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a b s t r a c t

Aim: By October 6, 2020, Coronavirus disease 2019 (COVID-19) was diagnosed worldwide, reaching
3,355,7427 people and 1,037,862 deaths. Detection of COVID-19 and pneumonia by the chest X-ray
images is of great significance to control the development of the epidemic situation. The current
COVID-19 and pneumonia detection system may suffer from two shortcomings: the selection of
hyperparameters in the models is not appropriate, and the generalization ability of the model is poor.
Method: To solve the above problems, our team proposed an improved intelligent global optimization
algorithm, which is based on the biogeography-based optimization to automatically optimize the
hyperparameters value of the models according to different detection objectives. In the optimization
progress, after selecting the immigration of suitable index vector and the emigration of suitable
index vector, we proposed adding a comparison operation to compare the value of them. According
to the different numerical relationships between them, the corresponding operations are performed
to improve the migration operation of biogeography-based optimization. The improved algorithm
(momentum factor biogeography-based optimization) can better perform the automatic optimization
operation. In addition, our team also proposed two frameworks: biogeography convolutional neural
network and momentum factor biogeography convolutional neural network. And two methods for
detection COVID-19 based on the proposed frameworks.
Results: Our method used three convolutional neural networks (LeNet-5, VGG-16, and ResNet-18) as
the basic classification models for chest X-ray images detection of COVID-19, Normal, and Pneumonia.
The accuracy of LeNet-5, VGG-16, and ResNet-18 is improved by 1.56%, 1.48%, and 0.73% after using
biogeography-based optimization to optimize the hyperparameters of the models. The accuracy of
LeNet-5, VGG-16, and ResNet-18 is improved by 2.87%, 6.31%, and 1.46% after using the momentum
factor biogeography-based optimization to optimize the hyperparameters of the models.
Conclusion: Under the same experimental conditions, the performance of the momentum factor
biogeography-based optimization is superior to the biogeography-based optimization in optimizing the
hyperparameters of the convolutional neural networks. Experimental results show that the momentum
factor biogeography-based optimization can improve the detection performance of the state-of-the-art
approaches in terms of overall accuracy. In future research, we will continue to use and improve
other global optimization algorithms to enhance the application ability of deep learning in medical
pathological image detection.
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. Introduction

In 2019, novel coronavirus infection caused pneumonia in
ver 200 countries and regions worldwide. The novel coronavirus
neumonia (Coronavirus Disease 2019, COVID-19) was named by
he world health organization (WHO) on February 11, 2020 [1].
OVID-19 is mainly caused by the novel coronavirus, and pneu-
onia (common pneumonia) is caused by a bacterial infection or
typical pathogens such as mycoplasma and chlamydia. There-
ore, COVID-19 is more infectious than pneumonia, and can be
ransmitted through respiratory droplets or close contact. As of
ctober 6, 2020, there were 3,355,7427 confirmed cases and
,037,862 deaths worldwide [2].
Currently, the main detection methods for pneumonia and

OVID-19 are chest X-ray imaging, chest computed tomography
CT) imaging, blood routine examinations [3], nucleic acid test [4],
tc. For chest CT, the cost is high, there is a large amount of ioniz-
ng radiation to the human body, and it is difficult to detect small
esions with little or no density change or early lesions confined
o the cell level. For routine blood examination, it is necessary to
trictly prevent the collected blood samples from contacting the
ir. Meanwhile, it requires high timeliness of detection. The blood
amples [5] taken should be tested within 30 min; otherwise,
he samples should be stored in ice water for no more than 2 h.
or nucleic acid testing, there is a risk that pharyngeal swab
ampling will not be collected, and repeated sampling is needed if
ecessary. In patients with early infection, patients with low titer
f laryngopharyngeal virus cannot be applied and are prone to
alse negative. In addition, sampling staff are easily exposed to the
irus environment and have a greater risk of infection. Compared
ith the above-mentioned pneumonia detection methods, chest
-ray imaging [6] has the advantages of fast detection speed, clear
maging, low cost, permanent retention of samples, and easy re-
iew. The traditional chest X-ray images identification [7] mainly
elies on the radiologist to perform manual examinations. This
ay not only consumes large amounts of manpower and time,
ut also is affected by many other factors, such as visual fatigue,
sychological state, etc., which will increase the uncertainty of
he identification results. Fig. 1 shows the chest X-ray images of
OVID-19, Normal, and Pneumonia.
At present, with the rapid development of deep learning tech-

ology, scholars have begun to apply deep learning technology in
he field of medical pathological image detection. Narin et al. [8]
rained ResNet-50 on a small dataset, which consists of the chest
-ray images for Normal and COVID-19 (a total of 100 images).
he experimental results showed that the accuracy of the model
as 98%. Jin et al. [9] fused ResNet-50 structure and proposed
o use UNet++ to detect COVID-19. The accuracy of the model
as 97.4%. Zhang et al. [10] used the basic convolutional neural
etwork (CNN) models to perform the classification detection of
enign and malignant pulmonary nodules in the chest CT images,
ith an accuracy of 78%, a sensitivity of 80%, a specificity of 53%,
nd AUC of 71%. In the above literature, the accuracy of CNN mod-
ls is lower than that of using the more complex network models.
lthough the detection accuracy of ResNet-50 and UNet++ is
elatively high, they are only verified on the binary classification
roblem. The binary classification problem is relatively simple. It
as practical significance only for the detection of COVID-19 and
ormal by the chest X-ray images. It has less reference value for
etection COVID-19, Normal, and Pneumonia by the chest X-ray
mages.

Jin et al. [9] used a variety of network models (FCN-8s, U-Net,
-Net, and 3D U-Net++) to test the image segmentation of med-
cal lesions. In addition, they tested medical image classification

1 Those two authors contributed equally to this paper.
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using ResNet-50, Inception-v3, DPN-92, and attention ResNet-50.
When detecting COVID-19, Wang et al. [11] used a randomly se-
lected region of interest and a deep learning algorithm to extract
features from the initial network. Song et al. [12] used ResNet-50
and Pyramid Networks to segment COVID-19 images and assisted
doctors in detecting and locating the lesion area. In the field of
image segmentation and image classification, the above literature
involved many deep learning models. The hyperparameters in the
models play an important role in the processes of model training
and testing. A set of hyperparameters with appropriate values can
improve the performance of the model, but the way of taking
values is not described in detail in the above literature.

Ghoshal et al. [13] proposed a Bayesian convolutional neu-
ral network to estimate the uncertainty in the classification of
COVID-19. Half of the data needed for the experiments came from
Kaggle and the other images were collected from the COVID-19
patients by the author. The experimental results showed that the
accuracy of VGG-16 can be increased by 7.2% by using Bayesian
inference. Feng et al. [13] used VB-Net to segment the chest
images and applied a random forest method based on the size of
the infected area to the segmented image to classify the COVID-
19 images. Zheng et al. [14] proposed a model using a 3D deep
neural network to detecting CT images of COVID-19. Although
many optimization methods are used in the models mentioned
above, naive Bayes needs to satisfy the assumption that the
distribution is independent. When the random forest is faced
with the problems that more decision trees are needed, the time
complexity and the space complexity are relatively large. If the
samples have large noise, the random forest algorithm is prone
to overfitting. Besides, the performance of the above models can
only be better when dealing with the same datasets. When the
category of the data changes, the accuracy of the models will be
affected. Therefore, the above models have low robustness and
poor generalization ability.

To solve the above problems and improve the accuracy of
the CNNs on the dataset of the chest X-ray images detection
for COVID-19, Normal, and Pneumonia. The momentum factor
biogeography-based optimization is proposed to optimize the
hyperparameters of three convolutional neural networks (LeNet-
5, VGG-16, and ResNet-18). According to the global optimization
characteristics of the momentum factor biogeography-based op-
timization, which can optimize the hyperparameters of the CNNs
according to different categories of the input images. Therefore,
it improves the robustness and generalization ability of models.
In this paper, we proposed five novel contributions to improve
the performances:

(i) A novel momentum factor biogeography-based optimiza-
tion (MF-BBO) is proposed by optimizing the migration
operation of biogeography-based.

(ii) Two novel frameworks – Biogeography convolutional neu-
ral network (BCNN) and Momentum factor biogeography
convolutional neural network (MFBCNN) – are proposed.

(iii) We tested three configurations, viz., using LeNet-5, VGG-
16, and ResNet-18 as backbones.

(iv) Two novel algorithms (BCNNC and MFBCNNC) are pro-
posed for COVID-19. They are based on BCNN and MFBCNN
tuned for the COVID-19 dataset.

(v) We find MFBCNNC gains superior results compared to
state-of-the-art methods.

The structure of the rest is organized in the following way.
Section 2 introduces the dataset of our experiments. Section 3
introduces the concepts, basic principles, and improved details of
our proposed methods. Section 4 shows the experimental results

and discussions for it. Finally, Section 5 concludes this paper.



J. Sun, X. Li, C. Tang et al. Knowledge-Based Systems 232 (2021) 107494

2

v
p
t
1
t
e
i
s
p

i
X
o

s
c
b
t
P
w
o
t
r

3

v
t
o

3

p
t
R
m
g
a

Fig. 1. Sample of chest X-ray images.
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. Dataset

To ensure the smooth running of the experiments and the
alidity of the experimental results. The dataset used in this
aper is the chest X-ray images data from Kaggle. There are
hree categories of chest X-ray images in the dataset: COVID-
9, Normal, and Pneumonia. Each category has 2,313 images, the
otal number of images is 6,939. We randomly selected 80% of
ach category of images as the training set. The remaining 20%
mages are as the test set. Considering the different sizes of each
ample image, the sizes of all images are reset to 224×224 in the
re-processing images stage.
The samples of our dataset are shown in Fig. 2. The first row

s 5 chest X-ray images of COVID-19. The second row is 5 chest
-ray images of Normal, and the last row is 5 chest X-ray images
f Pneumonia.
It can be seen from Fig. 2 that the chest CT images of COVID-19

how clearly seen in the double lung ground glass shadow. The
hest CT images of Normal show the symmetrical distribution of
ilateral thorax, normal lung permeability, clear lung texture, no
hickening, disorder, and abnormal lines. The chest CT images of
neumonia show patchy lobar pulmonary parenchymal shadows
ith clear edges. We can distinguish the different categories
f chest CT images by the human eyes using the features in
he above mentioned. However, due to visual fatigue and other
easons, there may be some misdiagnosis by using human eyes.

. Methodology

To ease the understanding of this paper, Table 13 shows all
ariables used in our study. Table 14 gives the abbreviation and
heir full names. Tables 13 and 14 are in the appendix at the end
f the paper.

.1. Convolutional neural network

To verify BBO and MF-BBO can effectively optimize the hy-
erparameters of the convolutional neural networks, we selected
hree convolutional neural networks (LeNet-5, VGG-16, and
esNet-18) for experiments. The network structure of these three
odels is gradually complex, and the number of network layers is
radually deepened. Therefore, the experimental results obtained
re effective and convincing.
3

3.1.1. Lenet-5
LeNet-5 is a simple convolutional neural network, and its

structure is shown in Fig. 3. LeNet-5 is mainly used for handwrit-
ing recognition [15]. All the convolution kernel size in LeNet-5 is
5×5; all the convolution kernel stride size is 1. All the size of the
pooling kernel is 2×2, and all the stride size of the pooling kernel
is 2. Here, the size of the convolution kernels and the stride size of
the convolution kernels in the two convolutional layers in Fig. 3
are the optimization objectives of using BBO and MF-BBO in the
following experiments.

As shown in Fig. 3, each convolutional layer in LeNet-5 is fol-
lowed by a pooling layer. The formulas of convolution operation
and pooling operation are shown as follows.

OC =

⌊
XC + 2LC − VC

NC
+ 1

⌋
(1)

OP =

⌈
XP + 2LP − VP

NP
+ 1

⌉
(2)

Here, OC represents the output of the convolution operation.
C represents the input of the convolution operation. LC repre-
ents the size of padding. VC represents the size of the convolu-
ion kernel, and NC represents the stride size of the convolution
ernel. OP represents the output of the pooling operation. XP
epresents the input of the pooling operation. VP represents the
ize of the pooling kernel, and NP represents the stride size of the
ooling kernel.

.1.2. VGG-16
Compared with LeNet-5, VGG-16 has a more complex struc-

ure [16]. This model participated in the 2014 ImageNet Image
lassification and Positioning Challenge, and achieved excellent
esults: it ranked second in the classification tasks and first in
he positioning tasks. The structure of VGG-16 is shown in Fig. 4.
ere, the number of convolutional layers is thirteen, the convo-
ution kernel size is 3×3, the convolution kernel stride size is
, and the padding size is 1. There are five layers of pooling,
he pooling kernel size is 2×2, the pooling kernel stride size is
, and the padding size is 0 [17]. In the feature extraction part,
or the first six layers, after every two consecutive convolutional
ayers, there is a pooling layer. For the remaining layers, after
very three consecutive convolutional layers, there is a pooling
ayer. After that, there are three fully connected layers. In the
xperiments of this paper, we use BBO and MF-BBO to optimize
he convolution kernel size and the convolution kernel stride size
f the first four convolutional layers. As shown in Figs. 3 and
, one of the characteristics of VGG-16 is the superimposed use
f convolutional layers. Here, the convolution operation and the
ooling operation still follow formulas (1) and (2).
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.1.3. ResNet-18
Compared with LeNet-5 and VGG-16, ResNet-18 introduces

he residual block [18], as shown in the image inside the purple
otted line in Fig. 5. In ResNet-18, after the first pooling layer,
here are 8 connect residual blocks, a total of 17 convolutional
ayers, 2 pooling layers, and a fully connected layer [19]. Here, in
he first convolutional layer, the convolution kernel size is 7×7,
the convolution kernel stride size is 2, and the padding size is 3.
 B

4

In the first pooling layer, the size of the pooling kernel is 3×3, the
tride size of the pooling kernel is 2, and the padding size is 1. The
ize of the convolution kernel, the stride size of the convolution
ernel, the size of the pooling kernel, and the stride size of the
ooling kernel mentioned above are the optimized objectives of
BO and MF-BBO in the following experiments.
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Fig. 4. Structure of VGG-16.
Fig. 5. Structure of ResNet-18.
.2. Biogeography-based optimization

Biogeography-based optimization mainly comes from the the-
ry of biogeography. The algorithm can promote the migration
nd mutation of species in different habitats by simulating and
hanging the conditions required for the survival of species in
ifferent habitats [20], so as to realize the information sharing
mong habitats, optimize and enhance the livability of the ecosys-
em. The habitats and migration paths of species are shown in
ig. 6. Here, the blue curve represents the migration paths of
pecies between habitats. The remaining every single small icon
epresents a species habitat.

To describe the algorithm more accurately, this paper intro-
uces the following term: habitat, which is used to describe the
ites of species survival, reproduction, and mutation. Suitability
ndex variables (SIV) are used to represent a certain factor affect-
ng the number of species in a habitat, which can be regarded as
he temperature, illumination time, rainfall, vegetation coverage,
tc. [21]. Habitat suitability index (HSI) is used to indicate the
uitability of habitats for species survival. SIV is a variable that
5

needs to be considered when calculating HSI. At the same time, to
better preserve the optimal solutions in the optimization process,
BBO introduces elitism. When we use BBO to solve a problem,
the ecosystem is regarded as the solution set of the problem,
habitat is regarded as a solution to the problem, HSI is regarded
as the applicability of a solution, and SIV is regarded as the
independent variable of the problem. In the BBO optimization
process, there are two important phases: migration and mutation.
The following contents describe the migration operation and
mutation operation, respectively.

3.2.1. Migration operation
Migration is an important operation of BBO performing op-

timization. The objective of the operation is SIV [22]. Migration
operation consists of two operations: immigration and emigra-
tion. Considering BBO is used to optimize the hyperparameters
of the convolutional neural networks, the linear migration model
is helpful for the experiments [23]. Thus, the migration model of
our experiment is shown as Fig. 7. Here, the immigration rate de-
creased with the increase of species number, and the emigration

rate increased with the increase of species number [24].
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Fig. 7. Migration rate of species.

When the species number of a habitat is 0, the immigration
ate of the habitat is the highest, the emigration rate is 0, and the
SI value is the lowest. When the species number of a habitat
eaches the maximum, the immigration rate of the habitat is
, the emigration rate is the maximum, and the HSI value is
he maximum [25]. Therefore, the following formulas can be
btained.

IH = Imax(1−
H

Hmax
) (3)

EH =
Emax · H
Hmax

(4)

Here, H represents the number of species. Hmax represents the
maximum number of species. IH represents the immigration rate
of the habitat that has H number species. Imax represents the
maximum rate of immigration [26]. EH represents the emigration
rate of the habitat that has H number species. Emax represents the
maximum rate of emigration.

The migration operation of BBO only select the immigration
SIV and the emigration SIV, which is being relatively simple.
Therefore, BBO can be improved on the migration phases. Sec-
tion 3.3 elaborates on it.
6

Fig. 8. Probability distribution of species and mutation.

.2.2. Mutation operation
Mutation operation is another important operation of BBO.

fter migration operation, mutation operation randomly changes
IV in some habitats according to the mutation rate [27]. As
he SIV value changes, the number of species in the habitat will
e changed. Thus, the mutation operation improves the species
umber of the ecosystem [28], and enriches the diversity of can-
idate solutions. The formula for calculating the rate of mutation
s as follows [29].

H = Mmax(
1− PH
Pmax

) (5)

Here, MH represents the rate of mutation with the number of
species H . Mmax represents the maximum rate of mutation. PH
represents the probability of the habitat with the number of
species H [30]. Pmax represents the maximum probability of
species. The probability distribution of species and mutation as
shown in Fig. 8.

According to formula (5) and Fig. 8, we can get the formula of
PH with a habitat that has the number of species H at time (t+∆t)
as shown follows.

PH (t+∆t) = PH (t) (1− IH − EH)+ PH−1IH−1∆t+ PH+1EH+1∆t
(6)
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y taking the derivative of ∆t in (4), the following formula can
e obtained.

...
H =

⎧⎨⎩
−PH (IH + EH)+ PH+1EH+1,H = 0
PH−1IH−1 − PH (IH + EH)+ PH+1EH+1,
PH−1IH−1 − PH (IH + EH) ,H = Hmax

1 ≤ H ≤ Hmax−1

(7)

Here,
...
PH represents the probability of species after the deriva-

tive. For simplicity,
...
PH can be expressed as the multiplication of

matrix A and P shown as below.
...
P = AP (8)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(I0 + E0) E1 0 · · · 0

I0 −(I1 + E1) E2
.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. Imax−2 −(Imax−1 + Emax−1) Emax

0 · · · 0 Imax−1 −(Imax + Emax)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Fig. 9 shows the flow chart of BBO, and Table 1 shows the
pseudocode of BBO. As can be seen from Fig. 9 and Table 1, BBO
performs the migration operation after selecting the immigration
SIV and emigration SIV (replace the immigration SIV with the
emigration SIV). The experiments of this paper show that the
migration operation not only limits the convergence speed of
the algorithm, but also reduces the diversity of candidate so-
lutions and increases the iteration times of searching for the
optimal solution. To solve these problems, MF-BBO is proposed
in Section 3.3. The migration operation of BBO is improved by in-
troducing the migration momentum factor to enrich the diversity
of candidate solutions, and it improves the convergence effect of
BBO. It can be realized that within the same optimization time,
MF-BBO can achieve better optimization effects than BBO.

3.3. Improvement I: Momentum factor biogeography-based opti-
mization

The momentum factor biogeography-based optimization is
the improvement of BBO, which is introduced from the follow-
ing three aspects: (i) The backpropagation of convolutional neu-
ral network. (ii) The introduction of migration momentum op-
erator and (iii) the migration operation of momentum factor
biogeography-based optimization.

3.3.1. Backpropagation of feedforward neural network
The convolutional neural network is a feedforward neural net-

work with a deep structure, including convolution computation. It
is one of the representative algorithms of deep learning. In a feed-
forward neural network, each neuron has two attributes: weight
and bias. The value of these two attributes directly affects the
performance of the network model. Backpropagation (BP) using
the loss value of the network in each iteration to automatically
optimize the values of weight and bias, which plays an important
role in model training. Therefore, the following formulas can be
obtained.

z(l)
= W (l)

· a(l−1) + b(l) (10)

a(l)
= fl(z(l)) (11)

Here, z(l) represents the output of layer l without activation
function. W (l) represents the weight of layer l. a(l−1) represents
the output value of layer l − 1. b(l) represents the bias of layer
l. a(l) represents the output of layer l. fl represents the activation
function of layer l. Therefore, a feedforward neural network can
7

be regarded as a composite function, and the input x of the neural
network can be regarded as a(0). The calculation formula of a
feedforward neural network output is as follows.

x = a(0)
→ z(1)

→ a(1)
→ z(2)

→ · · · → a(l−1)
→ z(l)

→ a(l)

(12)

Feedforward neural network uses backpropagation to opti-
mize the parameters in the network. Assuming that input is (x, y),
the loss function obtained after calculation of the feedforward
neural network is L(y, ŷ). To optimize the parameters in the
feedforward neural network, the following formulas need to be
calculated.

∂L(y, ŷ)

∂W (l)
ij

=

(
∂z(l)

∂W (l)
ij

)T

·
∂L(y, ŷ)

∂z(l) (13)

∂L(y, ŷ)
∂b(l) =

(
∂z(l)

∂b(l)

)T

·
∂L(y, ŷ)

∂z(l) (14)

According to formulas (13) and (14), we still need to calculate
∂z(l)

∂W (l)
ij
, ∂z(l)

∂b(l) and ∂L(y,ŷ)
∂z(l)

. The calculation methods are as follows.

∂z(l)

∂W (l)
ij

=
∂
(
W (l) · a(l−1) + b(l)

)
∂W (l)

ij

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

(
W (l)

1: a
(l−1)
+b(l)

)
∂W (l)

ij
...

∂

(
W (l)

i: a(l−1)+b(l)
)

∂W (l)
ij
...

∂

(
W (l)

n(l):
a(l−1)+b(l)

)
∂W (l)

ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0
...

a(l−1)j
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

∂z(l)

∂b(l) =
∂
(
W (l−1)

· a(l−1) + b(l−1)
)

∂W (l) = Qn(l) (16)

∂L
(
y, ŷ

)
∂z(l) =

∂a(l)

∂z(l) ·
∂z(l+1)

∂a(l) ·
∂L
(
y, ŷ

)
∂z(l+1)

= f ′l
(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
(17)

Here, Qn(l) represents the identity matrix of the l-layer neu-
rons. From formulas (15), (16), and (17), the following formulas
can be obtained.

∂L(y, ŷ)
∂W (l) = f ′l

(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
·
(
a(l−1)

)T
(18)

∂L(y, ŷ)
∂b(l) = f ′l

(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
(19)

Therefore, the execution sequence of BP in feedforward neural
network is as follows: first (10) and (11); then (17); finally (18)
and (19), so as to complete the updating the parameters in each
layer of the neural network.

3.3.2. Backpropagation of convolutional neural network
The convolutional neural network has three important struc-

tures: the convolutional layer, the pooling layer, and the fully
connected layer. Therefore, when the convolutional neural net-
work performs BP, the corresponding solution methods are used
for different structures of the network. For the convolutional
layer, when ωl of the convolutional layer is known, the follow-
ing formulas should be followed when deriving W , b of the
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Fig. 9. Flow chart of BBO.
onvolutional layer.

ω(l)
=

∂L
(
y, ŷ

)
∂z(l) =

∂a(l)

∂z(l) ·
∂z(l+1)

∂a(l) ·
∂L
(
y, ŷ

)
∂z(l+1)

= f ′l
(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
(20)

∂L(y, ŷ)
∂W (l) = ω(l)

· a(l−1)

= f ′l
(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
· a(l−1) (21)

∂L(y, ŷ)
∂b(l) =

∑
i,j

(
ω(l))

i,j

=

∑
i,j

(f ′l
(
z(l))
⊙

((
W (l+1))T

·
∂L
(
y, ŷ

)
∂z(l+1)

)
)i,j (22)

Here, ωl represents the loss function in the layer l. For the
convolutional layer, refer to formulas (10), (17), and (20). When
ωl of the convolutional layer has been accumulated, the following
formula should be followed when deriving the previous layer
ωl−1.

ω(l−1)
=

(
∂z(l)

∂z(l−1)

)T

·ω(l)
= ω(l)

· rot180
(
W (l))

⊙ f ′l−1
(
z(l−1)) (23)

When BP is performed in the pooling layer [31], the sizes of
all matrices in ωl will be restored to the size before pooling.
This process is usually called upsampling. Therefore, when the ωl

of the pooling layer is known, the following formula should be
followed when deriving the ωl−1 of the previous layer.

ω(l−1)
=

(
∂a(l−1)

∂z(l−1)

)T
∂L(y, ŷ)
∂a(l−1) = h

(
ω(l))
⊙ f ′l−1

(
z(l−1)) (24)

Here, h represents the upsampling function. For the BP of the
fully connected layer, the calculation methods are the same as
8

that of the feedforward neural network [32], and the formulas
(10) to (19) in Section 3.3.1 can be referred to.

All the BP formulas in Sections 3.3.1 and 3.3.2 can be used
to update the parameters of each layer in the convolutional
neural network. Through the analysis of the above formulas, the
reasonable value of each hyperparameter in the neural network is
the main reason for better detection performance. When BBO is
used to optimize the hyperparameters value of a convolutional
neural network, the value of each SIV is the value of a corre-
sponding hyperparameter in the neural network. Considering the
migration of BBO is to directly replace the immigration SIV with
the emigration SIV, and the emigration SIV is selected from the
excellent habitat. For the hyperparameters of the convolutional
neural network, all the hyperparameters value are a combination.
The performance of the model is the evaluation criterion for the
suitability of the hyperparameters value. However, changing only
the value of one hyperparameter may not improve the perfor-
mance of the model. It may cause the mismatch between the
hyperparameters with the model and decline the accuracy of the
model.

To solve the above problems, this paper proposes an improved
migration method and introduces the migration momentum fac-
tor in Section 3.3.3. By setting the value of the migration momen-
tum factor, the variable migration degree of migration operation
in BBO can be reasonably adjusted to improve the optimization
performance of BBO.

3.3.3. Migration momentum factor
The migration momentum factor is a variable introduced in

the MF-BBO proposed in this paper. The main function of the
migration momentum factor is to standardize the value of the
migration SIV in the migration operation. The following formula
is followed for the SIV migration.

SIVin ← SIVout (25)

Here, the value of the immigration SIV is replaced by the value
of the emigration SIV. Since the value of the emigration SIV is
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Table 1
Pseudocode of BBO.
taken from the excellent habitat, it has a certain improvement
effects on the immigration habitat. However, it can be seen from
Section 3.3.2 that a hyperparameter with excellent value may not
improve the performance of the model. The value of hyperparam-
eters in each network layer of CNN could have a direct impact
on the information processing effect of relevant network layer.
The output of this network layer is the input of the next network
layer. According to this information processing mode, the com-
bination of hyperparameters value between different network
layers could affect the performance of each network layer, which
in turn affects the performance of the entire network model.

Therefore, the migration operation in BBO is not applicable
or optimizing the hyperparameters value of convolutional neural
etwork. And we need a more reasonable optimization method
or the hyperparameters value of CNN. It could fully consider
he correlation between the hyperparameters values of adjacent
9

network layers and the importance of information processing
performance of the network layer.

To solve this problem, the migration momentum factor is
proposed by our team. By introducing the migration momentum
factor in the migration operation of BBO, the algorithm does
not directly exchange values after determining the immigration
SIV and emigration SIV. Instead, a calculation operation is added
to ensure the correlation between the optimized hyperparam-
eters and the values of adjacent hyperparameters. The specific
application steps are as follows.

When BBO selected the immigration SIV and the emigration
SIV in the migration operation, it first performed the numerical
comparison operation between the immigration SIV and the em-
igration SIV, then performed the value calculation operation. To
complete the migration operation, the result of the previous step
calculate is assigned to the immigration SIV by BBO.
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The calculation of SIV by the migration momentum factor
should follow the following formulas.

...
SIVout =

⎧⎨⎩
⌈

SIVin+SIVout
F

⌉
, SIVin < SIVout⌊

SIVin+SIVout
F

⌋
, SIVin > SIVout ,

1 < F < 5 (26)

SIVin ←
...

SIVout (27)

Here, F represents the migration momentum factor, 1 < F <

.
...

SIVout represents the SIV of emigration calculated by the migra-
tion momentum factor. Since MF-BBO is applied to optimization
the hyperparameters of CNN, the value of SIV corresponds to the
value of the hyperparameters. Therefore, according to the formula
(26), the value of F could directly affect the value of

...
SIVout .

onsidering the limitation of the input image size, in the hyper-
arameter optimization process of CNN, we default the candidate
alue of SIV to be less than 10. Therefore, F should be greater than
. Otherwise, if F < 0 the value of

...
SIVout will be negative, which

does not meet the requirements of hyperparameters in CNN. If
0 < F < 1, the value of

...
SIVout will be amplified by tens or

undreds of times, which also does not meet the requirements
f hyperparameters in CNN. In addition, F should be less than 5.
therwise, the value of the hyperparameters tends to zero, which
auses MF-BBO ineffective. Fig. 10 shows this more vividly.
In particular, the value of F in the formula (26) is set in ac-

cordance with the specific experimental conditions herein. When
the method is applied to optimizing the hyperparameters value
of other CNN models, the value range of F and the best value of
F can be set according to the specific experimental conditions.

According to the formulas (26) and (27), if SIVin < SIVout , the...
SIVout is the integer value of the sum of SIVin plus SIVout divided
by F . If SIVin > SIVout , the

...
SIVout is the round down value of the

sum of SIVin plus SIVout divided by F . Through the different values
of F , it can control the value of

...
SIVout . That is, the value of F

decide the value of
...

SIVout close to or far from SIVout , , as shown
in formula (28). It is proved through experiments that when the
value of F is 2, MF-BBO has the best optimization effects on the
convolutional neural networks of this paper. Table 3 and Fig. 10
show the comparison of BBO and MF-BBO convergence effects
with different values of F .

...
SIVout =

⎧⎨⎩
⌈

SIVin+SIVout
2

⌉
, SIVin < SIVout⌊

SIVin+SIVout
2

⌋
, SIVin > SIVout

(28)

On the premise of the same initialization method, the same
objective function, and the same iteration times (iteration times
= 500). It can be seen from Table 3 and Fig. 10 that for MF-
BBO, when 0 < F < 1, the convergence effect before 145
iterations is better than that of F = 1, and the convergence effect
after 145 iterations is similar to that of F = 1, which is not as
good as BBO. When F = 1, although MF-BBO is convergent, the
convergence effect is poor, and the local convergence values are
unstable. When 1 < F < 2, the convergence effect of MF-BBO is
better than that of BBO in the first 15 iterations, and which is not
as good as BBO in the subsequent iterations. When F = 2, the
convergence effect of MF-BBO is better than BBO. After the first
iteration, the convergence value of MF-BBO is almost one-third
less than that of BBO. When the number of iterations reaches
199, the MF-BBO (F = 2) almost completes the convergence
operation. The numerical changes of adjacent iterations after that
tend to be stable. When the number of iterations reaches 433,
BBO almost completes the convergence operation. The numerical
changes of adjacent iterations after that tend to be stable. When
2 < F < 5, MF-BBO falls into the local optimal value after the
10
first 17 iterations, and the convergence ability is lost in the sub-
sequent iteration. Therefore, MF-BBO has the best performance of
convergence when F = 2, and we set the value of F is 2 in the
following experiments of this paper.

This section proposes an improved method for BBO. The BBO
containing the migration momentum factor is called the momen-
tum factor biogeography-based optimization (MF-BBO) by our
team.

3.3.4. Migration operation of MF-BBO
Section 3.3.3 describes the function and the calculation meth-

ods of the migration momentum factor. This section describes
how to apply the improved migration operation to MF-BBO. As
shown in Fig. 9 and Table 1, the specific operations of BBO in
the migration phase are as follows. The algorithm determines the
immigration SIV and emigration SIV, fills the value of the emigra-
tion SIV into the location of the immigration SIV to complete the
migration operation. The MF-BBO adds a numerical comparison
and a calculation operation after determining the immigration SIV
and the emigration SIV in the migration operation. The flowchart
and the pseudocode for MF-BBO are shown below.

Note that our MF-BBO is different from Reference [33]. The
differences are the following points: (i) In the migration phase
of the algorithm, Reference [33] needs to find out the result
of each pre-migration and its corresponding gradient, randomly
select ten gradients to calculate their average gradient, and then
uses the average gradient for subsequent calculation. In contrast,
our method does not need to perform the above complex oper-
ations, so it is more concise and efficient than Reference [33].
(ii) According to Section 3, in the combination of hyperparam-
eters in convolutional neural network, each hyperparameter is
highly correlated with other hyperparameters. Compared with
the linear migration model, the cosine migration model used in
Reference [33] is more applicable for species migration in nature,
but it is not applicable for the optimization of hyperparameters
in the convolutional neural networks.

It can be seen from Fig. 11 and Table 2 that MF-BBO obtains
the SIVin after the calculation of migration momentum factor, and
then performs the migration operation. Although MF-BBO adds
an operation in the migration phase of BBO, through the analysis
of the algorithm formulas and pseudocodes, it can be seen that
the operation introduced by MF-BBO is a basic operation. The
execution number of this program is a constant (no loop logic,
only simple calculation, and numerical judgment). Therefore, the
time complexity of the operation is O(1). It has no effect on the
time complexity of algorithms.

It can be seen from Fig. 10 that the optimization effect of MF-
BBO is obvious and efficient compared with BBO. According to
Table 3, the execution time difference between BBO and MF-BBO
is only 0.5 s. Considering the more powerful optimization ability
and convergence effect, our team thinks that the execution time
difference of 0.5 s is acceptable.

3.4. Improvement II: Two proposed frameworks – BCNN and MF-
BCNN

Compared with other optimization algorithms, BBO has fewer
parameters, better performance of global optimization, easier to
implement. It is good at solving problems of high-dimensional
and multi-objective optimization. Therefore, two novel frame-
works – Biogeography convolutional neural network (BCNN) and
Momentum factor biogeography convolutional neural network
(MFBCNN) – are proposed by our team. Here, BBO is proposed to
optimize the hyperparameters of BCNN, and MF-BBO is proposed

to optimize the hyperparameters of MFBCNN. MF-BBO improves
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Fig. 10. Comparison of convergence effect between BBO and MF-BBO with different values of F .
he migration operation of BBO. Fig. 12 shows the corresponding
elationship between the parameters in BBO, MF-BBO, and CNN.

Fig. 13 shows the framework of our method. First, get the
hest X-ray image from the subjects, and input the images into
hree CNN models (LeNet-5, VGG-16, and ResNet-18). Then BBO
nd MF-BBO start to optimize the hyperparameters value of CNN.
hen the output of CNN meets the end condition of optimiza-

ion algorithm, it stops the optimization and output the opti-
ized result; otherwise, BBO and MF-BBO continue to perform
ptimization.

.5. Improvement III: Two proposed algorithms – BCNNC and MFBC-
NC

This section introduces two algorithms proposed by our team:
CNNC – BCNN for COVID-19 and MFBCNNC – MFBCNN for
OVID-19. In this paper, we define BCNNC-I to represent the
eNet-5 optimized by BBO for COVID-19, BCNNC-II to repre-
ent the VGG-16 optimized by BBO for COVID-19, BCNNC-III
11
to represent the Resent-18 optimized by BBO for COVID-19,
MFBCNNC-I to represent the LeNet-5 optimized by MF-BBO for
COVID-19, MFBCNNC-II to represent the VGG-16 optimized by
MF-BBO for COVID-19, and MFBCNNC-III to represent the Resent-
18 optimized by MF-BBO for COVID-19. Fig. 14, Fig. 15, and
Fig. 16 are schematic diagrams for optimizing hyperparameters
of convolutional neural networks using BBO and MF-BBO. Here,
Conv represents the convolutional layer. Pooling represents the
pooling layer. BN represents batch normalization. ReLu represents
the ReLu activation function.

As can be seen from Fig. 14, we use BBO and MF-BBO to op-
timize all convolution kernel sizes and convolution kernel stride
sizes of LeNet-5.

As can be seen from Fig. 15, we use BBO and MF-BBO to
optimize the convolution kernel sizes and the convolution kernel
stride sizes in the first four convolutional layers of VGG-16.

As can be seen from Fig. 16, we use BBO and MF-BBO to
optimize the convolution kernel size and the convolution kernel
stride size in the first convolutional layer, the pooling kernel size,
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Fig. 11. Flow chart of MF-BBO.
Fig. 12. The corresponding relationship between BBO, MF-BBO and CNN.
nd the pooling kernel stride size in the first pooling layer of
esNet-18.
12
When BBO and MF-BBO perform hyperparameters optimiza-
tion for the convolutional neural networks, the specific steps are
as follows.
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Table 2
Pseudocode of MF-BBO.
Initialization operation: iteration times, number of habitats,
imension and values range of SIV, immigration rate, emigra-

ion rate, mutation rate, elitism parameters. The HSI and species

13
number of each habitat are calculated by the objective function.
Sort the HSIs in descending order. The habitat with the largest
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Table 3
Execution time of BBO and MF-BBO.
Optimizer Number of iterations Start time End time Execution time

BBO 500 2020/10/08/17:24:46 2020/10/08/17:24:50 3.99268818
MF-BBO 500 2020/10/08/17:25:45 2020/10/08/17:25:49 4.41598773
Fig. 13. Block diagram of our method.
Fig. 14. BBO and MF-BBO optimize the hyperparameters of LeNet-5.
t
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number of species is numbered as 1, and u(c)max = U(C)min. Here,
c represents the index of habitats. C represents the number of
habitats. u represents the value of HSI. U represents the index
of ordinary numbers. In this case, U(C)min corresponds to the
habitat with the largest number of species, the highest HSI value,
and the optimal solution in each iteration process. Finally, elitism
preserves the optimal solution. The algorithm begins to perform
migration and mutation operations.

Migration operation (BBO): the random number R is gen-
erated by the random function, which is compared with the
immigration rate I of each habitat. When R(SIV ) < I(SIV ), select
the corresponding SIV as the immigration SIV; otherwise, the
algorithm does not perform the immigration operation. Then, the
random number S is generated by the random function, which
is compared with the emigration rate E of each habitat. When
S(SIV ) < E(SIV ), select the corresponding SIV as the emigration
14
SIV; otherwise, the algorithm does not perform the emigration
operation. After selecting the immigration SIV and the emigration
SIV, move the emigration SIV to the location of the immigration
SIV to complete the migration operation.

Migration operation (MF-BBO): the random number R is gen-
erated by the random function, which is compared with the
immigration rate I of each habitat. When R(SIV ) < I(SIV ), select
he corresponding SIV as the immigration SIV; otherwise, the
lgorithm does not perform the immigration operation. Then, the
andom number S is generated by the random function, which
s compared with the emigration rate E of each habitat. When
(SIV ) < E(SIV ), select the corresponding SIV as the emigration
IV. Otherwise, the algorithm does not perform the emigration
peration. After selecting the immigration SIV and the emigra-
ion SIV, the algorithm performs the formula (28) to obtain the
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Fig. 15. BBO and MF-BBO optimize the hyperparameters of VGG-16.
Fig. 16. BBO and MF-BBO optimize the hyperparameters of ResNet-18.
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migration
...
SIV . Move the emigration

...
SIV to the location of the

mmigration SIV to complete the migration operation.
Mutation operation: the random number T is generated by the

andom function, which is compared with the variation rate M
f each habitat. When T (SIV ) < M(SIV ), the algorithm performs
he mutation operation to the corresponding SIV; otherwise, the
lgorithm does not perform the mutation operation.
Elitism operation: the algorithm recalculates and sorts HSIs ac-

ording to their numerical value after the mutation operation. All
he corresponding habitats at the bottom of the list are replaced
ith those preserved by elitism in the initialization operation.
Termination condition judgment: the repeat habitats are re-

oved to obtain the ecosystem. The HSI is recalculated and
orted by the algorithm. Determine whether the optimal solu-
ion U(C)min satisfies the termination condition. If it satisfies the
15
ermination condition, the iteration is terminated, and the result
s output. If it does not satisfy the termination condition, the
lgorithm continues to perform the iteration.

.6. Measure

To prevent overfitting, we introduce 10-fold cross-validation
34] in our experiments. The specific implementation method is
s follows: The dataset in this paper is randomly divided into ten
ubsets and numbered from 1 to 10. Select subset No.1 as a test
et; the other subsets are as a training set. All these subsets are as
he dataset D1. Select subset No.2 as a test set; the other subsets
re as a training set. All these subsets are as the dataset D2.
epeat the above operation in turn until subset No.10 is selected
s a test set; the other subsets are as a test set. All these subsets
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onfusion matrix.

are as the dataset D10. Finally, experiments are carried out on D1,
D2, . . . , D10, respectively.

The experimental results are summation and averaged to eval-
ate the optimization performances of the algorithms on the
yperparameters of CNNs through accuracy. To describe the ex-
erimental results more accurately, we perform ten times 10-fold
ross-validation, and we introduce the confusion matrix as shown
n Table 4. Here, TP represents both the true value and the pre-
icted value are positive. FN represents the true value is positive,
ut the predicted value is negative. FP represents the true value is
egative, but the predicted value is positive. TN represents both
he true value and the predicted value are negative.

An ideal 10-fold cross-validation confusion matrix should be
s shown in formula (29). An ideal 10-fold cross-validation con-
usion matrix for 10 runs should be as shown in formula (30).
represents the number of repetitions (k loops from 1 to K ). G

epresents the number of folds (g loops from 1 to G).

δ (K = 1,G = 10) =

[ 463 0 0
0 463 0
0 0 463

]
g = 1, 2, . . . ,G

(29)

δ (K = 10,G = 10) =

[ 4630 0 0
0 4630 0
0 0 4630

]
g = 1, 2, . . . ,G

(30)

Besides, we also introduce defined four metrics: Overall ac-
uracy (OA), Precision, Sensitive (Recall), and Specificity. Their
ormulas are as follows.

A =
TP + TN

TP + TN + FP + FN
(31)

recision =
TP

TP + FP
(32)

ensitive = Recall =
TP

TP + FN
(33)

pecificity =
TN

TN + FP
(34)

1 =
2∗Precision∗Sensitivity
Precision+ Sensitivity

(35)

. Experiment results and discussions

In this section, the experimental results are compared and
iscussed to prove that the MF-BBO, BCNN, MFBCNN, BCNNC, and
FBCNNC proposed in this paper are practical and effective in
ractical application.

.1. Confusion matrix of three methods

.1.1. Confusion matrix without BBO method
Table 5 shows the confusion matrix of 10-fold cross-validation

or chest X-ray images with three convolutional neural networks
sing default values of hyperparameters. Here, COV represents
he chest X-ray images of COVID-19. Nor represents the chest X-
ay images of Normal. Pne represents the chest X-ray images of
16
Pneumonia. Table 6 shows the four confusion matrix metrics of
three convolutional neural networks.

According to the above contents, the accuracy of ResNet-
18 is the highest, followed by LeNet-5, and VGG-16. All three
convolutional neural networks have the highest precision for
Pneumonia, the highest sensitivity to COVID-19. At the same time,
the specificity of Pneumonia is the highest of three convolutional
neural networks. The remaining detailed data is shown in Table 6.

4.1.2. Confusion matrix with BBO method
Table 7 shows the confusion matrix of three convolutional

neural networks optimized by BBO to perform 10-fold cross-
validation on the chest X-ray images. Here, COV represents the
chest X-ray images of COVID-19. Nor represents the chest X-
ray images of Normal. Pne represents the chest X-ray images of
Pneumonia. Table 8 shows the four confusion matrix metrics of
three convolutional neural networks with BBO.

According to the above contents, the accuracy of the BCNNC-
III is the highest, followed by the BCNNC-I, and the BCNNC-II. All
three BCNNC models have the highest precision for Pneumonia.
The BCNNC-I has the highest sensitivity to COVID-19. The BCNNC-
II and the BCNNC-III both have the highest sensitivity to Normal.
At the same time, the specificity of Pneumonia is the highest of
three BCNNC models. The remaining detailed data is shown in
Table 8.

4.1.3. Confusion matrix with MF-BBO method
Table 9 shows the confusion matrix of three convolutional

neural networks optimized by MF-BBO to perform 10-fold cross-
validation on the chest X-ray images. Here, COV represents the
chest X-ray images of COVID-19. Nor represents the chest X-
ray image of Normal. Pne represents the chest X-ray images of
Pneumonia. Table 10 shows the four confusion matrix metrics of
three convolutional neural networks with MF-BBO.

According to the above contents, the accuracy of the MFBCNNC-
II is the highest, followed by the MFBCNNC-I, and the MFBCNNC-
III. The MFBCNNC-I and the MFBCNNC-II both have the highest
precision for Pneumonia. The MFBCNNC-III has the highest pre-
cision for Normal. The MFBCNNC-I and the MFBCNNC-III both
have the highest sensitivity to COVID-19. The MFBCNNC-II has the
highest sensitivity to Normal. At the same time, the MFBCNNC-I
and the MFBCNNC-II both have the highest specificity to Pneumo-
nia. The MFBCNNC-III has the highest specificity to Normal. The
remaining detailed data is shown in Table 10.

4.2. Statistical results

In this section, we list the average overall accuracy (OA) of the
nine methods run 10 times. The specific data is shown in Table 11.
Fig. 17 shows the average accuracy of the nine methods.

Table 11 shows the statistical results of the nine methods.
The average OA of the LeNet-5 (BBO) is 1.56% higher than that
of LeNet-5. The average OA of the LeNet-5 (MF-BBO) is 2.87%
higher than that of the LeNet-5, which is 1.56% higher than that of
the LeNet-5 (BBO). The average OA of the VGG-16 (BBO) is 1.48%
higher than that of VGG-16. The average OA of the VGG-16 (MF-
BBO) is 6.31% higher than that of the VGG-16. The average OA of
the VGG-16 (MF-BBO) is 4.83% higher than that of the VGG-16
(BBO). The average OA of the ResNet-18 (BBO) is 0.73% higher
than that of ResNet-18. The average OA of ResNet-18 (MF-BBO)
is 1.46% higher than that of the ResNet-18, which is 0.73% higher
than that of the ResNet-18 (BBO). Therefore, BBO and MF-BBO are
effective for the hyperparameters optimization of CNNs. And the
optimization effect of MF-BBO is better than that of BBO.

It can be seen from Fig. 17 that BBO has the best optimization

effect on LeNet-5, and the OA improved by 1.56%. MF-BBO has
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Table 5
Confusion matrix of three methods.
Table 6
Four confusion matrix metrics of three methods.

OA Precision Sensitive Specificity

COV Nor Pne COV Nor Pne COV Nor Pne

LeNet-5 88.49% 90.64% 80.01% 97.59% 93.24% 91.73% 80.50% 95.18% 88.54% 99.01%
VGG-16 87.93% 85.08% 87.76% 91.15% 90.99% 82.42% 90.37% 92.02% 94.25% 95.62%
ResNet-18 90.81% 92.65% 86.17% 94.18% 93.09% 92.33% 87.00% 96.31% 92.59% 97.31%
Table 7
Confusion matrix of three methods (BBO).
Table 8
Four confusion matrix metrics of three methods (BBO).

OA Precision Sensitive Specificity

COV Nor Pne COV Nor Pne COV Nor Pne

BCNNC-I 89.96% 89.65% 85.01% 96.17% 93.56% 90.00% 86.33% 94.60% 92.06% 98.28%
BCNNC-II 89.43% 91.43% 82.62% 95.78% 90.52% 92.48% 85.29% 95.76% 90.27% 98.12%
BCNNC-III 91.66% 94.02% 86.84% 94.73% 92.70% 93.80% 88.47% 97.05% 92.89% 97.54%
Table 9
Confusion matrix of three methods (MF-BBO).
Table 10
Four confusion matrix metrics of three methods (MF-BBO).

OA Precision Sensitive Specificity

COV Nor Pne COV Nor Pne COV Nor Pne

MFBCNNC-I 91.27% 91.57% 90.45% 91.75% 94.06% 87.71% 92.03% 95.67% 95.37% 95.86%
MFBCNNC-II 94.36% 94.74% 92.83% 95.59% 95.36% 95.87% 91.84% 97.35% 96.30% 97.88%
MFBCNNC-III 91.25% 91.76% 91.89% 90.13% 93.80% 87.39% 92.55% 95.79% 96.14% 94.94%
17
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verage OA with nine methods.
Run LeNet-5 LeNet-5

(BBO)
LeNet-5
(MF-BBO)

VGG-16 VGG-16
(BBO)

VGG-16
(MF-BBO)

ResNet-18 ResNet-18
(BBO)

ResNet-18
(MF-BBO)

OA OA OA OA OA OA OA OA OA

1 88.15 90.10 91.13 89.34 89.09 94.40 91.91 92.37 91.63
2 88.49 88.80 89.80 87.93 88.24 94.41 91.56 90.80 91.25
3 88.62 89.31 89.91 90.71 91.05 94.71 90.71 91.63 92.30
4 88.36 90.92 92.29 85.79 89.36 95.01 90.76 91.79 92.40
5 88.73 89.62 91.92 89.44 89.43 94.05 89.41 92.08 92.04
6 88.42 89.29 90.62 88.99 89.11 94.48 91.06 89.87 92.65
7 88.25 90.31 91.31 87.07 87.82 93.79 91.29 91.40 92.56
8 88.76 91.04 91.04 88.72 90.54 95.55 90.81 91.71 92.79
9 88.08 90.30 90.30 85.41 90.53 93.61 90.45 90.80 92.59
10 88.23 89.96 91.96 87.22 90.27 93.71 90.12 92.90 92.48

Average 88.41 ± 0.24 89.97 ± 0.72 91.28 ± 0.87 88.06 ± 1.69 89.54 ± 1.05 94.37 ± 0.61 90.81 ± 0.72 91.54 ± 0.87 92.27 ± 0.49
Fig. 17. Average OA of 3 models with 3 methods.
he best optimization effect on VGG-16, and the OA improved
y 6.31%. Our team believes that the main reasons for this result
re as follows: (i) Two optimization algorithms optimize all the
onvolution kernel sizes and convolution kernel stride sizes in
eNet-5, which improves the feature extraction ability of the
odel on input images. However, the LeNet-5 structure only has

ive layers, and its structure has been relatively simple. Therefore,
he detection of multi-classification problems has structural defi-
iencies, which cannot improve the OA of the model to a greater
xtent. (ii) The sizes of the first two convolution kernels and
he convolution kernels stride size in the VGG-16 are optimized,
hich improves the feature extraction ability of the model on
he input images. On the other hand, the structure of VGG-
6 is more reasonable than LeNet-5 in the multi-classification
roblems. Therefore, VGG-16 has a good classification detection
bility. Applying MF-BBO to VGG-16 can improve the OA of the
odel. (iii) The two algorithms optimize the hyperparameters of

he first convolutional layer and the first pooling layer in ResNet-
8, which improved the feature extraction ability of the model
n the input images. The other network layers of the model are
esidual structures, and it is relatively deeper than each layer of
he other models. Therefore, the optimization effect of BBO and
F-BBO on the VGG-16 is better than that on ResNet-18.

.3. Comparison to state-of-the-art approaches

In this section, we select two kinds of state-of-the-art methods
o compare our methods. Table 12 shows the OA of all methods.
ere, the OA of ResNet-18 [35] is 90.81 ± 0.72%. The OA of
FBCNNC-III (Ours) is 92.27 ± 0.49%. The OA of VGG-16 [36] is

88.06 ± 1.69%. The OA of MFBCNNC-II (Ours) is 94.37 ± 0.61%.
Fig. 18 is the OA graph. Here, the orange dotted line represents

the OA horizontal line between ResNet-18 and the MFBCNNC-III
18
Table 12
Comparison with state-of-the-art methods.
Approach OA

ResNet-18 90.81 ± 0.72
MFBCNNC-III (Ours) 92.27 ± 0.49
VGG-16 88.06 ± 1.69
MFBCNNC-II (Ours) 94.37 ± 0.61

(Ours); The blue dotted line is the OA horizontal line of VGG-16
and the MFBCNNC-II (Ours). It can be seen that the OA of the two
models optimized by MF-BBO increases to different degrees. The
optimization effect of VGG-16 model is more obvious.

5. Conclusions

Based on BBO, this paper presents two frameworks — BCNN
and MFBCNN. And two methods – BCNNC and MFBCNNC –
based on the proposed frameworks. The classification accuracy
of the chest X-ray images of COVID-19, Normal and Pneumo-
nia in the model is improved by optimizing the size of con-
volution kernels and the stride size of convolution kernels, the
size of pooling kernels, and the stride size of pooling kernels
in the convolutional neural networks (LeNet-5, VGG-16, and
ResNet-18). Among MFBCNNC, the overall accuracy of LeNet-5
is improved by 2.87%, and that of VGG-16 by 6.31%. The overall
accuracy of ResNet-18 is improved by 1.46%. Using MF-BBO to
optimize the hyperparameters of the convolutional neural net-
works can improve the overall accuracy of the model. It should
be noted that, according to the different categories of input
images, the values of the optimized hyperparameters of the same
convolutional neural network are also different. This proves that
the MFBCNN has a strong generalization ability.
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Fig. 18. The OA error graph of four methods.
Table 13
Variable definition table.
Variable name Variable meaning

A The matrix.
a(l) The output value of layer l.
a(l−1) The output value of layer l− 1.
b(l) the bias of layer l.
C Number of habitats.
c Index of habitats.
D Index of cross validation dataset.
Emax Maximum rate of emigration.
F Migration momentum factor.
fl The activation function of layer l.
G Number of folds for cross validation.
g Index of fold used as test set.
H Index of the species number.
Hmax Maximum number of species.
h The upsampling function of convolutional neural network.
Imax Maximum rate of immigration.
i The row i of the matrix.
j The column j of the matrix.
K Total number of runs (each run carries out a G-fold cross validation).
k Run index (each run carries out a G-fold cross validation).
LC The padding size of convolution operation.
LP The padding size of pooling operation.
M Rate of mutation.
Mmax Maximum rate of mutation.
NC The stride size of convolution kernel.
NP The stride size of pooling kernel.
n(l) The number of neurons in the layer l.
OC The output of convolution operation.
OP The output of pooling operation.
PH Probability of habitat has the number of H species.
Pmax Maximum probability of species....
PH The probability of species after the derivative.
Qn(l) The identity matrix of the l-layer neurons.
R Rate of immigration made by random function.
S Rate of emigration made by random function.
SIVin The SIV of immigration.
SIVout The SIV of emigration....
SIVout The SIV of emigration calculated by migration momentum factor.
T Rate of mutation made by random function.
t A time in the BBO process.
∆t A very short time difference.
U Index of ordinal numbers.
u Value of HSI.
VC The size of convolution kernel.
VP The size of pooling kernel.
W (l) the output weight of layer l.
XC The input of convolution operation.
XP The input of pooling operation.
x The input of the neural network.
y The true label of neural network input.
ŷ The prediction label of neural network.
z(l) The output of layer l without activation function.
L Loss function of feedforward neural network.
δ The confusion matrix.
ω(l) The partial derivative of the loss function in the l layer.
19
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Table 14
Abbreviation table.
Abbreviation Full definition

BBO Biogeography-Based Optimization
BCNN Biogeography Convolutional Neural Network
BCNNC Biogeography Convolutional Neural Network for COVID-19
BP Back Propagation
COV The chest X-ray image of COVID-19
CNN Convolutional Neural Networks
CT Computed Tomography
FN False Negative
FP False Positive
HSI Habitat Suitability Index
MF-BBO Momentum Factor Biogeography-Based Optimization
MFBCNN Momentum Factor Biogeography Convolutional Neural Network
MFBCNNC Momentum Factor Biogeography Convolutional Neural Network for COVID-19
Nor The chest X-ray image of Normal
OA The overall accuracy
SIV Suitability Index Variable
TN True Negative
TP True Positive
Pne The chest X-ray image of Pneumonia
In future research, we will continue to focus on the hyper-
arameters value optimization of the deep learning models. To
xpand the application of deep learning technology in the field of
edical imaging, our main research directions are as follows. (i)
ttempts to optimize more hyperparameters of the deep learning
odels, and (ii) try to use more optimization algorithms. (iii) Try

o improve the convergence ability and the optimization effect of
he optimization algorithms.
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