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Background: Immunological parameters induced by BCG and the requirement of immunologic responses for optimal

vaccine efficacy is incompletely understood.

Results: Small-molecule inhibitors of Th2 and Treg cells promote BCG vaccine efficacy.
Conclusion: Immunomodulators enhance the capacity of the BCG vaccine to protect against tuberculosis.
Significance: Our studies reveal a simple and cost-effective approach to improve BCG vaccine efficacy.

Tuberculosis affects nine million individuals and kills almost
two million people every year. The only vaccine available, Bacillus
Calmette-Guerin (BCG), has been used since its inception in 1921.
Although BCG induces host-protective T helper 1 (Thl) cell
immune responses, which play a central role in host protection, its
efficacy is unsatisfactory, suggesting that additional methods to
enhance protective immune responses are needed. Recently we
have shown that simultaneous inhibition of Th2 cells and Tregs by
using the pharmacological inhibitors suplatast tosylate and D4476,
respectively, dramatically enhances Mycobacterium tuberculosis
clearance and induces superior Th1 responses. Here we show that
treatment with these two drugs during BCG vaccination dramati-
cally improves vaccine efficacy. Furthermore, we demonstrate that
these drugs induce a shift in the development of T cell memory,
favoring central memory T (Tcm) cell responses over effector
memory T (Tem) cell responses. Collectively, our findings provide
evidence that simultaneous inhibition of Th2 cells and Tregs dur-
ing BCG vaccination promotes vaccine efficacy.

Tuberculosis (TB)? is the cause of two million deaths each
year, which is the second highest cause of mortality from a
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single infectious disease worldwide (1). One-third of the global
population is latently infected with Mycobacterium tuberculo-
sis, waiting for the opportunity of perturbations in the immune
response such as those induced by HIV infection (2) for reacti-
vation. Thus, the vast reservoir for TB disease is alarming, and
its epidemic is becoming a global public health emergency.
Unfortunately, cost-effective and user-friendly therapy of TB is
long overdue. Bacillus Calmette-Guerin (BCG) is the only TB
vaccine presently available. It has been widely used throughout
the world since its inception in 1921, and an estimated three
billion people have received it. BCG is effective against dissem-
inated and meningeal tuberculosis in young children. However,
its efficacy against adult pulmonary TB varied dramatically
between 0 and 80% in different populations depending on eth-
nicity and geographical locality (3). Recent studies have indi-
cated that BCG-vaccinated animals mainly develop antigen-
specific, CD4™ T cell effector memory (Tem) cells. Therefore,
an apparent failure of BCG to induce significant numbers of
central memory T (Tcm) cells may be an important contribut-
ing factor to its limited vaccine efficacy (4).

It is well known that M. tuberculosis survives and replicates
within host cells by modulating T helper (Th) cell responses.
Studies with patients and animal models have indicated that T
cells are indispensable for anti-TB immunity. Resistant individ-
uals mount M. tuberculosis antigen-specific Thl responses, as
determined by preferential T cell production of IFN-+y, lympho-
toxin, and tumor necrosis factor-a (TNF-«) (5). Similarly, indi-
viduals defective in genes for IFN-vy or the IFN-vy receptor are
highly susceptible to TB (6). Animal models of TB confirmed
that M. tuberculosis-specific Thl cells are indispensable for
elimination of tubercle bacilli from the host (7). However, sev-
eral studies have provided evidence that Thl responses alone
are not sufficient for protection against TB (8). Furthermore,
mouse strains with enhanced susceptibility to M. tuberculosis
infection induce progressive Th2 responses predominated by
production of IL-4, IL-5, and IL-13 (9). Thus, Th2 responses
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might contribute to enhanced susceptibility to TB. This
hypothesis was strengthened by the finding that IL-4-deficient
mice are resistant to M. tuberculosis infection (10). Similarly,
studies investigating the expression of cytokines in human
granulomas of patients with advanced TB revealed increased
IL-4 production (11). Interestingly, elevated Th2 responses
have been noted in patients who failed to be protected from TB
after BCG vaccination (12). Nevertheless it is clear that suscep-
tibility to TB is not limited to individuals with enhanced Th2
cell responses. Another T cell subset, T regulatory (Treg) cells
(CD4*CD25*FoxP3™ T cells), is expanded during the progres-
sion of TB and contributes to disease susceptibility (13). Anti-
gen-specific Treg cells increased within 3 weeks of infection
and were associated with an environment that increased bacte-
rial burden (14) and inhibited the development of protective
Th1 responses. Although the precise cytokine requirements for
the differentiation of Treg cells remain unclear, it has been
established that expression of the forkhead transcription factor
FoxP3 is inducible by TGF-B. In a recent study we demon-
strated that mice unable to mount Th2 and Treg cell
responses (i.e. Stat-6~/~CD4-TGFBRIIDN mice) are highly
resistant to M. tuberculosis infection (15). We further validated
these data by small molecule-directed immunotherapy using
suplatast tosylate ([3-[[4-(3-ehoxy-2-hydroxypropoxy)phenyl]-
amino]-3oxopropyl]dimethylsulfonium 4-methylbenzenesul-
fonate) and D4476 (4-[4-(2,3-dihydro-1,4-benzodioxin-6-yl)-
5-(2-pyridinyl)-1H-imiodazol-2-yl]benzamide), which inhibit
Th2 and Treg cell differentiation, respectively. Combined treat-
ment with these agents rapidly decreased the bacterial burden
in mice. This was associated with increased Th1 cell responses,
as shown by a dramatic increase in IFN-y-producing cells with
amoderate increase in IL-17-producing cells and by the finding
that this therapeutic regimen was not effective in T-bet-defi-
cient animals that are unable to produce Thl type immune
responses (15). These observations suggested that combined
inhibition of Th2 and Treg cell differentiation promotes pro-
tective immune responses in the host, which is in agreement
with the concept that Th1 cells are necessary and sufficient for
resistance against TB (16). As these compounds enhance host-
protective immune responses, which successfully eliminate the
harbored M. tuberculosis organisms, it is likely that this thera-
peutic modality induces long-lasting protective memory
responses in the host.

These findings suggested that mounting Th1 responses while
inhibiting Th2 and Treg responses should be beneficial in
developing TB vaccines. We, therefore, tested this hypothesis
using BCG. Our results showed that simultaneous inhibition of
Th2 and Treg cell differentiation enhances the efficacy of BCG
vaccination, which was associated with enhanced Thl re-
sponses. Recent studies have indicated that attenuation of
Tregs during BCG immunization increases the efficacy of BCG
by enhancing the production of Thl responses (17). Further-
more, studies suggested that the presence of IL-4 in the
microenvironment corrupts the Thl immune response (18).
These authors also provided evidence that increased IFN-y and
IL-17 concentrations by means of inhibition of IL-4, IL-5, and
IL-10 improve BCG vaccine efficacy. Here we have showed that
inhibition of Th2 cells and Tregs promotes host-protective Th1l
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responses and thereby enhances BCG vaccine efficacy. There-
fore, we observed a dramatic switch in the memory T cell
response toward Tcm cell responses. Consistent with the cen-
tral role Tcm cells play in host protection and vaccine efficacy,
animals treated with these two inhibitors at the time of BCG
vaccination exhibited significantly improved protection against
M. tuberculosis infection. Therefore, this strategy holds prom-
ise for developing improved TB vaccines in humans.

EXPERIMENTAL PROCEDURES

Mice—BALB/c mice, either Thyl.1" or Thyl.2" (6 -8 weeks
of age), were initially purchased from The Jackson Laboratory.
All animals were subsequently bred and maintained in the ani-
mal facility of the International Centre for Genetic Engineering
and Biotechnology (ICGEB), New Delhi, India.

Immunization Studies and Treatment with Immunomodu-
lators—Mice were immunized with BCG subcutaneously (1 X
10° bacteria), and starting from the next day these animals were
treated with D4476 (TGFBRI inhibitor) and suplatast tosylate
(Th2 inhibitor) purchased from Tocris at 16 nmol/g of body
weight for a total of 10 days. Mice were subsequently rested for
20 days. Mice were then challenged by the aerosol route with
M. tuberculosis strain H37Rv, and organs were harvested for
determination of bacterial burden at 60 days after infection.

Bacterial Infections—M. tuberculosis H37Rv strain was grown
in Middlebrook 7H9 broth (BD Biosciences) containing 0.02%
Tween 80 to mid-log phase at 37 °C for 3 weeks, then aliquoted
and frozen at —80 °C until use. Viable bacterial number was
determined on 7H11 agar plates (BD Biosciences) with oleic
acid-albumin-dextrose-catalase (OADC) enrichment (BD Bio-
sciences). Mice were infected via the aerosol route using the
nebulizer compartment of an airborne infection apparatus.
After 30 min of exposure the deposition of bacteria was ~110
bacteria/lung, which was determined by plating the lung homo-
genates after 24-h of infection. The numbers of viable bacteria in
the lung, spleen, and liver of different types of mice were fol-
lowed at regular time intervals by plating serial dilutions of
individual organ homogenates onto nutrient Middlebrook
7H11 agar and counting bacterial colony formation after 21
days of incubation at 37 °C.

T Cell Adoptive Transfer—For adoptive transfer experi-
ments, Thyl.1" mice were y-irradiated (8 rads/s for 100 s) and
rested for 1 day. CD4™" T cells, isolated from the lymph nodes of
Thyl.2" animals, were then adoptively transferred into the
irradiated recipient mice (2 X 10° cells per mouse). After 10
days recipient mice were challenged with H37Rv through the
aerosol route.

FACS and Intracellular Cytokine Staining—For intracellular
cytokine staining, cells were treated with 50 ng/ml phorbol
myristate acetate and 500 ng/ml ionomycin in the presence of
10 pg/ml brefeldin A (Sigma) added during the last 6 h of cul-
ture. Cells were washed twice with PBS and resuspended in a
permeabilization buffer (Cytofix/Cytoperm kit; BD Biosci-
ences) and stained with the following fluorescently conjugated
monoclonal antibodies: anti-mouse CD4 (clone GK1.5)-APC
(eBioscience), anti-mouse CD4 (clone GK1.5)-PE-Cy5 (eBio-
science), anti-mouse CD4 (clone GK1.5)-PE (eBioscience),
anti-mouse CD4 (clone GK1.5)-FITC (eBioscience), anti-
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FIGURE 1. Immunomodulators enhance the capacity of a BCG vaccine to reduce bacterial burden upon M. tuberculosis challenge. A, schematic diagram
of the immunization scheme, treatment with immunomodulators, and infection of BALB/c mice. I.P.,immunoprecipitate; S.C., subcutaneous. B, after immuni-
zation BALB/c mice were treated daily with D4476 (TGF BRI inhibitor) and/or suplatast tosylate (Th2 inhibitor) at 16 nmol/g of body weight for a total of 10 days,
and the mice were then rested for 20 days before aerosol challenge with a low dose of M. tuberculosis (H37Rv) (~100 cfu). Bacterial burdens (cfu) were
measured in lungs and spleens at 60 days post infection. Data represent the mean = S.D. values of four mice per group per time point, and the experiment was
repeated twice. C, proliferation of splenocytes in response to complete soluble antigen was measured by a [*H]thymidine incorporation assay. CSA, complete
soluble antigen. D, photomicrographs (X 10) of histological lung sections (6 wm) at 60 days after infection of the indicated mice, stained with hematoxylin and
eosin. Results shown here are representative of three independent experiments.

mouse CD8 (clone 53-6.7)-PE-Cy5 (eBioscience), anti-mouse
CD44 (clone IM7)-PE (Biolegend), anti-mouse CD62L (clone
MPL-14)-APC (eBioscience), anti-mouse CD25 (clone PC61)-
APC (Biolegend), anti-mouse IFN-y (clone XMG1.2)-APC
(Biolegend), anti-mouse IL-4 (clone 11B11)-PE (Biolegend),
anti-mouse IL-17A (clone TC11-18H10.1)-PE (Biolegend),
anti-mouse FoxP3 (clone MF-14)-PE (Biolegend), anti-mouse
FoxP3 (clone FJK-16s)-APC (eBioscience), anti-mouse TNF-«
(clone MP6-XT22)-PE (Biolegend), anti-mouse IL-6 (clone
MP5-20F3)-PE  (Biolegend), anti-mouse IL-12 (clone
C15.6)-PE (Biolegend), and anti-mouse IL-10 (clone JES5—
16E3)-PE (Biolegend). Fluorescence intensity was measured by
flow cytometry (FACS Calibur or FACS Cantoll; BD Biosci-
ences), and data were analyzed with Flow]Jo (Tree Star).

Cytokine Assay—Cytokines in the culture supernatant of
splenocytes were assayed by a Luminex microbead-based mul-
tiplexed assay using commercially available kits according to
the manufacturer’s protocol (BioPlex, Bio-Rad).

Statistical Analysis—All data were derived from at least three
independent experiments. Statistical analyses were conducted
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using SPSS10 software, and values are presented as the mean *
S.D. Significant differences between the groups were deter-
mined by analysis of variance followed by Tukey’s multiple
comparison test (SPSS software). A value of p < 0.05 was used
as an indication of statistical significance.

RESULTS

Simultaneous Treatment with Th2 and Treg Cell Inhibitors
Increases BCG Vaccine Efficacy—To examine the effect of Th2
and Treg cell inhibitors on BCG-vaccinated mice, we immu-
nized BALB/c mice with BCG and treated the animals with
D4476 and suplatast tosylate, inhibitors of TGFBRI signaling
and Th2 cell differentiation, respectively, for 10 days. These
animals were subsequently rested for another 20 days and re-
infected with M. tuberculosis strain H37Rv through the aerosol
route. Organs were harvested, and the bacterial burdens were
determined at different time intervals (Fig. 14). We observed
that co-treatment with these compounds drastically enhanced
BCG vaccine efficacy, as determined by the significant reduc-
tion of bacterial loads in various organs (Fig. 1B). To obtain
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FIGURE 2. Induction of multifunctional CD4* T cells after BCG immunization and immunomodulator treatment of mice. Aand B, CD4 " and CD8™ T cell
counts at 60 days post infection of immunized and immunomodulator-treated mice. C and D, expression of different surface phenotypes (CD44"'CD62L",
CD44"CD62LM, CD44'°CD62L™) by multifunctional CD4* T cells. E, prevalence of IFN-y-producing cells among CD44"CD62L" cells at 60 days post infection of
immunized and immunomodulator-treated mice. Results shown here are representative of three independent experiments.

information regarding potential alterations in immune
responses, we challenged spleen cells isolated from mice 60
days after infection with M. tuberculosis-derived complete sol-
uble antigen and measured proliferative responses. We found
that splenocytes from animals that received immunomodula-
tors along with BCG exhibited superior proliferative responses
(Fig. 1C). Histological studies further revealed that animals
treated with immunomodulators along with BCG showed a
dramatic reduction in the regions of the lungs containing gran-
ulomas (Fig. 1D).

Inhibition of Th2 and Treg Cell Differentiation during BCG Immu-
nization Enhances CD4" CD44" CD62L" T Cell Responses—To pro-
vide insight into the T cell response induced by the immuno-
modulators in BCG-vaccinated animals, we analyzed T
lymphocytes from spleens of different experimental groups of
animals. Phenotypic characterization revealed that CD4* T
cells in animals treated with suplatast tosylate and D4476 were
increased significantly as compared with mice treated with
BCG only (Fig. 2, A and B).

Vaccine efficacy is mostly dependent on the pool of Tcm (19),
whereas BCG primarily induces Tem in lung, which might con-
tribute to the limited efficacy of BCG, providing only short term
protection (4). As inhibition of Th2 and Treg cell differentia-
tion with pharmacological inhibitors promoted disease resis-
tance, we determined the relative generation of Tem and Tcm
cells in immunized animals. Phenotype analysis revealed that
approximately half of all CD4™ T cells in the animals treated
with the immunomodulators were CD44™CD62L", indicating
Tcm, which is significantly higher than in any other experimen-
tal group (Fig. 2, C and D). In contrast, the numbers of
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CD44MCD62L' CD4* T cells, which are the phenotype of
Tem, were dramatically decreased in these animals (Fig. 2, C
and D). To further determine the functional relevance of these
cells, we determined IFN-y production by these cells. We
observed that the CD44™CD62L" cells derived from mice
treated with immunomodulators included significantly
increased levels of IFN-y-producing cells (Fig. 2E).

Th Subset Responses in BCG Immunized Mice Treated with
Immunomodulators—To determine whether treatment with
suplatast tosylate and D4476 affects immune responses in
BCG immunized animals, we next quantified the frequencies
of cytokine-producing T cells. Our results demonstrated
that IFN-y-producing CD4% T cells were dramatically
increased, whereas Th2 cytokine-producing cells were
decreased in the animals treated with immunomodulators
(Fig. 3, A and C, and supplemental Fig. S1). An opposite trend
was observed in BCG-immunized animals in the absence of
immunomodulators (Fig. 3, A and C, and supplemental Fig. S1).
Interestingly, we were unable to detect changes in Th17 cyto-
kine-producing cells in any experimental group (Fig. 3, A and C,
and supplemental Fig. S1). Although Th17 responses promote
vaccine efficacy (20, 21), such responses do not appear to be
required for immune protection (22).

Treg cells play an important role in the pathogenesis of
TB, and we, therefore, sought to determine the status of Treg
cells in these animals. We observed an abrupt decrease of
CD4"CD25"FoxP3* T cells in BCG-vaccinated animals
treated with immunomodulators (Fig. 3, B and C). We also
determined other host-protective cytokines, including IL-6,
IL-12, and TNF-a. Previously, IL-6 and TNF-a have been
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FIGURE 3. BCG immunization plus immunomodulator treatment induces Th1 responses. A and B, intracellular staining for IFN-v, IL-4, IL-17, and FoxP3
(CD4™ CD25™) of CD4™ T lymphocytes isolated from the spleens of different groups (infected, BCG immunized, BCG immunized, and treated) of mice. Cand D,
intracellular cytokine staining for the production of IL-6, IL-10, IL-12, and TNF-a from different groups (infected, BCG-immunized, BCG-immunized, and treated)
of mice. Results shown here are representative of three independent experiments.

implicated in host resistance against M. tuberculosis (23). IL-12
is a Thl-inducing cytokine, and genetic deficiency in IL-12 or
its signaling components causes profound susceptibility to
M. tuberculosis infection. We found that IL-6-, IL-12-, and
TNE-a-producing cells were significantly increased in BCG-
immunized mice treated with immunomodulators (Fig. 3, D
and E). We also examined IL-10 production but were unable to
detect any differences (Fig. 3, D and E), which is in agreement
with a previous report that IL-10~/~ animals are as susceptible
as wild type littermates to M. tuberculosis infection (24).
Enhanced Central Memory T Cell Responses Induced by
Immunomodulators Protect Animals from M. tuberculosis
Infection—To provide further evidence for a critical role of Tcm
generated by treatment with immunomodulators during BCG
vaccination in resistance to M. tuberculosis infection, we
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immunized Thyl.2 congenic mice and treated these animals
with suplatast tosylate and D4476, isolated CD4™ T cells, and
adoptively transferred them into irradiated Thyl.1 congenic
animals followed by infection with H37Rv (Fig. 4A). 15, 30, and
60 days after infection we measured the bacterial burden in the
lungs and spleens of the mice. Interestingly, we found that
recipient animals receiving cells from drug-treated mice dis-
played significantly reduced bacterial burden than recipients
receiving cells from untreated mice (Fig. 4B). These findings
suggested that Tcm cells generated by treatment with immu-
nomodulators during BCG vaccination confer protective
immunity against M. tuberculosis infection.
Immunomodulators Alter the Distribution of Cytokine-pro-
ducing CD4" T Cell Subsets in BCG-immunized Mice—It is
well established that the proinflammatory cytokines IL-6 and
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per time point, and the experiment was repeated twice. AT, adoptive transfer.

TNEF-a« and Thl-associated cytokines play a central role in host
protection against M. tuberculosis infection. Therefore, we
measured these cytokines in animals that were adoptively
transferred with memory T cells and protected from M. tuber-
culosis infection (Fig. 54 and supplemental Fig. 2). We observed
that IFN-vylevels were much higher in the animals that received
CD4" T cells from drug-treated compared with untreated
mice, whereas IL-4 levels were very similar (Fig. 5B). We also
determined levels of the T cell-polarizing cytokines IL-6, IL-12,
IL-10, and TNF-a. We found that IL-6, IL-12, and TNF-« levels
were higher in the recipient animals that received cells from
drug-treated mice (Fig. 5, D and E, and supplemental Fig. 1).

DISCUSSION

Despite enormous efforts, BCG is currently the only available
vaccine for prevention of TB. Thus far, none of the vaccine
candidates tested in clinical trials have surpassed the efficacy of
BCG (25). Currently, there are 11 vaccine candidates that are
being tested in clinical trials, and 7 of these are subunit booster
vaccines (26, 27). Because attenuated microorganisms, at least
for bacterial diseases, have been highly successful as vaccines
compared with subunit vaccines, recombinant BCG strains
might represent promising vaccine candidates. However, none
of the recombinant strains tested thus far have exceeded the
vaccine efficacy of the parental BCG strain (28, 29). Neverthe-
less, two recombinant BCG vaccines are being tested in vaccine
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trials. Both of these recombinants, an Ag85-recombinant and a
listeriolysin-recombinant, elicited superior vaccine efficacy
than BCG in preclinical animal models (30). Ag85 is an anti-
genic protein from M. tuberculosis and may contribute to host-
protective immune responses, and hence, a booster dose with
this antigen may be helpful (31, 32). On the other hand, listerio-
lysin is a membrane-perforating protein responsible for cytoso-
lic translocation of Listeria pathogens, which facilitates MHC
class I-restricted antigen processing and induction of cytolytic
CD8™" T cells (30). Thus, a BCG recombinant containing list-
eriolysin would be expected to facilitate escape of the organism
(BCG) or leakage of its proteins into the cytosol and induce
enhanced CD8™ T cell activation (33). We and other research
groups have previously shown that M. tuberculosis itself can
translocate from endosomal compartments to the cytosol (34,
35) and induce CD8 " T cell responses. Therefore, introduction
of listeriolysin in BCG would induce immune responses that
more closely mimic those induced by M. tuberculosis. Further-
more, listeriolysin may induce apoptosis in infected cells, which
would facilitate cross-presentation of M. tuberculosis antigens
on MHC class I to CD8™ T cells. Such cross-presentation may
also induce Th1 and Th17 responses, which are known to con-
tribute to host protection (15, 20). Although the role of CD8 " T
cells in immune protection to human TB is still unclear, in vitro
studies have suggested that they recognize heavily infected
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FIGURE 5. Frequency of T cells and cytokine-producing cells in mice adoptively transferred with T cells from animals immunized with BCG and treated
with immunomodulators. A, profile of CD4* and CD8™ T cell counts at 60 days post infection of mice that received T cells from BCG-immunized and
immunomodulator-treated mice. B and C, intracellular staining for IFN-y and IL-4 of CD4* T lymphocytes isolated from the spleens of different groups of
adoptively transferred mice. D and E, frequency of IL-6, IL-10, IL-12, and TNF-« intracellular cytokine-producing cells of different groups of adoptively trans-
ferred mice. Results shown here are representative of three independent experiments. AT, adoptive transfer.

cells, which is consistent with a role of CD8* T cells in immune
surveillance against TB (36, 37). Targeting these cells may pro-
vide a means to prevent reactivation of latent infection (38).
Recently, we and other groups of investigators have shown
that Th1 and to a lesser extent Th17 cells play important roles
in host protection against TB (15, 20). Although BCG effec-
tively induces Th1 responses, it has very limited efficacy against
pulmonary TB. Thus, two possibilities might explain the lim-
ited vaccine efficacy of BCG. First, BCG may fail to induce an
immune response that is critical for optimal host protection.
Second, BCG may induce additional immune responses that
hinder host-protective immune responses. Recently, we have
shown that inhibition of Th2 and Treg cell differentiation by
small molecules greatly enhances host-protective immunity
(15). BCG similarly induces Th2 and Treg cell responses, and
thus may hinder host-protective Thl and/or Thl7 cell
responses. Our results reported here have demonstrated that
simultaneous inhibition of Th2 cells and Tregs by small mole-
cules potently enhances BCG-induced vaccine efficacy. Vac-
cine efficacy is governed by the capacity to induce Tcm cells.
Indeed, our findings showed that simultaneous inhibition of
Th2 and Tregs cells by small molecules enhances host-protec-
tive Tcm cell responses, which correlated with enhanced host
protection. Furthermore, these observations suggest that Th2
cells and Tregs not only counterbalance host-protective
immune responses that facilitate disease progression but also
inhibit Tcm, resulting in reduced vaccine efficacy. Our earlier
studies showed that simultaneous inhibition of Th2 cells and
Tregs during M. tuberculosis infection promotes host-protec-
tive immunity, but this was not sufficient to completely eradi-
cate the harbored M. tuberculosis organisms (15). Therefore, a
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recombinant BCG vaccine that can induce both Th1 and Th17
responses along with inhibition of Th2 and Treg responses
should provide a more optimal vaccine strategy. This hypothe-
sis will be explored in our future investigations.

Although BCG vaccination is ineffective against adult pul-
monary TB, it is effective in protecting young children against
meningeal and disseminated TB. As huge numbers of people
have already received BCG, a strategy that selectively enhances
Thl and Thl7 responses is highly desired. Our findings
together with published studies suggest that BCG vaccine along
with inhibition of Th2 and Treg cell differentiation may provide
such a strategy.
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