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Molecular mechanism of ethylene
stimulation of latex yield in rubber tree
(Hevea brasiliensis) revealed by de novo
sequencing and transcriptome analysis
Jin-Ping Liu1*†, Yu-Fen Zhuang1†, Xiu-Li Guo1 and Yi-Jian Li2

Abstract

Background: Rubber tree (Hevea brasiliensis) is an important industrial crop cultivated in tropical areas for natural
rubber production. Treatment of the bark of rubber trees with ehephon (an ethylene releaser) has been a routine
measure to increase latex yield, but the molecular mechanism behind the stimulation of rubber production by
ethylene still remains a puzzle. Deciphering the enigma is of great importance for improvement of rubber tree for
high yield.

Results: De novo sequencing and assembly of the bark transciptomes of Hevea brasiliensis induced with ethephon
for 8 h (E8) and 24 h (E24) were performed. 51,965,770, 52,303,714 and 53,177,976 high-quality clean reads from E8,
E24 and C (control) samples were assembled into 81,335, 80,048 and 80,800 unigenes respectively, with a total of
84,425 unigenes and an average length of 1,101 bp generated. 10,216 and 9,374 differentially expressed genes
(DEGs) in E8 and E24 compared with C were respectively detected. The expression of several enzymes in crucial
points of regulation in glycolysis were up-regulated and DEGs were not significantly enriched in isopentenyl
diphosphate (IPP) biosynthesis pathway. In addition, up-regulated genes of great regulatory importance in carbon
fixation (Calvin cycle) were identified.

Conclusions: The rapid acceleration of glycolytic pathway supplying precursors for the biosynthesis of IPP and
natural rubber, instead of rubber biosynthesis per se, may be responsible for ethylene stimulation of latex yield in
rubber tree. The elevated rate of flux throughout the Calvin cycle may account for some durability of ethylene-
induced stimulation. Our finding lays the foundations for molecular diagnostic and genetic engineering for high-
yielding improvement of rubber tree.
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Background
Rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll.
Arg.), cultivated in many countries of tropical area, is
the primary commercial source of natural rubber. Nat-
ural rubber (cis-1,4-polyisoprene) produced from rubber
tree has many outstanding performance properties and

is an important industrial material which cannot be
reproduced by synthetic alternatives [1, 2].
Natural rubber is synthesized through the mevalonic

acid (MVA) pathway with isopentenyl pyrophosphate
(IPP) as the substrate and building block [1–5]. But
there were evidences that the possibility that 1-dexoxy-
D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-
phosphate (DEX/MEP) pathway is involved in rubber
biosynthesis cannot be excluded [6–9]. Whatever the
isoprenoid biosynthesis pathway, sucrose is the only
precursor of natural rubber [8, 10].
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Natural rubber biosynthesis takes place in latex and the
latex is the cytoplasm of laticifer cells (the highly special-
ized cells in phloem). The latex harvesting is conducted by
tapping or cutting the bark of rubber tree at regular inter-
vals ranging from 2 to 5 days. Since ethephon (chloro-2-
ethylphosphonic acid, an ethylene generator or releaser)
was known to enhance rubber production, stimulation
with ethephon has become a common practice in world-
wide rubber tree plantations [11, 12]. Usually, a 1.5- to 2-
fold increase of latex yield can be achieved by the treat-
ment with ethephon [13, 14].
Much effort has been devoted to the elucidation of the

mechanism of ethylene action. Stimulation with ethe-
phon was shown to prolong the flow of latex after tap-
ping [13, 15]. Two ethylene-responsive aquaporin genes
(HbPIP2;1 and HbTIP1;1) had been characterized and
their functions possibly favor the prolongation of latex
flow through regulation of water exchanges between
inner liber and latex cells [16].
Physiological and biochemical studies showed that

ethylene activated the general metabolism for latex re-
generation between tappings, with adenylic pool, poly-
somes and rRNA contents accumulated in laticifers, and
the activities of glutamine synthetase (GS) and chitinase
up-regulated [13, 14, 17, 18]. Specifically, Tupy [19–21]
showed that bark application of auxins and ethylene en-
hanced the invertase activity and sucrose utilization in
latex by increase of latex pH. Cytosolic alkalinization
might be explained by the early activation of H+-translo-
cating ATPase by ethylene [22].
In view of the fact that the laticifer is a strong sink for

sucrose and sucrose importation into laticfer and queb-
rachitol absorption may be important for sustained su-
crose demands for latex regeneration, Dusotoit-Coucaud
et al. [23–25] and Tang et al. [26] characterized several
sucrose transporters and a polyol transporter, and sug-
gested that they might be involved in ethylene-induced
stimulation of latex production.
Liu et al. [27] constructed and screened two ethephon-

induced latex SSH cDNA libraries, and found that the
cDNAs associated with sucrose metabolism, regulation
of coagulation, stability of lutoids and signal transduc-
tion were up-regulated and might be related to the ethe-
phon action.
Due to the complexity of ethylene stimulation and the

limitations of the methodologies, many researches have
been undertaken on understanding the mechanism of
ethylene action but it has still not resolved [28]. In con-
trast with the conventional methods such as single gene
cloning and DNA microarrays which yield a limited
amount of genetic information, RNA sequencing is
powerful tool for analyzing differential gene expression
with high resolution on the whole genome level [29, 30].
Particularly, transcriptome analysis can be employed to

reveal relationships between plant gene expression and
phenotypes [31–33]. Transcriptome sequencing technol-
ogy has been applied to investigate the biology of rubber
tree for generation of tissue-specific transcriptomal data
[34] and genome sequence [35], development of molecu-
lar markers [36–39], identification of novel microRNAs
[40], specific genes and gene families [41–43].
In the present study, the first RNA sequencing project

for deciphering the molecular mechanism of ethylene
stimulation of latex yield in rubber tree was performed.
Our objective was to identify the relevant metabolic
pathways or major ethylene-responsive genes. It should
be noted that, we treated the rubber tree bark with ethe-
phon for 8 and 24 h, considering that it should be an ef-
fect of relatively long duration and the response to the
stimulation should at last be transmitted to certain
metabolic pathways.

Results and discussion
Sequencing and de novo assembly
Three cDNA libraries from bark tissue, C (control), E8
(ethephon treatment for 8 h) and E24 (ethephon treat-
ment for 24 h), were sequenced by Illumina deep-
sequencing and a total of approximately 55, 54 and 54
million raw reads for C, E8 and E24 were generated, re-
spectively. After removal of low-quality reads, adaptor
sequences and ambiguous reads, about 53, 51 and 52
million high-quality clean reads for C, E8 and E24 were
obtained, respectively, with the Q20 (percentage of se-
quences with sequencing error rate lower than 1 %) over
98 % for the three samples (Table 1). Assembly of all
trimmed reads produced 138,182-140,407 bp contigs
from the three libraries with the average length exceed-
ing 350 bp. The contigs were joined into unigenes based
on the paired-end information, generating 80,800 (C),
81,335 (E8) and 80,048 (E20) unigenes, with an average
length of 1,101 bp and N50 of 1,875 bp (50 % of the as-
sembled bases were incorporated into unigenes of
1875 nt or longer) (Table 1). All unigenes were longer
than 200 bp, the length of 29,541 (34.99 %) unigenes
ranged from 201 to 400 bp, and unigenes with length
longer than 2000 bp accounted for 16.78 % (14,165) of
total unigenes. The length distribution of the unigenes is
shown in Fig. 1.

Functional annotation and classification
Function annotation of the generated unigenes was per-
formed by searching the reference sequences using
BLASTX against NT (non-redundant NCBI nucleotide
database), NCBI’s non-redundant protein databases
(NR), SwissProt, Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) and COG (Cluster of Orthologous
Groups). A total of 59,452 significant BLAST hits
(70.42 % of all unigenes) were returned. Among them,
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55,936 (66.26 %), 54,741 (64.84 %), 35,557 (42.12 %),
33,721 (39.94 %), 23,044 (27.30 %), 45,515 (53.91 %) uni-
genes were found in NR, NT, Swiss-Prot, KEGG, COG
and GO database, respectively. Summary of functional
annotations of unigenes by aligning to the Nr, Nt,
Swiss-Prot, COG, GO and KEGG databases is shown
in Additional file 1.
COG classification revealed that 44,030 out of all the

assembled unigenes were clustered into 25 functional
categories (Fig. 2). The largest category was “General
function prediction only” (8185, 18.59 %), followed by
“Transcription” (4143, 9.41 %), “Replication, recombin-
ation and repair” (3787, 8.60 %), “Signal transduction
mechanisms” (3319, 7.54 %) and “Posttranslational
modification, protein turnover, chaperones” (3102,
7.05 %). “Nuclear structure” (9, 0.02 %) was the smallest
group and 2202 (5.00 %) unigenes were annoted as
“Function unknown”.
GO assignments were used to classify the predicted

functions of the unigenes and total of 367,851 unigenes
were classified into three main categories: biological
process (178,004, 48.39 %), cellular components
(135,748, 36.90 %) and molecular function (54,099,
14.71 %) (Fig. 3). In the “biological process” category, the
top six largest categories were “cellular process” (28,776,
7.82 %), “metabolic process” (27,921, 7.59 %), “single-or-
ganism process” (19,263, 5.24 %), “response to stimulus”
(14,053, 3.82 %), “biological regulation” (11,538, 3.14 %)

and “regulation of biological process” (10,666, 2.90 %).
As for the molecular function, unigenes with binding
(23,778, 6.46 %), catalytic activity (22, 256, 6.05 %)
formed the largest groups.

Analysis of KEGG pathways and differentially expressed
genes
KEGG pathway-based analysis was conducted to obtain
a better understanding of the biological functions of the
unigenes. The results showed that 33,721 annotated
transcripts were mapped to 128 KEGG pathways. Of the
33,721 unigenes, 7470 (22.15 %), 3517 (10.43 %), 2289
(6.79 %) and 1717 (5.09 %) were involved in the meta-
bolic pathways, the biosynthesis of secondary metabo-
lites, the plant-pathogen interaction and the plant
hormone signal transduction, respectively.
FPKM (Fragments Per Kb per Million reads) method

was used to calculate the expression levels of the unigenes
to identify differentially expressed genes (DEGs). A total of
5,326 up-regulated unigenes and 4,890 down-regulated
unigenes were identified in E8 compared with C, and 4,440
and 4,934 unigenes were up-regulated and down-regulated
in E24 compared with C. DEGs between C and E-8, and C
and E-24 are shown in Additional file 2. The top 20 most
up-regulated and down regulated genes between C and E-
8, and C and E-24 are shown in Additional file 3.
By performing the KEGG pathway enrichment

analysis, 23 and 17 significantly enriched metabolic

Table 1 Overview of the sequencing and assembly

C E-8 E-24 Total

Total Raw Reads 55,532,586 54,200,296 54,549,846

Total Clean Reads 53,177,976 51,965,770 52,303,714

Total Clean Nucleotides (nt) 4,786,017,840 4,676,919,300 4,707,334,260

Q20 percentage 98.24 % 98.30 % 98.30 %

N percentage 0.00 % 0.00 % 0.00 %

GC percentage 43.33 % 43.48 % 43.31 %

Contig

Total Number 139,806 140,407 138,182

Total Length (nt) 49,459,322 49,507,343 49,415,302

Mean Length (nt) 354 353 358

N50 667 659 683

Unigene

Total Number 80,800 81,335 80,048 84,425

Total Length (nt) 65,946,686 65,357,057 65,398,163 92,963,404

Mean Length (nt) 816 804 817 1101

N50 1,652 1,640 1,673 1,875

Total Consensus Sequences 80,800 81,335 80,048 84,425

Distinct Clusters 30,702 29,583 30,307 40,642

Distinct Singletons 50,098 51,752 49,741 43,783
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pathways or signal transduction pathways of DEGs in E8
and E24 were identified, respectively (Additional file 4).
To examine the molecular basis of the ethylene stimula-
tion of latex yield in rubber tree, we concentrated on
glycolysis, IPP biosynthesis pathway, C3 carbon fixation
(Calvin cycle), plant hormone signal transduction and
TFs in relation to rubber biosynthesis.

DEGs involved in glycolysis and IPP pathway
Glycolysis pathway is shown in Fig. 4. In the glycolysis
pathway, the genes of PFK (in step 3), FBA (in step 4),
PGM (in step 8) and PK (in step 10) were significantly
up-regulated in both E8 and E24 compared to C, and
the gene expression of GAPDH (in step 6) was up-regu-
lated in E24 compared to C (Fig. 4, Additional file 5). It is
well known that the PFK reaction is the first irreversible
step committed to glycolysis and PK is responsible for
producing pyruvate as the end product of the pathway.
Both PK and PFK reactions are crucial points in regulating
the rate of glycolysis and in other words these steps are

rate-determining steps [44, 45]. In the “bottom up” regula-
tory mode of plant glycolysis, primary and secondary
regulation are exerted at the levels of PEP and fructose 6-
phosphate, respectively [44, 45]. In addition, transgenic
study demonstrated that PGM also plays an important
role in the control of glycolysis [46, 47].
Glycolysis pathway not only plays a crucial in energy

generation for latex generation but also provides carbon
building blocks for the biosynthesis of rubber and other
organic constituents of latex [20, 44, 45]. Particularly, the
breakdown of glucose by glycolysis produces the acetyl co-
enzyme A (acetyl-CoA) as the direct precursor in the
MVP pathway, as well as the G3P and pyruvate which are
the precursors in DEX/MEP pathway [48]. Up-regulation
of the key enzyme genes described above possibly leads to
an elevated rate of flux throughout the entire glycolytic
pathway. Thus, the ethephon treatment enhances the latex
yield through the rapid acceleration of the glycolysis for
replenishing the precursors consumed in the biosynthesis
of IPP and natural rubber molecules.

Fig. 1 The length distribution of the unigenes. The length distribution of the unigenes of C sample (a), E8 sample (b), E24 sample (c) and the
all-unigenes (d)

Liu et al. BMC Genomics  (2016) 17:257 Page 4 of 13



Fig. 2 COG classification of the total assembled unigenes

Fig. 3 GO classification of the total assembled unigenes. The left y-axis indicates the percentage of genes for each functions; the right-axis indicates the
correspondent number of genes
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Moreover, we found that, in the metabolic pathway of
acetyl-CoA into alcohol, the ACS (in step 1′) and ALDH
(in step 2′) were down-regulated in both E8 and E24
compared to C (Fig. 4, Additional file 5). The down-
regulation of the ACS and ALDH leads to the inhibition
of the acetyl-CoA metabolic pathway under ethephon
treatment, which may favor for the acetyl-CoA flowing
toward the rubber synthesis.
In contrast, the IPP pathway was not found to be signifi-

cantly enriched in this study and specifically, 3-hydroxy-3-
metylglutaryl coenzyme A reductase (HMGR), which plays
only limiting role in plant isoprenoid biosynthesis of MVA
pathway [49], was slightly down-regulated (Additional files
6 and 7). This implied that carbohydrate utilization by gly-
colysis and availability of the precursors for IPP biosyn-
thesis may critically determine the rate of rubber
production, and the IPP pathway accounts little for the
effect of ethephon stimulation. Although biosynthesis of
natural rubber begins with the IPP pathway but the result
that ethylene has little direct effect on accelerating rubber
biosynthesis has been reported [28]. Interestingly, in one
report about the mechanisms underlying super productiv-
ity of rubber tree, many rubber-biosynthesis-pathway genes

showed no differential expressions between the super-
high-yielding clone and the control [50].

DEGs involved in carbon fixation
The C3 carbon fixation (Calvin cycle) is demonstrated in
Fig. 5. The expressions of RubisCo(in step 1), GADPH(in
step 3), FBA(in step 5), aldolase(in step 8) and SBP(in step
9) were shown to be up-regulated in response to ethylene
in both E8 and E24 samples (Fig. 5, Additional file 8). In
the Calvin cycle, extensive studies demonstrated that Ru-
bisCO [51, 52], SBP [53–55] and aldolase [56, 57] domin-
ate control of photosynthetic carbon fixation and they
represent the rate-limiting enzymes in the Calvin cycle
(reviewed by Raines [58] and Skitt et al. [59]). The up-
regaulation of these enzymes in governing substrate flux
through the Calvin cycle in response to the application of
ethephon speeds up carbon fixation and further enhances
the sustainable rubber productivity.
In plants, carbon-containing compounds including

sucrose, IPP and natural rubber, ultimately comes from
photosynthesis or from stored photosynthetic products.
Wititsuwannakul [60] found that the HMGR activity in
latex of rubber tree showed a diurnal variation pattern,

Fig. 4 Differential expression of unigenes involved in glycolysis in E8 and E24 compared to C samples of Hevea brasiliensis. Glycolysis comprises
10 step reactions. In step 1, the enzyme hexokinase (HK) phosphorylates glucose by transferring a phosphate group from ATP to glucose forming
glucose 6-phosphate. In step 2, glucose 6-phosphate is converted to its isomer fructose 6-phosphate by phosphoglucoisomerase (PGI). In step 3,
the enzyme phosphofructokinase (PFK) catalyzes the conversion of fructose 6-phosphate into fructose 1,6-bisphosphate using another ATP to
transfer a phosphate group to fructose 6-phosphate. In step 4, Fructose 1,6-bisphosphate aldolase (FBA) splits fructose 1,6-bisphosphate into dihydroxyacetone
phosphate (DHAP, also glycerone phosphate) and glyceraldehyde 3-phosphate (G3P). In step 5, triose-phosphate isomerase (TPI or TIM)
catalyzes the reversible interconversion of DHAP and G3P. In step 6, G3P is converted to 1,3-bisphosphoglycerate (1,3-BPG) by glyceraldehyde 3-
phosphate dehydrogenase (GAPDH). In step 7, phosphoglycerate kinase (PGK) catalyzes the reversible transfer of the phosphate group from 1,3-BPG to
ADP generating 3-phosphoglycerate (3-PG) and ATP. In step 8, the conversion of 3-PG to 2-phosphoglycerate (2-PG) is catalyzed by phosphoglycerate
mutase (PGM). In step 9, enolase (or phosphopyruvate hydratase) catalyzes the dehydration of 2-PG to form phosphoenolpyruvate (PEP). In step 10,
pyruvate kinase (PK) catalyzes the transfer of the phosphate group from PEP to ADP, yielding pyruvate and ATP. In an acetyl-CoA metabolic pathway,
acetyl-CoA synthetase (ACS) (or acetate : CoA ligase) catalyzes the interconversion between acetyl-CoA and acetate (Step 1′), aldehyde dehydrogenase (ALDH)
reversibly catalyze the conversion of acetate into acetaldehyde (Step 2′) and alcohol dehydrogenase (ADH) facilitates the interconversion between aldehydes
and alcohols (Step 3′). Cells with gray border lines in the upper rows represent differentially expressed unigenes in E8 compared to C and cells with green
border lines in the lower rows represent differentially expressed unigenes in E24 compared to C. Relative levels of expression are showed by a color gradient
from low (blue) to high (red)
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and suggested that the regulation of the light-dark phase
was probably due to physiological processes associated with
photosynthesis and one or more of the three components of
the rubber biosynthesis (acetyl-CoA, NADPH and ATP) be-
come a limiting factor causing the decline in HMGR activity
during the dark period. Therefore, to a certain extent, the
photosynthetic carbon fixation may play an important role
in ethylene-induced stimulation of latex production by con-
stantly supplying carbohydrate for glycolytic transformation.

DEGs of hormone signaling components and transcription
factors
The responses of plant metabolism, growth, development
and defense to exogenous ethylene application can hardly
do without the ethylene perception and signal transduc-
tion [61]. Generally, hormone responses are the output of
multiple pathway interaction and crosstalk [61–64]. Ethyl-
ene signaling may exert its functions via interaction with
other major plant hormones such as brassinosteroid (BR),
gibberellin (GA),auxin, cytokinin, salicylic acid (SA),
jasmonate (JA), abscisic acid (ABA). The transcripts of
signaling components such as ETHYLENE RESPONSE
(ETR), ETHYLENE RESPONSE FACTOR 1 (ERF1),
ETHYLENE INSENSITIVE 3 (EIN3) and EIN3 binding F-

Box protein 1/2 (EBF1/2) for ethylene, BRASSINOSTEROID-
INSENSITIVE 2 (BIN2), BRASSINAZOLE RESISTANT 1/2
(BZR1/2) and TCH4 for BR, DELLA for GA, INDOLE
ACETIC ACID (IAA) for auxin, type-A response regu-
lator (A-ARR) for cytokinin, TGA for SA, and MYC2
for JA were found to be remarkably accumulated after
ethephon treatment (Additional files 9 and 10). Al-
though all these hormones have been reported for being
linked to growth regulation in certain manner [64], how
the ethylene interacts and coordinates with other hor-
mones in relation to the stimulation of latex production
in rubber tree still remains to be elucidated.
Transcription factors (TFs) play important roles in the

control of many of the biological processes in a cell or or-
ganism by the regulation of gene expression [65]. In
addition, TFs also play crucial roles in the cross-talk between
hormone signalling pathways [66]. A total of 1752 DEGs of
putative TFs were identified in this study (Additional file 11)
and the top five up-regulated and down-regulated TFs in E8
and E24 compared to C were listed in Additional file 12.
Among them, the largest gene family was the The v-myb
avian myeloblastosis viral oncogene homolog family (MYB)
(88, 9.10 %), followed by MYB related (67, 7.44 %), the basic
helix-loop-helix family (bHLH) (58, 6.44 %), C2H2 family

Fig. 5 Differential expression of unigenes involved in carbon fixation in E8 and E24 compared to C samples of Hevea brasiliensis. The C3
carbon fixation proceeds through 13 steps in three phases. In carboxylation phase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCo)
adds carbon dioxide to ribulose-1,5-bisphosphate (RuBP) to generate 3-PG (Step 1). Reduction phase include two reactions: PGK catalyses the
phosphorylation of 3-PG by ATP to form 1,3-BPG (or 3-phospho-D-glyceroyl phosphate) and ADP (Step 2); GADPH catalyses the reduction of
1,3-BPG by NADPH to produce G3P (Step 3). The regeneration phase of the cycle comprises 9 steps and is initiated by the enzyme TPI which
catalyses the interconversion of G3P and DHAP (Step 4). Then fructose-1,6-bisphosphate aldolase (FBA) reversibly catalyses the aldol condensation of G3P and
DHAP into fructose-1,6-bisphosphate (Step 5). The resulting fructose-1,6-bisphosphatase is converted into fructose 6-phosphate by fructose-1,6-bisphosphatase
(FBP) (Step 6). Transketolase (TK) catalyzes the transfer of a 2-carbon fragment from fructose 6-phosphate to G3P, affording erythrose-4-phosphate and
xylulose-5-phosphate (Step 7). Erythrose-4-phosphate and a DHAP are converted into sedoheptulose-1,7-bisphosphate by aldolase (Step 8). The cleavage of
sedoheptulose-1,7-bisphosphate into sedoheptulose-7-phosphate and an inorganic phosphate ion is catalyzed by sedoheptulose-1,7-bisphosphatase (SBP)
(Step 9). The reversible interconversion of sedoheptulose-7-phosphate and G3P into ribose 5-phosphate and xylulose 5-phosphate is catalyzed by TK
(Step 10). Ribose-5-phosphate isomerase (RPI) interconverts ribose-5-phosphate and ribulose-5-phosphate (Step 11). Finally, phosphoribulokinase (PRK)
phosphorylates ribulose-5-phosphate into RuBP (Step 12). Cells with gray border lines in the upper rows represent differentially expressed unigenes in
E8 compared to C and cells with green border lines in the lower rows represent differentially expressed unigenes in E24 compared to C. Relative levels
of expression are showed by a color gradient from low (blue) to high (red)
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(52, 5.77 %), and the ethylene-responsive element binding
factor family (ERF) (44, 4.88 %). Although their functions
relevant to ethylene responses for the production enhance-
ment of rubber remained to be unknown but the data will
be a valuable resource for the discovery of candidate genes
related to the complex regulatory networks involved in the
response.
The results obtained by qRT-PCR analysis matched

the expression found by transcriptome analysis (Fig. 6).
The consistent expression patterns further increased the
confidence of our findings and the transcriptome dataset
reported here which will be a valuable supplement to
the rubber tree genomic and transcriptome information.
Differential gene expression, especially the up-regulated

expression of the key genes in the rubber-biosynthesis-
related metabolic pathways in response to ethylene
allowed us to find the rubber-yield limiting factors. Based
on our finding, it is possibly to develop a molecular diag-
nostic for rubber yield and to improve the rubber tree for
high yield through the genetic modification of those key
genes [67].

Conclusions
In the present study, the molecular mechanism be-
hind the ethylene stimulation of rubber yield was re-
vealed. Up-regulation of the key enzymes in the
glycolysis pathway and the C3 carbon fixation may be
responsible for enhancing the rubber production by
ethephon treatment. Identification of the rubber-yield
limiting factors possibly leads to development of a
molecular approach to assay and predict the product-
ivity of rubber tree, and obtainment of new high
yielding cultivars through genetic engineering. More-
over, our transcriptome data provides an useful re-
sources for gene mining for high production of
rubber.

Methods
Plant material and RNA extraction
Rubber trees of clone PR107 were planted at the Experi-
mental Farm of the Chinese Academy of Tropical Agri-
culture Science in 2000, and opened for tapping in 1995,
on the s/2 d/4 system (half spiral tapped every 4 days)
and with 1.5 %-ethephon treatment 1 day before tapping
at intervals of 15 days.
Trees of equal size in the same plot were selected

and divided into three groups, each with six trees.
Ethephon (2-chloroethane phosphonic acid; 1.5 % v/v)
was applied using a brush on the tapping panel. Bark
samples were collected from two groups by tapping at
8 and 24 h after ethephon application, respectively.
Concurrently, bark was collected from a correspond-
ing group of trees at 8 h after treatment in the same
way with water only as control. The samples were

immediately frozen in liquid nitrogen and shipped on
dry ice to BGI Life Tech Co., Ltd (Shenzhen, China)
for Illumina sequencing.
Bark RNA was isolated using the TRIzol® Reagent

(Invitrogen) following the protocol in the manufacturer’s
instructions. RNA integrity was confirmed by a 2100
Bioanalyzer (Agilent Technologies).

Fig. 6 qRT-PCR validation of three DEGs involved in glycolysis and
carbon fixation of Hevea brasiliensis bark. The axis indicates treatments;
the y-axis indicates relative expression level. a PFK; b Rubisco; c GADPH
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cDNA library construction and sequencing
Three cDNA libraries, C (control), E8 (Ethephon treat-
ment for 8 h) and E24 (Ethephon treatment for 24 h),
were generated using the mRNA-Seq 8 sample prep Kit
(Illumina) according to the manufacturer’s instructions.
Magnetic beads containing poly-T molecules was used
to isolate the poly(A) mRNA from 20 μg of total RNA.
Following purification, the samples were fragmented into
small pieces using divalent cations at 94 °C for 5 min
and converted into the first and second-strand cDNA
with the SuperScript double-stranded cDNA synthesis
kit (Invitrogen, CA). Then, the synthesized cDNA was
subject to end repair and adenylation of 3′ ends and
purified using the QIAquick PCR Purification Kit (QIA-
GEN). Afterward, Illumina paired end adapters were li-
gated to the resulting cDNA fragments. Each cDNA
library was finally constructed with an insert size of
200 bp. After quality validating by an Agilent Technolo-
gies 2100 Bioanalyzer, deep sequencing was performed
with Illumina HiSeqTM 2000 (Illumina Inc., San Diego,
CA, USA).

De novo assembly and gene annotation
Raw reads were filtered by the Illumina pipeline before the
assembly. The reads with more than 20 % of bases with a
quality value ≤10, unknown nucleotides higher than 5 %
and adaptor contamination were removed. Transcriptome
de novo assembly was then conducted with short reads as-
sembling program – Trinity (release 20130225; running
parameter: seqType fq –min_contig_length 100) (http://
trinityrnaseq.github.io/) [68, 69]. The resulting sequences
of trinity, termed Unigenes, from each sample’s assembly
were taken into further process of sequence splicing and
redundancy removing to acquire non-redundant Unigenes
as long as possible. Then, the Unigenes were split into two
classes: clusters (CL, with some Unigenes which similarity
between them was higher than 70 %) and singletons (Uni-
gene). At last, Blast X (v2.2.26 + x64-linux) alignment (an
E-value <0.00001; running parameter: -F F -e 1e-5 -p
blastx) between the Unigenes and protein databases like
NR (release 20130408), SwissProt (release 201303), KEGG
(release 63.0) and COG (release 20090331) was carried
out. Sequence direction of and functional annotations to
the Unigenes were decided and assigned with the best
aligning results. The sequence direction of the Unigene
unaligned to non of the above databases was determined
by a software named ESTScan (v3.0.2) [69]. With the NR
annotation, the Blast2GO program (v2.5.0; release
20120801) [70] was used to get the GO annotation for the
Unigenes. The GO functional classification for the Uni-
genes was produced by the WEGO software [71] and the
pathway assignments were performed with the help of
KEGG database [72].

Differential gene expression analysis
The normalized expression levels of the Unigenes were
calculated using the FPKM method [73]. Then, the iden-
tification of DEGs was conducted between C and E8,
and C and E24 using a computational method [74]
included in SOAPaligner/soap (http://soap.genomic-
s.org.cn/soapaligner.html; v2.21; running parameter: -m
0 -x 500 -s 40 -l 35 -v 5 -r 1), a tool of the Short Oligo-
nucleotide Analysis Package (SOAP) for the RNA-Seq
data analysis. The significance of differential transcript
abundance was judged with the false discovery rate
(FDR) value [75]. Only those DEGs with FDR ≤0.001
with the absolute fold change ≥2 were reserved. The en-
richment analysis was performed to find GO terms in
which DEGs are significantly enriched comparing to the
whole transcriptome, using the hypergeometric test. For
the pathway enrichment analysis, all DEGs were mapped
to terms in the KEGG database to identify significantly
over-represented metabolic pathways or signal transduc-
tion pathways. Then the hypergeometric test was per-
formed for the statistical analysis, while the Bonferroni
correction was adopted for the multiple testing correc-
tion, with a q-value cutoff of ≤0.05. From the results, we
mainly focused on the differentially regulated pathways
closely relevant to the biosynthesis of natural rubber. In
order to evaluate expression levels of individual genes in
these pathways, we re-mapped the Unigenes to the se-
quences of each gene and all FPKM values were added
together. Then the final FPKM values were used as the
expression levels of the individual gene [76]. For these
genes, Log2 fold changes were calculated between C and
E8, and between C and E24, respectively, while the
results were presented and illustrated in the pathways.
Plant Transcription Factor Database (PlantTFDB, v3.0)

is a comprehensive database of transcription factors
(TFs) in plants, with detailed annotation and classifica-
tion information [77]. The sequences of all existing TFs
were retrieved from PlantTFDB. Then, Blast X search
with PlantTFDB was performed and the TFs were identi-
fied with an E-value cutoff of ≤1E-5.

Validation of gene expression by qRT-PCR
To validate our transciptome results, expression of three
randomly chosen key genes (PFK, Rubisco and GADPH)
in glycolysis and carbon fixation with significant expres-
sion changes in the transcriptome data was verified by
qRT-PCR. Total RNA was isolated from the equal amount
of bark tissues of three rubber trees of each treatment by
following the protocol described by Venkatachalam et al.
[78]. The first strand cDNA was synthesized from 2.5 μg
of total RNA through a RevertAidTM Premium first
strand cDNA synthesis kit (Fermentas). The standard
curve for each target gene was obtained by qRT-PCR with
series cDNA dilutions of cDNA. The reaction mixture
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(20 μl) for qRT-PCR comprised of 10 μl SYBR Premix Ex
TaqII, 6.8 μl EASY Dilution, 0.4 μl 10 μM Forward primer
and 0.4 μl 10 μM Reverse primer. The PCR reactions were
performed on an CFX96TM Real-Time PCR Detection
System (Bio-Rad) as follows: 95 °C for 30 s, followed by
40 cycles of 95 °C for 5 s, and then annealing at 60–95 °C
for 30 s. Expression analysis of each gene was confirmed
in three independent reactions with Actin gene as an in-
ternal control for normalization of the expression levels of
the chosen transcripts. The relative expression of the
genes was calculated using the 2−△△Ct method. The primer
sequences used for qRT-PCR are listed in Table 2.

Availability of data and materials
The datasets supporting the conclusions of this article
are included within the article and its additional files.
The clean reads for C, E8 and E24 have been deposited
in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) under accession
numbers SRX1134637, SRX1134639 and SRX1134640,
respectively. The RNA-seq data in this article has been
deposited in the NCBI’s Gene Expression Omnibus
(GEO) under accession number GSE78145.
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Additional file 2: List of DEGs between C and E-8, and C and E-24.
(XLS 23067 kb)

Additional file 3: The top 20 most up-regulated and down regulated
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Additional file 4: Pathways significantly enriched of DEGs (C vs. E-8, and
C vs. E-24). (XLS 196 kb)

Additional file 5: DEGs involved in the glycolysis in E8 and E24 compared
to C samples of Hevea brasiliensis. (XLS 59 kb)

Additional file 6: Differential expression of unigenes involved in IPP
biosynthesis pathway in E8 and E24 compared to C samples of
Hevea brasiliensis. AACT: acetoacetyl-CoA thiolase; HMGS: 3-hydroxy-3-metyl-
glutaryl coenzyme A (HMG-CoA) synthase; HMGR: HMG-CoA reductase;
MVK: mevalonate (MVA) kinase; PMVK: 5-phosphomevalonate (MVP)

kinase; PMD: phosphatemevalonate decarboxylase; DPMD: 5-
diphosphomevalonate (MVPP) decarboxylase; IPK: isopentenyl phosphate
(IP) kinase; GPS: geranyl diphosphate synthase; IDI: isopentenyl diphosphate
(IPP) isomerase; DXS: 1-deoxy-d-xylulose 5-phosphate (DXP) synthase; DXR:
DXP reductoisomerase; MCT: 4-(cytidine 5′ -diphospho)-2- C- methyl-D-
erythritol (CDP-ME) synthase; CMK: CDP-ME kinase; MDS: 2C-methyl-D-erythri-
tol 2,4-cyclodiphosphate (MEcPP) synthase; HDS: 4-hydroxy-3-methylbut-2-enyl
diphosphate (HMBPP) synthase; HDR: HMBPP reductase. Cells with gray border
lines in the upper rows represent differentially expressed unigenes in E8
compared to C and cells with green border lines in the lower rows represent
differentially expressed unigenes in E24 compared to C. Relative levels of
expression are showed by a color gradient from low (blue) to high (red).
(JPG 157 kb)

Additional file 7: DEGs involved in the IPP biosynthesis in E8 and E24
compared to C samples of Hevea brasiliensis. (XLS 31 kb)

Additional file 8: DEGs involved in the Calvin cycle in E8 and E24
compared to C samples of Hevea brasiliensis. (XLS 43 kb)

Additional file 9: Differential expression of unigenes involved in
hormone signaling in E8 and E24 compared to C samples of Hevea
brasiliensis. Ethylene signalling pathway: ETR1: ETHYLENE RESPONSE 1;
CTR1: CONSTITUTIVE TRIPLE RESPONSE 1; EIN2: ETHYLENE INSENSITIVE 2;
EIN3: ETHYLENE INSENSITIVE 3; ERF1/2: ETHYLENE RESPONSE FACTOR 1/2;
EBF1/2: EIN3 binding F-Box protein 1/2; BR signaling pathway: BRI1:
Brassinosteroid-Insensitive 1; BAK1: BRI1-associated kinase 1; BKI1: BRI1
KINASE INHIBITOR 1; BSK: BR SIGNALING KINASE; BSU1: bri1 SUPPRESSOR
1; BIN2: BRASSINOSTEROID-INSENSITIVE 2; BZR1/2: BRASSINAZOLE RESISTANT
1/2; TCH: TOUCH genes; CYCD3: CYCLIN D3; GA signaling pathway: GID1:
GIBBERELLIN INSENSITIVE DWARF 1; GID2: GIBBERELLIN INSENSITIVE DWARF
2; DELLAs: DELLA growth inhibitors; TF: transcriptional factor; Auxin signaling
pathway: AUX1: AUXIN1; TIR1: TRANSPORT INHIBITOR RESPONSE 1; IAA: INDOLE
ACETIC ACID; ARF: AUXIN RESPONSE FACTOR; SAUR: Small Auxin-Up RNA;
G10H: geraniol 10-hydroxylase gene; Cytokinin signaling pathway: CRE1:
CYTOKININ RESPONSE 1; AHP: histidine phosphotransfer protein; B-ARR:
type-B response regulator (ARR); A-ARR: type-A response regulator (ARR); SA
signalling pathway: NPR1: Non-expressor of pathogenesis-related genes 1;
TGA: the bZIP transcription factors; PR1: pathogenesis related protein 1; JA
signaling pathway: JAR1: JASMONATES RESISTANT 1; JA-Ile: jasmonoyl
isoleucine; JAZ: Jasmonate ZIM-domain-containing protein; MYC2: a
basic helix-loop-helix (bHLH) transcription factor; ORCA3: Octadecanoid-
derivative Responsive Catharanthus AP2-domain gene; ABA signalling
pathway: PYR1/PYLs: Pyrabactin Resistance Protein1/PYR-Like proteins;
PP2Cs: protein phosphatases which fall under the category of type 2C;
SnRK2: SNF1 (Sucrose-Nonfermenting Kinase1)-related protein kinase 2:
ABF: ABA responsive element (ABRE) binding factors. Cells with gray
border lines in the upper rows represent differentially expressed unigenes in E8
compared to C and cells with green border lines in the lower rows represent
differentially expressed unigenes in E24 compared to C. Relative levels of
expression are showed by a color gradient from low (blue) to high (red).
(JPG 249 kb)

Additional file 10: DEGs of hormone signaling components in E8 and
E24 compared to C samples of Hevea brasiliensis. (XLS 126 kb)

Additional file 11: DEGs of transcription factors in E8 and E24
compared to C samples of Hevea brasiliensis. (XLS 256 kb)

Additional file 12: The top five up-regulated and down-regulated TFs
in E8 and E24 compared to C. (XLS 23 kb)

Abbreviations
A -ARR: type-A response regulator; ABA: abscisic acid; acetyl-CoA: acetyl-
coenzyme A; ACS: acetyl-coenzyme A synthetase or acetate, CoA ligase;
ADH: alcohol dehydrogenase; ALDH: aldehyde dehydrogenase; bHLH: the
basic helix-loop-helix family; BIN2: brassinosteroid-insensitive 2; 1,3-BPG: 1,3-
bisphosphoglycerate; BR: brassinosteroid; BZR1/2: brassinazole resistant 1/2;
COG: Cluster of Orthologous Groups; DEGs: differentially expressed genes;
DEX/MEP: 1-dexoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-
phosphate; DHAP: dihydroxyacetone phosphate or glycerone phosphate;
EBF1/2: EIN3 binding F-Box protein 1/2; EIN3: ethylene insensitive 3;
ERF1: ethylene response factor 1; ERF: the ethylene-responsive element bind-
ing factor family; ETR: ethylene response; FBA: fructose 1,6-bisphosphate

Table 2 The forward and reverse primers used in validation
experiment of gene expression by qRT-PCR

Genes Directions Sequences

PFK Forward 5′-AATGGCTGGATACACTGGCTTT-3′

Reverse 5′-AGCCTAGCCCACATCCTATCTG-3′

Rubisco Forward 5′-GTACACAGACCACCAAATGAGCC-3′

Reverse 5′-TATTCTCAATGCGTTCATCTGCC-3′

GADPH Forward 5′-CCGGTGGTGTTAAATAAGCTTC-3′

Reverse 5′-ACTGGTCTTCCGTCAATACTCAT-3′

Actin Forward 5′-CAGTGGTCGTACAACTGGTAT-3′

Reverse 5′-ATCCTCCAATCCAGACACTGT-3′
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aldolase; FBP: fructose-1,6-bisphosphatase; FDR: false discovery rate; FPKM
(RPKM): fragments per kb per million reads; GA: gibberellin; G3P or
GA3P: glyceraldehyde 3-phosphate; GAPDH: glyceraldehyde 3-phosphate de-
hydrogenase; GO: gene ontology; GS: glutamine synthetase; HK: hexokinase;
HMGR: 3-hydroxy-3-metylglutaryl coenzyme A reductase; IAA: indole acetic
acid; IPP: isopentenyl diphosphate; JA: jasmonate; KEGG: SwissProt, Kyoto
Encyclopedia of Genes and Genomes; MVA: mevalonic acid; MYB: v-myb
avian myeloblastosis viral oncogene homolog; NCBI: National Center for
Biotechnology Information; NR: NCBI’s non-redundant protein databases;
NT: non-redundant NCBI nucleotide database; PFK: phosphofructokinase;
PGI: phosphoglucoisomerase; PGK: phosphoglycerate kinase;
PGM: phosphoglycerate mutase; PEP: phosphoenolpyruvate; 2-PG: 2-
phosphoglycerate; 3-PG: 3-phosphoglycerate; PlantTFDB: Plant Transcription
Factor Database; PK: pyruvate kinase; PRK: phosphoribulokinase; RPI: ribose-5-
phosphate isomerase; RubisCo: ribulose-1,5-bisphosphate carboxylase/
oxygenase; RuBP: ribulose-1,5-bisphosphate; SA: salicylic acid;
SBP: sedoheptulose-1,7-bisphosphatase; SOAP: short oligonucleotide analysis
package; SRA: sequence read archive; TFs: transcription factors;
TK: transketolase; TPI or TIM: triose-phosphate isomerase.
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