard for entire loci is 36.1%62.3%) and in the

remaining 50 predicted genes (37.6%66.2%) is not significantly

different (t-test t = 0.521, df = 53, p = 0.60). This, however, does

Figure 2. Conservation of DNA sequence in relation to other lepidopterans. VISTA plots of all BAC sequences against B. mori and, when
available, other lepidopterans (moths Bombyx mori, Helicoverpa armigera, Spodoptera frugipera, and butterflies Papilio dardanus, Heliconius
melpomene). Regions more than 70% conserved in a 100 bp window (VISTA default settings) appear as peaks with blue corresponding to annotated
protein-coding regions and red to conserved non-coding sequence. Figure S2 shows close-up and extended analysis of regions around genes
wingless and Ecdysone receptor.
doi:10.1371/journal.pone.0023778.g002
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not distinguish between the scenarios above. More and other types

of data are necessary for such purpose, and also for unravelling the

ecological value of this gene expansion [52].

We used BLAST to search for B. anynana genomic sequence

similar to mature miRNA sequences (,22 nt) from B. mori

available in miRBase [53,54] and from H. melpomene [55] (see

Methods). We identified a putative B. anynana miRNA similar to

one of the 487 B. mori miRNAs (in BAC AC239117, Figure 1). Its

sequence was 95% and 100% identical to that of its B. mori and

H. melpomene counterparts, respectively. Prediction of miRNAs

based on sequence conservation remains of limited value and

needs experimental validation. The extent to which miRNAs are

conserved is only now starting to be characterized. For example,

only 68 of 257 B. mori miRNAs were found to be conserved with

other species (23 with other vertebrates and invertebrates, 13

limited to invertebrates and 32 limited to insects [54]), and 430 of

447 chicken miRNAs were considered to be exclusive to the avian

lineage [56]. In Drosophila, where species from the Sophophora and

Drosophila subgenus diverged ,62 MYA [57], only 28 of 59 D.

melanogaster miRNA were conserved throughout the phylogeny of

those species with fully sequenced genomes [58].

Comparative analysis of gene order: fine-scale synteny
with B. mori

The comparative analysis of gene order in the target B. anynana

genomic regions (protein-coding gene annotation obtained as

explained above) and the corresponding B. mori orthologous

regions over 18 scaffolds (annotation available from SilkDB [49]) is

represented in Figure 1. Note that both species have the same

number of chromosomes and that B. anynana linkage groups were

numbered following orthology with B. mori [26]. Some of the

predicted 55 genes were excluded for a quantification of the

synteny conservation: 1) three genes found isolated in three of the

B. anynana BACs (AC239117, AC239116 and AC239119), 2) two

genes whose B. mori orthologs were isolated in one scaffold (note

that you need at least three gene pairs consecutive genes to assess

conservation of order), and 3) the eight transposable elements in

Figure 1. Out of 42 orthologous pairs analyzed, 36 genes (,86%)

are in the same order in both species. We also identified three B.

mori genes (gray arrows in Figure 1) not represented in the

corresponding B. anynana region (confirmed by running tBLASTn

and tBLASTx of the B. mori sequence against the B. anynana BAC).

One of these B. mori genes (BGIBMGA006231) presumably

encodes a 57 amino acid protein with no SilkDB annotation [49]

and might be a ‘‘false positive’’. The other two (BGIBMGA010383

and BGIBMGA010570), however, are annotated and presumably

encode longer peptides (776 and 304 amino acids, respectively).

We used different BLAST algorithms to confirm that their absence

in the corresponding B. anynana BAC was not the result of loss

during our stringent manual curation. Interestingly, all three genes

are associated with chromosomal rearrangements; one transposi-

tion in AC239115 and one inversion in AC239118 (Figure 1).

Previous results comparing genetic or physical maps had shown

that chromosomal gene composition and gene order is highly

conserved between butterflies and moths, but also revealed

instances of chromosomal rearrangements [26,59]. A fine-scale

comparison of genomic sequence in ca. 420 Kb sequence between

the butterfly Heliconius erato and the moth B. mori showed conserved

gene order and distances for ca. 90% of the annotated protein-

coding genes [10]. Here, in ca. 1303 Kb of sequence compared

between B. anynana and B. mori, we detected smaller levels of

conservation and identified 1) small scale inversions: inverted

order of different genes (e.g., mRpL46 and dpp in AC239118) and

inverted direction of single genes (e.g., p80 katanin in AC239115),

and 2) transpositions: with a number of genes assigned to non-

orthologous chromosomes (e.g., cytosolic ovarian carcinoma antigen 1

gene in AC239121 is in chromosome 11 in B. anynana and

chromosome 14 in B. mori) and with the orthologs for the nine

putative genes in AC239115 (B. anynana chromosome 1)

distributed over five B. mori scaffolds, including regions in

Figure 3. Phylogenetic tree of Adh genes. Neighbour-joining, unrooted tree reconstructed with MEGA 4 using the aminoacid sequence of the
putative Adh genes in B. anynana (Bany, in green), together with the corresponding paralogs from chromosome 10 in B. mori (Bmori, in red, showing
Silkdb gene accessions and BLAST results) and D. melanogaster (Dmel, in blue, showing FlyBase gene accessions). Numbers are bootstrap values for
1000 replicates.
doi:10.1371/journal.pone.0023778.g003
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chromosome 4 and regions not yet assigned to a B. mori

chromosome. Inversions and transpositions have been well

documented between the sequenced genomes of Drosophila species

[60,61,62] and are known to have played an important role in the

evolution of their chromosomes.

Comparative sequence analysis highlights conserved
non-coding regions

Of the ca. 1,303 Kb of B. anynana genomic sequence analyzed,

6% corresponded to estimated coding sequence (cds), while 28%

and 66% corresponded to predicted intronic and intergenic

regions, respectively (Table 1). Using VISTA [63,64], we

compared the genomic sequence available for B.anynana with that

of orthologous regions (identified as described in the Methods

section) of B. mori and other Lepidoptera. The results are displayed

in Figure 2. Note that for the putative Adh genes, even though the

B anynana and B. mori copies showed conservation at the protein

level (Figure 3), the VISTA software was unable to identify

nucleotide sequence conservation in the corresponding regions.

For all B. anynana regions compared, VISTA estimated a total of

4.3% nucleotide identity with B. mori (and 1.3% with butterflies

Papilio dardanus, and 6.4% with Heliconius melpomene, for available

sequence), with 2.8% in predicted coding region, 0.4% in introns,

and 1.1% in intergenic regions (Table 1). Conserved sequence

regions correspond largely to the location of putative exons (blue

areas in Figure 2), but, in some instances, also to putative non-

protein coding regions (red areas). Non-protein-coding DNA

forms the majority of the genomes of many multicellular

eukaryotes (e.g. ,80% of noncoding DNA in Drosophila [65]),

and ,99% in humans [66]), and is known to be functionally

important in many respects (e.g. for the regulation of gene

expression and chromosome packaging). Conservation of non-

coding sequence is often taken as a sign of possible functional

importance. Different studies found considerable levels of

conservation of non-coding sequence (e.g. between pairs of

Drosophila species [67,68], diverged no more than 62 MYA [57])

and constraints on intergenic regions have been estimated to

possibly be as high as 60% [69].

The regions of significant conservation of non-coding sequence

are heterogeneously distributed in the neighborhood of different

genes (Figure 2). In fact, we see high levels of conservation

around some (notably, wingless and Ecdysone receptor) targeted

‘‘developmental genes’’, but not all (e.g. around Distal-less and

engrailed). Like has been suggested for Drosophila where levels of

selective constrain (and putative functional role) appear to

correlate with intron length [70], B. anynana wingless and Ecdysone

receptor have relatively large introns (,13 Kb and ,50 Kb,

respectively), compared to the average of ,6.5 Kb for the other

46 non-intronless predicted genes (their intron length ranging

from 50 bp in the putative DNA/Mariner element to ,33 Kb

for the gene encoding transcription factor apterous). The high

degree of conservation of non-coding sequence around wingless

and Ecdysone receptor between B. anynana and other lepidopterans

(,78 MYA for B. anynana and H. melpomene [71]), and more than

140 MYA for B. anynana and B. mori [14]) is lost when comparing

B. anynana to species in other insect orders (Figure S2). It is

noteworthy that wingless and Ecdysone receptor are highly pleiotropic

genes involved in a multitude of developmental processes across

in multiple species, and which, in B. anynana are thought to be

associated to the formation of characteristic wing color pattern

elements [28] and seasonal polyphenism [72]. It will be

interesting to extend this analysis to more lepidopteran species,

including closer relatives with comparable wing pattern proper-

ties, and to explore the functional role of the conserved non-

coding sequence experimentally.

Overview and conclusions
We analyzed 11 BAC clones of the butterfly Bicyclus anynana,

selected for the presence of key genes expressed during wing

development at stages relevant for wing color pattern formation

[25]. We have identified different genes in these regions,

corresponding to gene densities similar to other lepidopterans.

Among the genes identified, we discovered five tandemly arranged

genes similar to Alcohol dehydrogenase (Adh), which potentially

represent an expansion in the Lepidoptera. Comparative studies

of sequence, expression and function of these genes are necessary

to shed light onto their evolutionary history and ecological

importance.

Our comparative analysis of the B. anynana genomic regions

with the orthologous regions of the lepidopteran reference

genome allowed assessment of conservation of fine-scale gene

order and of DNA sequence. We detected strong synteny but 1)

also multiple events where it was disrupted by different

chromosomal rearrangements, including inversions and transpo-

sitions not detected with a previous comparative analysis of

B. anynana versus B. mori linkage maps [26], and 2) lower

proportion of genes in conserved order that a previous smaller-

scale, fine-resolution analysis comparing Heliconius erato BAC-

derived sequence with B. mori scaffolds [10]. We also detected

instances of unusual high conservation of non-coding regions, in

particular, around the genes encoding for Ecdysone Receptor

and Wingless, between species diverged some 140 MYA.

Understanding the functional significance of these regions will

allow for a better understanding of the evolution and diversifi-

cation of living organisms.

Materials and Methods

BAC sequences and target genes
We analyzed over 1,303,271 bp of nucleotide sequence from 11

B. anynana BAC clones deposited on GenBank (AC239114–

AC239124). These BAC clones were obtained from the 96
coverage B. anynana BAC library available at Clemson University

Genomics Institute (CUGI [27]) and were Sanger sequenced at 8–

96 depth and their sequences assembled into 11 individual

scaffolds by the Joint Genome Institute (JGI [73]), as part of the

Community Sequencing Program FY2006. The sequenced BAC

clones were originally selected by screening the BAC library filters

with radioactively-labeled probes against 11 genes of interest

(Table 1), expressed in developing wings [25].

Annotation of genomic sequence
For the annotation of the BAC sequences aimed at character-

izing different aspects of their genomic composition, we used a

combination of web-available and custom-designed bioinformatic

tools, as well as manual curation. We also used sequence

information from orthologous regions in other species, with

emphasis on the silkworm B. mori, the lepidopteran genomic

reference.

RepeatMasker [41] with CrossMatch search algorithm (default

settings) was used to identify repetitive regions, including the type

and extent of different repetitive elements. The repetitive regions

identified in this way were masked before all further analysis. Also,

using BLASTn (e-value cut-off of 1e-5) against the B. anynana BAC

sequences, we searched for nine transposable element families

recently identified in another butterfly [10]. CENSOR [74] was

used for classifying the identified putative transposable elements in
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the different classes (nonLTRs, LTRs, and DNA transposons) and,

when possible, families.

In silico gene prediction was done for each complete BAC

sequence using Kaikogaas (a web-available tool customized for B.

mori genomic data; [44]). Kaikogaas’ output is a graphical display

(Figure S3) and a list of all putative proteins identified (Table S3)

in each target BAC. This list was extensively manually curated for

validation of Kaikogaas’ predictions and for further annotation.

Manual curation involved a sequence of steps: 1) hypothetical

proteins shorter than 60 amino acids were dismissed; 2) predicted

peptides longer than 60 amino acid were used to search for

similarity with the complete collection of non-redundant insect

protein sequences (this collection consisted of 913470 entries

when our analysis was run in 2010) using BLASTp (e-value cut-

off of 1e-10) and best hits were used for gene identification; 3) the

amino acid sequences corresponding to these proteins were then

used for running BLASTp (default settings) against the Bombyx

mori genome in SilkDB [49], from where the corresponding

scaffolds were downloaded (assembly of August 2010) and used

for later comparison of genomic sequence around predicted genes

(see below); 4) to attempt to confirm the putative exons of each

hypothetical gene, we used homologs from both B. mori (from

SilkDB [49]) and D. melanogaster (from Flybase [75]) to run

tBLASTx (default settings) against the B. anynana BAC sequences.

BAC annotation was also done using a custom-built platform

[47] which, aside repetitive regions and orthologs to genes in

relevant public databases, also uses the complete list of UniGenes

identified from the assembly of a large collection of B. anynana

ESTs [25,26]. BLAST results comparing the sequences of each

complete BAC to the UniGene collection were deposited in a

database queried by the GBrowse interface [76]. This analysis

allowed, on the one hand, validation of the in silico prediction of

exons, and, on the other, an assessment of EST assembly.

For the identification of conserved putative microRNAs

(miRNAs), we ran BLASTn analysis (e-value cut-off of 1E-3;

word size of 15) using as query against the B. anynana BAC

sequences, the mature sequence (,22 nt) of the 487 miRNA

sequences of B. mori (available at miRBase [53,54]) and the

recently identified miRNAs from Heliconius melpomene butterflies

[55].

Comparative analysis of gene order and genomic
sequence

To compare fine-scale physical linkage and gene order between

B. anynana and B. mori, we used our annotation of the B. anynana

BAC sequences (obtained as explained above) and the available

annotation (SilkDB; [49]) for the corresponding B. mori scaffolds

(identified as explained above, based on BLAST of predicted

peptides during the manual curation).

To investigate nucleotide sequence conservation between B.

anynana and other lepidopterans, we used VISTA (default settings:

70% identity, 100 bp window; [63,64]) comparing whole B.

anynana BACs with the corresponding genomic regions of other

species. For B. mori these were obtained from the SilkDB scaffolds

based on sequence similarity with the predicted B. anynana genes.

For other species, they were obtained from BAC sequences

available on NCBI, based on discontinuous megablast (default

settings) of the complete B. anynana BAC sequence. Pairwise

alignments between sequence for B. anynana sequence and each of

the available corresponding sequences obtained were performed

on the mVISTA program using the Avid alignment algorithm

(default settings), which globally aligns DNA sequences of

arbitrary length [77]. For the quantification of sequence

conservation, we considered only the regions comprised between

the first and last orthologous genes in each BAC that matched a

single scaffold in the other species. The genomic regions around

EcR, wg and Wnt-6 (plus 15 Kb upstream and downstream) from

Drosophila melanogaster, Apis mellifera and Tribolium castaneum were

downloaded from Flybase [75], Beebase [78] and BeetleBase

[79,80], respectively. They were used for comparison with the

same regions in B. anynana (AC239120 and AC239123) using

VISTA (Figure S2).

Phylogenetic analysis of Adh genes
Putative Adh genes from B. anynana (AC239114) were used for

running tBLASTn and tBLASTx analysis against B. mori

nucleotide and protein collection in SilkDB. The first hits

corresponded to annotated Adh genes located at chromosome

10 of the silkworm. The corresponding proteins were down-

loaded, together with the ADH and ADHR (Adh-related)

proteins of D. melanogaster from Flybase. These were used,

together with the amino acid sequence of the putative B.

anynana genes, for phylogenetic reconstruction using MEGA

version 4 [81] (Neighbor-joining with pairwise deletion and

bootstrap).

Supporting Information

Table S1 Quantification of repetitive sequence in target
B. anynana BACs. Identification and characterization of

repeated regions was done with RepeatMasker (see Methods).

Simple Repeats correspond to duplications of, typically 1–5bases.

Low Complexity Sequence corresponds to poly-purine/poly-

pyrimidine stretches or regions of .87% AT or .89% GC.

(PDF)

Table S2 Heliconius repetitive elements identified in
the target B. anynana BACs. Two of the novel repetitive

elements identified in Heliconius [10] appear to be present in our

target B. anynana genomic sequence, as well as in publicly available

nucleotide sequence for other lepidopterans (cf. BLASTn analysis;

see Methods).

(PDF)

Table S3 List of Kaikogaas predicted genes and subse-
quent manual curation.

(TXT)

Figure S1 Gene density and genome size in insects. Gene

density (number of genes per 100 Kb; cf. [10,46,82,83,84,85,

86,87,88] in relation to genome size for different insect species

(cf. [89]). Circles correspond to species where gene densities were

estimated based on sequenced genomes – note that the size of

assembled genome can differ from the estimates in this Figure.

Other symbols correspond to species where gene density was

estimated based on a few BAC clone sequences – including this

paper for B. anynana.

(PDF)

Figure S2 Comparative analysis of the EcR and wg/
Wnt-6 genomic regions. VISTA plots of the genomic regions

comprising the genes EcR (BAC AC239120) and wg/Wnt-6 (BAC

AC239123) with the orthologous regions in other insects with

relevant sequence available: Heliconius melpomene, Bombyx mori,

Helicoverpa armigera, Spodoptera frugiperda, Drosophila melanogaster,

Tribolium castaneum, and Apis mellifera.

(PDF)

Figure S3 Kaikogaas graphical output of BAC annota-
tion.
(PDF)
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