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Abstract

Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong
selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical
counterparts. Successful models have been developed for a number of these properties but in one case, direction
selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the
empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex
and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-
centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-
centre inputs to cortex precede the on-centre inputs by a small (,4 ms) interval, and it is this difference that confers
direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data:
the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a
stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other
fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of
orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have
properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that
a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex.
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Introduction

Fifty years of research have provided a detailed description of

signal processing in mammalian primary visual cortex. We know,

for example, that individual neurons are strongly selective for

contour orientation, the spatial frequency of grating stimuli, and

the direction of stimulus motion. Further, there is a subset of

neurons – known as simple cells – that are sensitive to stimulus

polarity and others – complex cells – that are relatively insensitive

to polarity. The literature also describes the diversity of these

properties across neuronal populations. Some cells, for example,

are completely selective for the direction of stimulus motion,

whereas other cells are indifferent to motion direction. The

diversity of properties has been well documented for orientation

selectivity [1], spatial frequency selectivity [2], direction selectivity

[3], and for the simple cell/complex cell dichotomy [4].

The modelling of these properties has progressed in tandem

with the accumulation of physiological results. There are models

that successfully account for orientation selectivity and the

existence of complex cells [5–10]. There is no agreement,

however, about the physiological mechanisms underlying direction

selectivity. It has long been recognised that at least two sensors are

required and that these sensors must differ in their spatial locations

and temporal signal-processing properties. Further, when the

input is cyclic, there are advantages in having sensors that differ by

a quarter of a cycle in both space and time [11,12]. Saul and

Humphrey [13] tested the temporal properties of relay cells in the

lateral geniculate nucleus and showed that the response of lagged

cells was delayed relative to non-lagged cells by approximately a

quarter-cycle at low temporal frequencies. They therefore

suggested that lagged and non-lagged cells could together provide

the necessary inputs for cortical direction selectivity.

This quadrature hypothesis was thrown into doubt by Peterson et

al. [3]. They recorded from direction-selective cells and modelled

their responses by assuming that each cell sums two inputs that

were not direction-selective. They found the latency difference of

the inputs to be almost uniformly distributed between 0u and 90u,
implying that lagged geniculate cells are not necessary for the

generation of direction selectivity. There are also models for

direction selectivity that include a contribution from intracortical

circuitry (for example Ursino et al. [14]). Given that the sub-

cortical timing is contentious, however, cortical involvement in

generating direction selectivity becomes hard to interpret.

In this paper we describe a new model for direction selectivity.

We take our lead from recent physiological evidence that the

geniculate inputs to a column in the cat’s primary visual cortex

comprise a population of on-centre cells interspersed with a

population of off-centre cells [15] and that the off-centre cells lead

their on-centre counterparts by 3–6 ms [16]. Correspondingly, our

model assumes that each cell in the first cortical stage receives

mixed on- and off-centre inputs, with the latter leading by a few

milliseconds.
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More generally, we note that there are substantial shortfalls in

previous modelling of other cortical properties, such as orientation

selectivity and the emergence of complex cells. First, the models

tend to focus on explaining a single functional property; each

model therefore accounts for only a small subset of neural

behaviour. Second, there have been few attempts to model the

diversity of properties across neuronal populations. One notable

exception is Ringach’s model [17] for the variability of orientation

selectivity.

We address both of these deficiencies in previous modelling

work. We have two aims. The first is to describe the simplest

possible model that can reproduce the orientation selectivity,

spatial frequency selectivity, direction selectivity, and insensitivity

to stimulus polarity, of neurons in primary visual cortex. The

second aim is to find the extent to which the model can reproduce

the diversity of these properties across a population of neurons.

The simplicity of the model is illustrated by its starting point,

which uses just two relay neurons in the lateral geniculate nucleus.

Further, there are no feedback pathways in the model. This allows

us to test how far a purely feed-forward model can be pushed to

predict cortical properties.

To make the task manageable, the scope of the model is limited

in three ways. First, given that the literature describing primary

visual cortical function is richer for the domestic cat than for other

species, we have chosen to model the cat’s visual pathway. Second,

there are several parallel sub-cortical pathways in the cat’s visual

system [18]; the model is restricted to the pathway with the highest

spatial resolution, the X-cell pathway. Third, whereas primary

visual cortex extends over more than one area in the cat, only area

17 is considered here because that is the major target for the X-cell

pathway.

Model design
We here describe the design of the model in broad terms. Model

equations and parameters are provided in the Methods section.

Two guiding principles were used in designing the model:

simplicity, and adherence to known anatomy and physiology.

The simplicity principle is illustrated by the starting point, which

we call the basic model. This has just two sub-cortical pathways,

one on-centre and the other off-centre. There is no surround

mechanism, a lone cortical column, and sub-cortical signal

processing is linear. The basic model is sufficient to produce the

elements of the four cardinal functional properties described

above. We then modify the model to improve its match with

specific laboratory data. In accordance with the second principle,

the model’s parameters – such as ganglion cell concentration, and

the centre mechanism size of geniculate receptive fields – are taken

from published data.

Figure 1. Model design. a. The basic model comprises two sub-cortical channels and three cortical processing stages. Each sub-cortical channel
comprises a series of four neurons: photoreceptor, bipolar cell, ganglion cell, and relay cell in the lateral geniculate nucleus. Cells are on-centre in one
channel and off-centre in the other. Each cortical stage consists of a grid of neurons, and a square in the grid represents a single neuron. The sub-
cortical stages converge onto each neuron in the first cortical stage, and all neurons in a given cortical stage converge onto each neuron in the next
stage. b. In general, each neuron processes signals by weighting and summing the synaptic inputs, integrating the sum over time, and rectifying the
resulting generator potential to produce an action potential rate. The exceptions are the photoreceptors, whose inputs are stimuli rather than
synaptic inputs, and those neurons (photoreceptors and bipolar cells) whose output is a graded potential and which therefore do no rectification. c.
The conversion between generator potential and impulse rate is taken directly from the work of Carandini and Ferster [24]. Generator potentials less
than the action potential threshold produce zero impulse rate, and potentials greater than or equal to threshold produce an impulse rate
proportional to generator potential. The circles indicate generator potential when stimulus contrast is zero. Neurons represented to the right of the
origin have a spontaneous impulse rate, and the remainder (neurons in the first cortical stage) do not.
doi:10.1371/journal.pone.0034466.g001

Functional Model for Primary Visual Cortex
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Model structure
A block diagram of the model’s structure is shown in Figure 1a.

To be sensitive to motion, the model must have at least two

spatially separated inputs. In the interests of simplicity, we start

with exactly two inputs. These two inputs are assumed to be

nearest-neighbour X-cell pathways. The anatomical correlate of

the X-type retinal ganglion cell is the b cell, and Wässle et al. [19]

have shown that nearest-neighbour b cells are almost always of

differing sign – one is on-centre and the other off-centre.

Accordingly, the sub-cortical portion of the model consists of

two channels, one passing through an on-centre X-type ganglion

cell and the other through the off-centre X cell that is its nearest

neighbour. The stimulus to each channel is processed successively

by a photoreceptor, bipolar cell, ganglion cell, and a relay cell in

the dorsal lateral geniculate nucleus; each box in the sub-cortical

channels represents one neuron. Input from the second eye is

ignored.

The design of the model’s cortical portion is heavily influenced

by the finding that cortical cells can be separated into two types.

Cross-correlation studies show that there are neurons in layer 4

and upper layer 6 that receive monosynaptic input from the

geniculate [20]. Other cells receive their input from layer 4 cells

[21], and are therefore separated by at least two synapses from the

geniculate. We have therefore modelled primary visual cortex with

multiple successive stages of processing. The number of cortical

stages is set at three because, as we will show, the model takes at

least this number of stages to produce responses like those in

complex cells. The first stage represents layer 4 (and upper layer 6)

of area 17. The model does not specify the nature of the later

stages, but a strong possibility for the second stage is layers 2 and 3

[22,23]. Neurons in a single stage are assumed to be aligned in a

square grid; each member of the grid in Figure 1a therefore

represents a single neuron. Each neuron receives convergent

excitatory input from the neurons in the preceding stage, where

the input is weighted with a Gaussian function centred on the

recipient neuron. There are no connections within a stage, there is

no feedback, and there are no inhibitory connections.

Part b of the figure shows signal processing within a single

neuron. Synaptic inputs are summed and integrated over time to

produce a generator potential; each neuron therefore acts as a low-

pass temporal filter. For all cells other than photoreceptors and

bipolar cells, this potential is rectified to obtain action potential

rate. Figure 1c shows the function used to convert generator

potential to action potential rate. The shape and gradient are

taken directly from the work of Carandini and Ferster [24]. The

dots on the function indicate the generator potential in the absence

of a stimulus for three groups of cells. Sub-cortical stages are

assumed to have a generator potential greater than threshold in

order to account for their relatively high spontaneous impulse rates

[25]. It will be shown below that neurons in cortical stage 1 are

simple cells and neurons in later stages are more complex-like.

Given that simple cells have little or no spontaneous impulse rate

and that most complex cells have a non-zero rate [26], the stage 1

cells are assumed to be hyperpolarised relative to threshold and

later stages to be moderately depolarised.

Results

The most recognisable characteristic of a neuron in the visual

system is probably its receptive field, the map of its response to

small stimuli placed at a variety of visual field locations. We

therefore start by showing receptive fields for the basic model. We

then describe the other spatial characteristics of the model

(orientation selectivity, spatial frequency selectivity) and spatio-

temporal properties (direction selectivity). We finish by showing

the emergence of complex cells.

Receptive fields
The receptive field of a stage 1 cortical cell is shown in Figure 2c,

and the responses that contribute to it in parts a and b of the figure.

The stimulus was brief (40 ms) as shown at the top of the figure.

The grey square, also at the top of the figure, shows the 2u62u
patch of visual field modelled and the small light square within it

represents the stimulus. The visual field patch also shows the

middle of the receptive field of the on-centre (+) and off-centre (2)

channels (though not to scale). The left side of part a shows the

time course of neuronal responses in the on-channel; only the

time-varying component of the response is shown and the time

course of the photoreceptors, which hyperpolarise for light

increments, is inverted for ease of comparison with the other

responses. The peak response of each neuron is delayed relative to

that of its predecessor, as expected of a cascade of low-pass filters.

Responses of off-centre cells are shown on the right side of part a.

The on-responses are larger than the off-responses because the

stimulus location is closer to the on-channel receptive field. As a

consequence, the response of the cortical cell – chosen to be at the

middle of the visual field patch – is dominated by the on-channel

input, as shown in part b of the figure. The middle of the cortical

cell’s receptive field is shown in the visual field patch as a

numbered circle; the number represents the cortical stage. The

graph on the left shows cortical generator potential. The initial

value of the potential, at the left side of the graph, is less than

threshold (shown by the dashed line) as required by the iceberg effect

in geniculo-recipient cells [27]. Impulse rate, shown on the right, is

non-zero only when the generator potential rises above threshold.

Figure 2c shows the receptive field of the stage 1 cortical cell

whose time courses are presented in part b. Maps such as this have

been measured in the laboratory by presenting a spot stimulus at a

succession of random locations and averaging the stimuli that

precede impulses by a fixed delay [28]. We used a similar

approach, with a delay – 85 ms – equal to the interval between

stimulus onset and the peak of the response. Consistent with

previous modelling work [8,17], two subfields can be seen in the

resulting receptive field. One is produced by light increments and

is dominated by signals from the on-channel. The other is

produced by light decrements and derives primarily from the off-

channel. Compare this receptive field with that of the simple cell

reproduced from Martinez et al. [29], on the left of Figure 2e. Like

the simple cell, the model neuron has on- and off-subfields.

Figure 2d shows the receptive field of the neuron centrally

located in cortical stage 3 of the model. There is considerably

more overlap between the subfields here because the inputs from

the previous cortical stages are purely excitatory (having been

thresholded) and therefore disallow cancellation. One of the

defining features of a complex cell is substantial overlap between

on- and off-subfields. This is illustrated on the right of Figure 2e,

where the subfields recorded by Martinez et al. are co-localised

and have been separated for the purposes of illustration. It

therefore appears that neurons in cortical stage 1 of the model

represent simple cells and that neurons in stages 2 and 3 are more

complex-like. Further evidence for this segregation is provided

below.

There are two major deficiencies in the model receptive fields:

they are spatially too confined and insufficiently elongated

compared with those measured in the laboratory. The source of

these faults is clear: a lack of sub-cortical inputs. Whereas real

layer 4 neurons receive inputs from tens of geniculate relay cells

[30], model neurons in the first cortical stage receive inputs from

Functional Model for Primary Visual Cortex
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only two. We therefore added four sub-cortical channels to the

basic model, as shown in the visual field map of Figure 2f. The

resulting receptive field is substantially bigger and more elongated,

as required.

Orientation selectivity
The model was designed to reproduce several fundamental

properties of primary visual cortex, including sharp orientation

selectivity. It can be seen from the receptive field shown in

Figure 2c that the model must be at least coarsely orientation

selective. The reasoning is as follows. Each bar of a grating aligned

perpendicular to the subfields will produce inhibition from one

cortical subfield that will reduce the excitation produced by the

other subfield. The destructive interference will be less or absent

when the grating is aligned with the subfields. Can the model

quantitatively match the orientation tuning seen in the laboratory?

The blue tuning curve on the left of Figure 3a was computed by

drifting a grating across the receptive field of the cell at the middle

of cortical stage 1 with a variety of orientations, and finding the

mean impulse rate in each case. The neuron responds best to the

orientation aligned with the subfields, and less well for other

orientations.

The precision of orientation tuning is usually measured in the

laboratory by finding the half-width of the tuning curve at half its

Figure 2. Responses to spots, and receptive field maps. a. The grey square represents the simulated (2u62u) patch of visual field, and the plus
and minus signs indicate the receptive field centres of the on- and off-centre channels, respectively (though not to scale). The white spot in the visual
field represents a light square with a side length of 0.38u and with its centre 0.2u from the middle of the visual field patch, and the rectangular
waveform at left indicates its time course. The graphs on the left and right show responses to this spot for on- and off-centre cells, respectively. All
eight sub-cortical neurons are represented; only time-varying responses are shown, and the photoreceptor response on the left is inverted for easy
comparison with the other traces. Time courses in the later sub-cortical stages are delayed relative to earlier stages because of the low-pass filtering
action of all neurons. b. The resulting generator potential and impulse rate in the centrally located neuron of cortical stage 1 are shown on the left
and right, respectively. c. This shows the receptive field of the model neuron centrally located in the first cortical stage. To produce it we followed the
methods of Martinez et al. [29]. Light squares with a side of 0.38u and a duration of 40 ms were presented at the nodes of a 16|16 grid spanning the
visual field patch, and impulse rate was calculated at 85 ms after stimulus onset. Red contours connect these responses, and blue contours connect
the responses to dark spots. The colour bar at the right of the visual field gives the peak responses to the two spot polarities. d. The receptive field of
the centrally located neuron in cortical stage 3 computed by the same method as for the stage 1 cell. e. Simple and complex cell receptive fields
measured by Martinez et al., and reprinted by permission from Macmillan Publishers Ltd. The on- and off-subfields for the complex cell are spatially
coincident (they are separated here for ease of comparison). f. Unlike the simple cell, the receptive field shown in part c shows little elongation. We
rectified this fault by adding four more sub-cortical channels, as shown in the accompanying visual field map. Spot width here is 0.8u.
doi:10.1371/journal.pone.0034466.g002
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height. The black symbols on the right of Figure 3a show the

frequency histogram of half-width over a sample of simple cells

[1]. Most neurons have a half-width less than 30u. To compare the

model with these results we calculated the tuning curve for all

active neurons in cortical stage 1 (see the Methods for our

definition of active). Neurons in the basic model have half-widths

clustered around 50u, a value substantially larger than for their

empirical counterparts. The poor tuning in the model is due to the

limitation to two sub-cortical channels. We therefore recalculated

these data using the six-channel model. The results, shown in

green, reveal a narrower tuning curve and reduced bandwidths on

the left and right side, respectively, of Figure 3a.

Spatial frequency selectivity
Another fundamental cortical property is selectivity for spatial

frequency. Empirically, this property is examined by drifting an

optimally oriented grating across the receptive field at a variety of

spatial frequencies. The usual response measure is the fundamen-

tal Fourier amplitude of the impulse rate. The typical result [2], is

that the neuron has an optimal spatial frequency, and that the

response falls away rapidly on either side of the optimal value.

Neurons in the first cortical stage of the basic model produce a

similar result, as illustrated by the blue curve on the left side of

Figure 3b. The existence of an optimal value is easily understood.

When the light bar of the grating is over the on-subfield and the

dark bar is simultaneously over the off-subfield the two phases of

the grating contribute constructively in modulating the cell’s

impulse rate.

The tightness of tuning to spatial frequency can be assessed

from the bandwidth of the tuning curve at half height. Data from

one laboratory [2] are shown by the black symbols on the right of

Figure 3b. They show the frequency histogram of tuning

bandwidth for a sample of simple cells. Neurons are clustered

around a bandwidth a little larger than 1 octave. The

corresponding histogram for active neurons in the first cortical

stage of the basic model is shown in blue. The model population is

also tuned for spatial frequency but less so than for real neurons.

This poorer tuning is due to the lack of a surround mechanism. In

particular, very low spatial frequencies produce substantial

surround signals that antagonise centre signals [31]. To apply

the same effect here we added a surround mechanism to the basic

model. The results, shown in green, produce a narrower tuning

curve on the left side of Figure 3b and bandwidths close to

empirical values, on the right.

Direction selectivity: moving stimuli
One of the key properties of neurons in primary visual cortex is

direction selectivity: cells typically respond more strongly to a

stimulus moved in one direction than in the opposite direction [5].

The direction of stimulus movement to which a cell responds best

is called its preferred direction and the opposite direction will be

referred to here as anti-preferred. Cortical cells in the basic model

are direction selective, as shown in the right part of Figure 4b. Part

a of the figure shows geniculate responses, to indicate how the

selectivity arises. An essential requirement for direction selectivity

is a temporal asymmetry between the two sub-cortical channels:

the network must respond differently for motions in the two

directions. This asymmetry is achieved in the model by assuming

that one channel processes signals faster than does the other

channel. In keeping with recent physiological evidence [16], the

off-centre geniculate cells are assumed faster that their on-centre

counterparts, with a latency difference of several milliseconds in

the leading edge of the impulse response.

Part a of the figure shows the generator potential in both

geniculate cells of the basic model for a single cycle of the grating

stimulus. To better compare these two signals, the off-signal is

inverted and only the time-varying signals are shown. The graph

at left shows that when the grating is moving in the preferred

direction the off-signal leads the on-signal. The graph at right, for

stimulus motion in the anti-preferred direction, shows a much

smaller phase difference between the two signals. Thus the sum of

the on- and off-signals, which approximates the weighted sum

formed by a cell in the first cortical stage, is smaller at right that at

left. The reason for the directional difference is that for motion in

Figure 3. Spatial selectivity. a. Orientation selectivity in the model
was tested by drifting a grating across the visual field with a variety of
orientations. The methods were chosen to mimic those used by Gizzi et
al. [1]: spatial frequency was optimal, 0.49 cycles/deg. Mean impulse
rate for the cell centrally located in cortical stage 1 is shown at left in
blue. The precision of orientation selectivity was found by measuring
the half-width of this tuning curve at half-height. Half-width of all active
stage 1 cells is shown by the blue frequency histogram at right, and
compared with the data of Gizzi et al., shown in black. Clearly, the basic
model has much poorer selectivity than that measured in the
laboratory. This mismatch is partially remedied by using the six-channel
model, as shown by the green curves. b. The basic model’s spatial
frequency selectivity was tested using the same methods as Movshon
et al. [2], and is shown in blue. The tuning curve at left was computed
by drifting a grating with optimal orientation, and a range of spatial
frequencies. The response in the centrally located cell in cortical stage 1
was measured as the elevation of mean rate resulting from the stimulus.
The half-width at half-height of all active stage 1 cells is shown as a
frequency histogram at right, and compared with the data of Movshon
et al., given by the black curve. The mismatch between the two
histograms was largely removed by adding a surround mechanism to
the sub-cortical channels, as shown by the green curves.
doi:10.1371/journal.pone.0034466.g003
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the anti-preferred direction, the time taken for the stimulus to

travel from the middle of the on-centre receptive field to the

middle of the off-centre field is almost equal to the extra signal-

processing time in the on-channel relative to the off-channel.

Cancellation of the two inputs to the cortical cell is therefore

almost complete, as shown by the sum curve.

Part b of the figure shows responses in the first-stage cortical cell

whose receptive field lies midway between those of the sub-cortical

channels. The generator potential in this cell is the result of

weighting, summing, hyperpolarising, and low-pass filtering the

curves in part a. The generator potential amplitude for stimulus

motion in the preferred direction is greater than that for the anti-

preferred direction, but not markedly so. The difference is much

clearer after thresholding, to form the impulse rate on the right

side of part b. Here the response for the preferred direction is

much greater than for the anti-preferred direction. This is largely

due to the iceberg effect, a phenomenon well documented from

intracellular recordings of cortical cells [24].

Figure 4b shows the directionally selective response of a single

cortical neuron in the model. To be more useful, however, the

model should reproduce the observed diversity of directionality

over a population of neurons. The extent to which a neuron is

direction selective is typically defined by its direction selectivity

index, a quantity with a value of zero when stimulus direction does

not alter response, and one for the most direction-selective

neurons. The direction selectivity index is calculated by drifting a

grating across the receptive field and finding the spatial frequency

and direction that maximise the fundamental Fourier component

of the impulse rate. This preferred response is compared with the

fundamental component when the same grating is drifted in the

anti-preferred direction.

The frequency histogram of the direction selectivity index for

cortical stage 1 in the basic model is shown in Figure 4c; the indices

computed from membrane potential and impulse rate are shown

on the left and right, respectively. All neurons in the basic model

fall into a single bin, shown by the upward arrow. Compare this

result with the histograms recorded by Jagadeesh et al. [32] on the

left and Peterson et al. [3] on the right, and shown in black. Model

cells are concentrated at the right end of the empirical data: the

model is too direction selective. To make the direction selectivity

Figure 4. Direction selectivity: drifting gratings. a. Gratings with optimal orientation and spatial frequency were drifted across the visual field
in both the preferred and anti-preferred directions. Geniculate generator potential in the on- and off-centre neurons is shown, along with their sum.
Only time varying signals are shown and the off-centre signal is inverted, for ease of comparison. The on- and off-signals are closer in the anti-
preferred case, resulting in a smaller sum. b. Generator potential and impulse rate are shown for the centrally located neuron in cortical stage 1 on
the left and right, respectively. After thresholding, the anti-preferred response is much smaller than the preferred. c. Population responses in the
model were compared with empirical responses by computing the direction selectivity index. Indices obtained from the generator potential are
shown on the left, and are compared with the empirical data in Figure 9 of Jagadeesh et al. [32]. These authors calculated the index as
apref{aanti

� ��
aprefzaanti

� �
where apref and aanti are the fundamental Fourier amplitudes for the preferred and anti-preferred directions, respectively;

we follow suit. Indices obtained from impulse rate are shown on the right, and compared with those of Peterson et al. [3], who used
apref{aanti

� ��
apref . The basic model is represented by the blue vertical arrows: all neurons fall into the same histogram bin, to the right of the

empirical data. To improve the match, the model was rerun with a range of delays between the on- and off-channels. The resulting histograms,
shown in green, are closer to their empirical counterparts.
doi:10.1371/journal.pone.0034466.g004

Functional Model for Primary Visual Cortex

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e34466



more realistic we reduced the asymmetry between the two sub-

cortical channels by decreasing their latency difference. The logic

behind our procedure is as follows. The empirical data in Figure 4c

come from many cells recorded across multiple cortical columns. It

is to be expected that latency differences will vary from column to

column. Correspondingly, we ran the basic model ten times, each

time with a new value of the time constant difference between the

two sub-cortical channels. In particular, we used differences

uniformly distributed between 0 and 2 ms. The result is shown in

green. The frequency histograms in this multi-column model more

closely match the empirical data.

Direction selectivity: stationary stimuli
Direction selectivity has also been investigated using stationary

stimuli. Figure 5a provides an example. The plot on the left shows

the receptive field for which the horizontal axis gives the location

of a stationary bar in the receptive field and the vertical axis gives

time from the onset of the bar. The bar is optimally oriented and

has a duration of 40 ms, matching the duration used by DeAngelis

et al. [33]. The model’s response can be understood by visualising

a vertical line through the zero spatial location. The response to a

dark bar (blue contours) appears earlier than that to a light bar

(red contours) because of the faster processing in the off-channel.

To the right of this line the map is dominated by responses to dark

bars, because these preferentially stimulate the off-channel, and to

the left by light bars, for which the on-channel dominates. The net

effect is a set of contours slanted from lower left to upper right.

The six-channel model is used here because it produces more

elongated contours than does the basic model. The same slanting

is seen in the empirical data on the right of Figure 5a [33], and is a

signature of direction-selective neurons. The model therefore

again reproduces the basic elements of laboratory observations.

Another consequence of the asymmetry of on- and off-channels

should be noted from Figure 5a. The colour bar on the right side

of the model plot shows the colour coding of impulse rate. It is

clear from the colour bar that the response to dark bars is larger

than that to light bars. This corresponds to the empirical finding

that simple cells close to the central area are off-dominated [34].

Off-domination in the model occurs because the response in the

off-centre channel is faster and therefore has a higher peak than

that in the on-centre channel. The same effect is seen in the

receptive fields plotted in Figure 2.

Stationary gratings have also been used to study direction

selectivity. The idea here is that if the signal-processing is linear,

the response to a moving stimulus should be predictable from the

response to stationary stimuli placed at a series of locations across

the receptive field [35,36]. The filled circles in Figure 5b show the

results of such an experiment [37]. A simple cell was stimulated

with a stationary contrast-reversing grating. The horizontal axis

gives the spatial phase of the grating and the left and right vertical

axes give the amplitude and phase, respectively, of the response’s

fundamental Fourier component. The blue lines provide the same

data for the basic model. The model was not adjusted to match the

empirical data (apart from using a high grating contrast) and yet

the model’s temporal phase data match the laboratory data well.

Also, like the simple cell, the model’s amplitude data is always

greater than zero and therefore shows no null.

The temporal phase on the right of Figure 5b advances with the

grating’s spatial phase. This is another signature of direction

selectivity [35,36] and a strong predictor of the direction to which

a cell responds best: the preferred direction of a moving stimulus is

that which ‘‘activates receptive-field positions with progressively

shorter latencies’’ [37]. This is also true of the model. Increased

spatial phase displaces a grating away from the off-centre input

and towards the on-centre input, the preferred direction. This is a

counter-intuitive finding in that this direction of displacement

shifts the peak of the grating away from the low latency (off-) input

and towards the high latency (on-) input. The mechanism

underlying this result is shown in Figure 5c. Grating responses

are shown on a vector diagram, where the length of a vector

represents the (fundamental Fourier) amplitude in response to a

contrast-reversing grating, and the direction of the vector

represents temporal phase. The response of the on-input is

arbitrarily pointed rightward and the off-response is almost 180u
out of phase but has a slight phase advance representing its shorter

processing time. The sum of these two vectors gives the synaptic

drive of a cortical cell that weights these two inputs equally. When

the grating is displaced in the preferred direction it activates the

on-input more and the off-input less, producing a phase advance

in both the sum vector and the cortical cell.

Complex-like responses
Hubel and Wiesel [5] categorised neurons in primary visual

cortex into simple and complex classes. One of the criteria for this

categorisation was the form of the receptive field. Simple cells had

subfields in which light increments evoked a response but

decrements did not. These cells also had subfields in which a

light decrement was required for a response, and on- and off-

subfields were spatially separate. By contrast, a response could be

obtained to both light on and off at each location in the complex

cell receptive field. We have already shown in Figure 2 that model

neurons at least partially replicate this behaviour. Cells in cortical

stage 1 have clearly separated on- and off-subfields whereas cells in

stage 2 (not shown) and stage 3 have partially overlapped subfields.

Cells in the first cortical stage are therefore simple in character,

corresponding to the finding that cortical cells connected

monosynaptically to the geniculate are simple [38]. Cells in stages

2 and 3 are more complex-like.

The use of drifting gratings provides another method for

separating simple from complex cells [35]. Simple cells respond to

a drifting grating with a modulated impulse rate: the rate rises and

falls as each light bar crosses the receptive field. Complex cells

respond with an increased impulse rate that is less modulated with

time. Two examples from Dean and Tolhurst’s work [4] are

illustrated on the right of Figure 6a. Model neurons, illustrated at

left, show similar behaviour. The stage 1 cortical cell fires only

when the geniculate input exceeds threshold, and the cortical

impulse rate is therefore strongly modulated in time. The third-

stage cell has an unmodulated component in its impulse rate, for

two reasons: it receives only rectified inputs from earlier stages,

and the static polarisation in stages 2 and 3 is assumed to be

depolarising.

These observations can be used to classify a neuron as simple or

complex. Fourier analysis of the response to a drifting grating

yields a fundamental component and a mean rate that quantify the

modulated and unmodulated components, respectively. The

modulation ratio is obtained by dividing the fundamental

amplitude by the mean rate. Dean and Tolhurst [4] showed that

simple and complex cells usually have a modulation ratio greater

than and less than 1, respectively. The black curve in Figure 6b

shows the frequency histogram of the modulation ratio compiled

by these authors. The same graph also shows, in blue, the

frequency histogram for all cortical stages in the basic model.

There are two modes in the model’s histogram, with the mode on

the right due to cells in the first cortical stage. These cells have a

modulation ratio greater than 1, reinforcing their classification as

simple. Stage 2 and 3 are more complex-like in that their

modulation ratios are close to or less than 1.
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The model histogram has higher peaks than its empirical

counterpart. Given that the basic model assumes no sub-cortical

rectification of impulse rate, we investigated whether the inclusion

of sub-cortical rectification could reduce this discrepancy. The

published values described in the Methods indicate that geniculate

cell centre mechanisms have a maximum contrast sensitivity of

450 Hz/contrast-unit. The model predicts that stimulation at the

optimal spatial frequency, and surround antagonism, will lower

this value to 280 Hz/contrast-unit. Given that X-type relay cells in

the geniculate have a spontaneous impulse rate averaging 14 Hz

[25], a grating contrast of greater than 0.05 will result in

rectification. Laboratory studies almost always use a grating

contrast greater than this value. We therefore assumed multiple

columns, and that these columns differed – through variations in

the spontaneous activity of their geniculate inputs – in the extent to

which their inputs were rectified; spontaneous activity varied from

14 Hz up to a value which prevented rectification. Averaging

modulation ratio across all columns produced the green curve,

which is in better agreement with the empirical data.

Discussion

Hubel and Wiesel [5] described two highly influential ideas,

namely, that cortical orientation selectivity derives from aligned

receptive fields in the lateral geniculate nucleus, and that complex

cells receive their inputs from simple cells. The model described

here goes beyond these ideas, and more recent modelling work, in

several ways.

N Our model provides a mechanism for direction selectivity that

is firmly based on empirical observations.

N We reproduce four fundamental properties – orientation

selectivity, spatial frequency selectivity, direction selectivity,

and the emergence of complex-like cells – in a single model.

N The model also shows that neurons sampled within and

between columns possess these properties to varying extents,

and that the model’s population statistics largely match those

measured in the laboratory.

N We show that dark stimuli tend to produce larger responses

than do light stimuli, and that this off-domination follows

Figure 5. Direction selectivity: stationary stimuli. a. The spatiotemporal receptive field was calculated for the centrally located neuron in
cortical stage 1 by presenting narrow bars of light and dark at a variety of locations, as illustrated in the visual field maps. Bars were 0.25u wide and
were presented at 16 locations evenly distributed across the visual field patch. Bar duration was 40 ms. Contours connect responses to stimuli of the
same polarity. The methods were chosen to match those used by DeAngelis et al. [33], whose results are shown at right (reprinted by permission
from The American Physiological Society). The model produces slanted contours, as in the empirical data; the six-channel model was used because it
yields elongated contours. b. The horizontal axis shows the spatial phase of a stationary grating whose contrast was varied sinusoidally in time;
orientation and spatial frequency were optimal. The fundamental Fourier component in the resulting impulse rate was calculated, and its amplitude
and temporal phase are shown on the left and right, respectively. Results from the basic model, shown in blue, are compared with those from the cell
in Figure 4A and B of Murthy et al. [37]. Grating contrast in the model was set at 1 to obtain the best match in amplitude data. c. As shown in panel b,
the model’s response phase advances as the grating is shifted away from the off-centre input and towards the on-centre input. The vector diagram
explains this finding. Vector length and angle give response amplitude and phase, respectively. Shifting the grating has opposite effects on the
amplitude of the off- and on-centre inputs, advancing the phase of their sum. The sum represents the synaptic drive to the first-stage cortical cell at
the middle of the receptive field patch, and the phase of this cell’s impulse rate therefore advances as the grating shifts.
doi:10.1371/journal.pone.0034466.g005
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naturally from the faster responses of off-centre geniculate

inputs to cortex.

In what follows we discuss the geniculocortical synapse,

direction selectivity, the role of inhibition in the model, the idea

that simple cell responses are derivatives of their inputs, and sub-

cortical connections.

Geniculocortical synapse
The pivotal piece of circuitry in the model is the geniculocortical

synapse. It is at this synapse that the model’s orientation and

direction selectivity both arise. Further, both of these properties

depend on the convergence of on-centre and off-centre geniculate

axons onto the same cortical cells. There are two important pieces

of evidence supporting this assumption of convergence. First,

Wässle et al. [19] showed that the anatomical substrate is

available: the nearest neighbour of an X-type ganglion cell is

nearly always of the opposite sign. Second, Reid and Alonso [38]

showed that where an on-centre geniculate cell connects

monosynaptically to a cortical cell, the geniculate centre

mechanism and cortical on-subfield are almost invariably co-

localised. Off-centre geniculate centre mechanisms and cortical

off-subfields are similarly co-localised. The one piece of evidence

remaining, then, is a direct demonstration that on- and off-centre

geniculate cells project to the same cortical cell. In a tour de force

of experimental technique, two laboratories [20,39] have provided

such evidence for simple cells.

Direction selectivity
Early models for motion sensitivity assumed a quadrature

relationship between the input sensors [11,12]. For a 2 Hz

stimulus, this requires that the output of one sensor be delayed by

125 ms relative to the other. Saul and Humphrey [13], who

proposed that lagged and non-lagged geniculate cells could

provide the sub-cortical substrate for direction selectivity, found

that lagged cell latencies to grating stimuli averaged 70 ms longer

than non-lagged cell latencies. By contrast, recent data shows that

the on-centre and off-centre inputs to a cortical column differ in

their arrival time by 3–6 ms [16]. We show here that the

assumption of a latency difference of a few milliseconds is sufficient

to generate strong direction selectivity in a simple feed-forward

model. It seems, therefore, that future work on direction selectivity

should consider much smaller latency differences than previously

assumed.

Inhibition
Inhibitory connections are not clearly evident in the model

circuit, but inhibition plays a crucial role at two locations. The first

is the sign-inverting synapse between photoreceptors and on-

centre bipolar cells. It is this sign inversion that provides for the

subsequent cancellation between on- and off-centre signals at

cortical stage 1. The second role of inhibition is in hyperpolarising

the cells in the same stage. It is this hyperpolarisation that sharpens

selectivity through the iceberg effect. One piece of evidence for the

assumed hyperpolarisation is that simple cells have little or no

spontaneous activity [26]. Indeed, when a grating is used as

stimulus, grating contrast has to be raised to a threshold level

before any response is evoked from a simple cell [40]. Evidence

that is more direct comes from intracellular recordings of simple

cells, which show a hyperpolarised membrane potential in the

absence of a stimulus [24]. It seems highly likely that this

hyperpolarisation results from intracortical inhibition. Given the

role of this inhibition in sharpening selectivity, it is not surprising

that the blockade of inhibition results in a reduction of orientation

selectivity [41].

There is a weakness in the model that we have not yet discussed.

Orientation selectivity in real cortical neurons is largely contrast-

invariant: increases in grating contrast do not markedly alter the

tuning to orientation [42]. The same cannot be said of the model

because increasing contrast will put more of the response above

threshold and thereby broaden tuning. The addition of dynamic

inhibition may remedy this fault. In particular, adding lateral

inhibitory connections within each stage would introduce a

hyperpolarisation that increases with stimulus contrast. This

would help to preserve the iceberg effect.

Figure 6. Complex-like responses. a. A grating of optimal
orientation and spatial frequency, and a contrast of 0.25, was drifted
across the receptive field patch. Impulse rate was computed for the
centrally located neuron in cortical stages 1 and 3. Response measures
were chosen to match those of Dean and Tolhurst [4] whose
measurements from a simple cell and complex cell are shown at right
(reprinted by permission from John Wiley and Sons Ltd.). The reduced
impulse rate modulation in the stage 3 cell is due to rectification in
previous stages, and static depolarisation. b. For each cell in their
sample, Dean and Tolhurst calculated a modulation ratio equal to the
Fourier fundamental amplitude of impulse rate divided by the mean
rate. Their frequency histogram is shown in black. We have calculated
the same ratio across all active cells in all three cortical stages of the
basic model, and the resulting histogram is shown in blue. Stage 1
contributes the peak on the right and stages 2 and 3 together give the
central peak. As in the laboratory, complex-like cells have a modulation
rate close to or less than 1. A closer match between model and
laboratory was obtained by allowing rectified geniculate impulse rates,
as shown by the green histogram.
doi:10.1371/journal.pone.0034466.g006
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Cortex as differentiator
The assumption that on- and off-centre geniculate afferents

converge onto the same cortical cell has a fascinating corollary,

illustrated in Figure 7. The cortical cell adds the two opposite-

signed inputs and is therefore effectively differencing similar spatial

profiles. It is estimated in the Methods that the distance between

neighbouring on- and off-centre receptive fields is 0.1u at the

eccentricity of interest (11u), as shown on the left of part a of the

figure. This is substantially less than the centre mechanism radius

of a geniculate afferent, r~0:40. Accordingly, the cortical

receptive field spatial profile is the difference between similar

spatial profiles separated by a relatively small distance, and is

therefore approximately proportional to the spatial derivative of a

single geniculate centre mechanism. The black curves on the right

show the sum of the on- and off-inputs, and the (centred)

derivative of one of them. The two curves overlie each other. The

blue curve, showing the membrane potential of the first-stage

cortical cell briefly stimulated with light bars (as in Figure 5a),

matches well with the black curves. The centre mechanism is

assumed to have a Gaussian profile; computing its derivative

shows that the cortical cell’s on- and off-subfields are separated byffiffiffi
2
p

r~0:570, as shown. This calculation helps to explain why the

subfield separation in the cortex is substantially larger than the

spacing of neighbouring retinal cells.

This idea extends to the temporal domain. The impulse

responses of the on-centre and off-centre geniculate cells are

plotted at the left of Figure 7b. These responses are gamma

densities with shape factor z~4 because they result from a cascade

of four first-order low-pass filters. The on- and off-centre functions

have time constants of 11 and 9 ms, respectively, and because of

the closeness of these values the difference between them can be

approximated by differentiating one of them with respect to time

constant. The right side shows, in black, the sum of the two

geniculate inputs and the derivative of a gamma density with a

time constant midway between that of the two inputs, t~10 ms.

The distance between the trough and peak (calculated by

differentiating with respect to time) is 2
ffiffiffi
z
p

t~40 ms.

Also shown, in blue, is the membrane potential of the first-stage

cortical cell at the middle of the visual field patch. This

approximation to the basic model’s impulse response was

generated by presenting an optimally oriented bar very briefly at

the middle of the patch. This response is similar in shape to the

derivative function but is slower because it gives the cell’s output

rather that its synaptic drive, and therefore includes extra low-pass

temporal filtering. These results together explain a counter-

intuitive result. Whereas the off-input to cortex precedes the on-

input by only a few milliseconds, the off-peak in the spatiotemporal

receptive field (Figure 5a) leads the on-peak by tens of milliseconds.

Sub-cortical connections
According to the calculations in the Methods, there are over

200 X-type ganglion cells in the 2u62u visual field patch used here.

The connection of just two (or six) of those cells to the first cortical

stage of the model is therefore highly selective, a selection that will

enhance orientation selectivity in cortex. Alonso et al. [30] have

shown that layer 4 cells connect to only about one third of the

geniculate relay cells available to them. Given the narrow

orientation of these cells, it is natural to assume that the choice

of connection is that which enhances orientation selectivity. How

is the choice made? One possibility is the following. During the

developmental period, the first two relay cells making a connection

are likely to be driven by nearest neighbours in the retina, which

almost certainly have centres of opposite sign. These two

connections will establish broad orientation tuning. Other retinal

neighbours will then attempt to contact the cortical cell via a relay

cell. If Hebbian principles operate they will only succeed if their

own firing enhances impulse rate in the cortical target. Only

connections that enhance the existing orientation tuning will

survive.

The receptive field of a cortical stage 3 neuron, shown in

Figure 2d, indicates that the on- and off-subfields only partially

overlap. This fails to match the complete overlap in the complex

cell subfields shown in part e of the figure. The reason for the

Figure 7. Approximating cortical responses with derivatives. a.
The receptive field spatial profiles for the two sub-cortical channels in
the basic model are shown on the left. The distance between peaks is
set equal to the distance between neighbouring on- and off-centre X-
type ganglion cells, and the off-centre signal is inverted. The graph on
the right shows the sum of the two sub-cortical profiles and the spatial
derivative of one of them (shifted so that the zero-crossing is centred).
The sum and derivative are indistinguishable. The response of the
centrally located neuron in cortical stage 1 of the basic model is also
shown. It was calculated with the same bar stimulus used in Figure 5a,
and the response is the generator potential 70 ms after bar onset. There
is a good match between all three curves. b. The time courses on the
left are impulse responses for the on- and off-centre geniculate cells in
the basic model, with the off-centre curve inverted for ease of
comparison. The sum of the on- and off-centre responses is shown in
black on the right, along with the derivative of one of the responses
(computed with the mean of the on- and off-centre time constants); the
sum and derivative are indistinguishable. Also shown, in blue, is the
time course of the membrane potential in the first-stage cortical cell at
the middle of the receptive field patch. Its impulse response was
calculated by delivering a very brief bar of light (width = 0.25u) at the
middle of the patch. The black lines give the synaptic drive to the
cortical cell and the blue line is relatively delayed because the cortical
cell acts as a low-pass filter.
doi:10.1371/journal.pone.0034466.g007
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incomplete overlap in the model is clear: on-centre sub-cortical

inputs are segregated from off-centre inputs, regardless of the

number of channels. It has recently been shown, by contrast, that

on-centre inputs to a given cortical column are dispersed among

the off-centre inputs [15]. It would be of considerable interest to

discover whether the Hebbian process described above can

produce intermixing of on- and off-inputs in the model, and

complete overlap of stage 3 subfields.

Methods

Model equations
Each neuron in the model is represented by a single nonlinear

differential equation, and time courses in the model are obtained

by simultaneous numerical integration of the equations for all

neurons. We here derive the equations for the general model, that

is, the model that includes multiple sub-cortical channels, surround

mechanisms, and sub-cortical rectification. The pivotal variable in

the model is the membrane potential at the initial segment of a

neuron’s axon. This is the potential that generates action

potentials and is therefore referred to here as the generator

potential, p. The growth rate of the generator potential depends on

the postsynaptic potentials, vk, from multiple synapses driving the

neuron. The contribution of each postsynaptic potential is

weighted by a gain gk that declines with the distance between

the receptive fields of the neuron and its presynaptic driver. The

generator potential growth rate also depends on a static

polarisation, ps, that is independent of the visual stimulus. The

static polarisation is responsible, for example, for the high

spontaneous impulse rate in sub-cortical neurons and for the

hyperpolarisation that produces the iceberg effect [27] in cortical

simple cells. Quantitatively, the time derivative of the generator

potential is

t
dp

dt
~
X

k

gkvkzps{p ð1Þ

The last term in this equation ensures that generator potential

grows with a time constant t; the equation therefore guarantees

that the neuron acts as a low-pass filter. The conversion from

generator potential, p, to action potential rate, a, is shown in

Figure 1c and is taken from the work of Carandini and Ferster

[24]. It takes the form of a rectifier,

a~½grectp�z

~
grectp p§0

0 pv0

( )
ð2Þ

where p is defined to be the difference between membrane

potential and action potential threshold, and grect is the gain of the

generator function.

Assume that Equation 1 applies to a neuron in stage z of the

model. We need to relate it to generator potentials in the previous

stage, z{1, if time courses are to be computed. We make the

simplest assumption: postsynaptic potential is proportional to

impulse rate in the presynaptic neuron, and the conversion

function is the inverse of that in Equation 2 (any difference in the

proportionality constants at the initial segment and the synapse

can be absorbed into the gain gk). The conversion from generator

potential in a neuron at stage z{1 to postsynaptic potential in the

target neuron at stage z is then given by

v(z)~½p(z{1)�z ð3Þ

Equation 1 then becomes

t
dp(z)

dt
~
X

k

gk½pk(z{1)�zzps(z){p(z) ð4Þ

We generalise this equation by including the dependence on time,

t, and visual field location, (x,y), and by showing the sum term as a

spatial convolution:

t(x,y,z)
dp(t,x,y,z)

dt
~g(x,y,z) � ½p(t,x,y,z{1)�z

zps(z){p(t,x,y,z)

ð5Þ

where

g(x,y,z) � ½p(t,x,y,z{1)�z~

ð?
w~{?

ð?
u~{?

g(x{u,y{w,z)½p(t,u,w,z{1)�zdudw
ð6Þ

This equation needs three modifications for the sub-cortical stages

of the model. First, the driver at the first stage is the visual

stimulus, s(t,x,y), not a presynaptic neuron. Second, the sign

n(x,y), of the driver depends on whether the neuron being

modelled is on-centre or off-centre. Photoreceptors hyperpolarise

to light, and the first synapse for the on-centre channel is sign

inverting. For computational simplicity we assume that the

photoreceptors driving on-centre channels depolarise to light.

The sign of the first term on the right of Equation 5 is then positive

for on-centre and negative for off-centre channels. Third, the

neurons presynaptic to bipolar and ganglion cells do not produce

action potentials, so there is no rectification. Thus:

t(x,y,z)
dp(t,x,y,z)

dt
~

n(x,y)g(x,y,z) � s(t,x,y)zps(z){p(t,x,y,z) z~1

g(x,y,z) � p(t,x,y,z{1)zps(z){p(t,x,y,z) z~2,3

( ) ð7Þ

The gain function, g, takes several forms depending on the stage.

For the sub-cortical stages it includes centre-surround antagonism,

implemented as a difference of Gaussians. For computational

simplicity, all sub-cortical spatial convergence is collapsed into the

first stage:

g(x,y,z)~

gcen

pr2
cen

e{(x2zy2)=r2
cen{

gsur

pr2
sur

e{(x2zy2)=r2
sur z~1

d(x)d(y) z~2,3,4

8<
:

9=
;

ð8Þ

where r stands for radius, and d is the Dirac delta function. For

cortical stages, the gain function is purely Gaussian:

g(x,y,z)~
gGCe{(x2zy2)=r

2
cort z~5

gcort

pr2
cort

e{(x2zy2)=r2
cort z~6,7

8><
>:

9>=
>; ð9Þ
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where GC stands for geniculocortical. Substitution of Equation 8

into Equations 5 and 7 results in the following simplification:

t(x,y,z)
dp(t,x,y,z)

dt
~

p(t,x,y,z{1)zps(z){p(t,x,y,z) z~2,3

½p(t,x,y,z{1)�zzps(z){p(t,x,y,z) z~4

( ) ð10Þ

The sub-cortical pathways can be divided into channels. Assume

that there are m channels. The ith channel (i~1,2,:::,m) is defined

by the location of the middle of its receptive field, (xi,yi), its sign,

ni~n(xi,yi), and its time constant:

ti~
ton on-center channel

toff off-center channel

� �
ð11Þ

It is convenient, then, to recast the equations for the sub-cortical

stages using subscripts rather than function arguments:

ti
dpi(t,z)

dt
~

nig(xi,yi,z) � s(t,xi,yi,z)zps(z){pi(t,z) z~1

pi(t,z{1)zps(z){pi(t,z) z~2,3

½pi(t,z{1)�zzps(z){pi(t,z) z~4

8>><
>>:

9>>=
>>;

ð12Þ

The input to the cortex is then spatially discrete:

p(t,x,y,4)~
Xm

i~1

pi(t,4)d(x{xi)d(y{yi) ð13Þ

A further simplification can be achieved by considering sub-

cortical resting potentials. We assume that these potentials are

above threshold, in order to produce the spontaneous impulse rate

observed in ganglion and geniculate cells [25], and that the resting

potentials are the same for all stages. Resting potential is calculated

by setting the stimulus and time derivatives to zero. Solution of

Equation 12 then yields

ps(z)~0 z~2,3,4 ð14Þ

Denoting the cortical time constant as tcort, the model’s defining

equations can then be stated in their final form:

ti
dpi(t,z)

dt
~

nig(xi,yi,z) � s(t,xi,yi,z)zps(z){pi(t,z) z~1

pi(t,z{1){pi(t,z) z~2,3

½pi(t,z{1)�z{pi(t,z) z~4

8>><
>>:

9>>=
>>;

tcort
dp(t,x,y,z)

dt
~

g(x,y,z) � ½p(t,x,y,z{1)�zzps(z){p(t,x,y,z) z~5,6,7

ð15Þ

Resting activity
Resting activity in a neuron is important because it can

determine whether signals passing through the neuron are

rectified. Spontaneous impulse rate in the model is determined,

in part, by the static polarisation, ps. We assign the following

values to this parameter:

ps(z)~

pphoto z~1

0 z~2,3,4

phyp z~5

pdep z~6

0 z~7

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð16Þ

Resting activity can be determined by setting both the stimulus

and the derivatives to zero. From Equation 15, resting potential in

the first five stages is

pi(?,z)~pphoto z~1,2,3,4

p(?,x,y,z)~

gGCpphoto

P
i

e{((x{xi )
2z(y{yi )

2)=r2
cortzphyp(x,y)

z~5
ð17Þ

The static hyperpolarisation phyp in stage 5 is set sufficiently

negative that the resting potential is also negative. This ensures

that cells in that stage, the first cortical stage, have no spontaneous

impulse rate, in keeping with most simple cells [26]. Thus, from

Equation 15,

p(?,x,y,z)~
pdep z~6

gcortpdep z~7

� �
ð18Þ

From Equation 2, the spontaneous impulse rate in those cells that

produce action potentials is

a(?,x,y,z)~

grectpphoto z~3,4

0 z~5

grectpdep z~6

gcortgrectpdep z~7

8>>><
>>>:

9>>>=
>>>;

ð19Þ

Parameter settings
There follows a description of the model parameters and how

they were set. Given the variability of the measurements, only two

significant places are retained. Table 1 provides a glossary of the

parameters and their values.

Spatial parameters
Location and size of visual field patch. For reasons

explained below, we assume a visual field patch centred on the

horizontal meridian, and 11u from the central area. The size,

2u62u, is intended to span a substantial fraction of a typical

cortical receptive field.

Retinal magnification factor. We use the value calculated

by Hughes [43], 0.20 mm/deg. The retinal patch therefore had an

eccentricity of 1160.20 = 2.2 mm.

Concentration of X-type ganglion cells. We use the data of

Stein et al. [44] whose method resulted in no detectable

concentration difference between wet and dry retinal samples.

At 2.2 mm eccentricity the mean of nasal and temporal b cell

concentrations was 1275 cells/mm2. Given that b cells are the

morphological correlates of X-type ganglion cells, the

concentration of X cells is then 12756(0.20)2 = 51 cells/deg2.
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Stein et al. made their measurements along the nasotemporal axis,

and we have correspondingly placed our retinal patch on the

horizontal meridian.

Distance between X-type ganglion cells. Wässle et al. [19]

examined the packing of same-sign b cells. They found a

continuum between square and hexagonal arrays. We make the

simpler assumption, a square array, and also assume that there are

equal numbers of on- and off-centre X cells. The spacing of same-

sign X cells is then
ffiffiffiffiffiffiffiffiffiffi
2=51

p
~0:200.

Distance between opposite-sign X-type ganglion

cells. The most relevant data come from Wässle et al. [19],

who measured nearest-neighbour distances for both on- and off-

centre b cells. The mean distance between nearest neighbours was

43 mm, and for nearest neighbours of the same sign the distance

was 88 mm, with a ratio of 0.49. We assume that nearest

neighbours are of opposite sign and that the same ratio holds at

the eccentricity of interest here. Multiplying the ratio by the mean

spacing of same-sign cells, obtained above, yields a distance

between opposite-sign X cells of 0:49|0:20~0:100.
Size of X-type lateral geniculate cells. These are taken

from the work of Saul and Humphrey [13]. The mean eccentricity

for their sample was 11u, which is the reason for choosing this

eccentricity for the visual field patch. From their mean radii of the

centre and surround mechanisms of (non-lagged) X cells,

rcen~0:400 and rsur~1:10.
Cortical magnification factor. This factor, 0.45 mm2/deg2

is taken from the measurements of Tusa et al. [45] at 11u
eccentricity along the horizontal meridian.

Cortical density of neurons. Beaulieu and Colonnier [46]

found 78,440 neurons under each mm2 of binocular cortex. To

obtain the linear cell density in the model we apply the following

operations. First, this value is multiplied by the cortical

magnification factor to convert it to degrees. Second, the model

contains only excitatory neurons; assuming that all other neurons

Table 1. Glossary of symbols.

Symbol Parameter Value Unit

c Contrast Variable None

gcen Centre mechanism contrast sensitivity 62 mV contrast-unit21

gcort Intracortical gain 1 None

gGC Geniculocortical gain 4.21 (2 channels); 1.47 (6 channels) None

gsur Surround mechanism contrast sensitivity 48 mV contrast-unit21

grect Gain of generator function 7.2 Hz/mV

i Index of sub-cortical channel 1, 2, …, m None

m Number of sub-cortical channels Variable None

ni Sign of ith sub-cortical channel 1 (on-channel); 21 (off-channel) None

vs Stimulus spatial frequency Variable radians/deg

vt Stimulus temporal frequency 2p62 radians/s

p Generator potential Variable mV

pd ep Static polarisation, cortical stages 2, 3 0.646 mV

phyp Static polarisation, cortical stage 1 225.5 (x = y = 0) mV

pi Generator potential in ith sub-cortical channel Variable mV

pphoto Sub-cortical static polarisation 1.94 mV

ps Static polarisation Variable mV

Q Spatial phase Variable radians

rcen Radius of centre mechanism 0.4 deg

rcort Radius of cortical convergence 2.8 deg

rsur Radius of surround mechanism 1.1 deg

t Time Variable s

tcort Time constant of cortical cells 10 ms

ti Time constant in ith sub-cortical channel ton (on-channel); toff (off-channel) ms

toff Time constant of off-centre cells 9 ms

ton Time constant of on-centre cells 11 ms

h Stimulus orientation Variable radians

x Horizontal position in visual field Variable deg

xi Horizontal position of channel i Variable deg

y Vertical position in visual field Variable deg

yi Vertical position of channel i Variable deg

z Index of processing stage 1, 2, …, 7 None

The table provides a glossary of symbols used in this paper. Values are given to three significant places.
doi:10.1371/journal.pone.0034466.t001
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contain GABA, we multiply by 0.794 to eliminate them [47].

Third, we divide by 3 to obtain the density per stage. Finally, we

assume that neurons are arranged in a square array and therefore

take the square root to find the linear density. The result isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
78,440|0:45|0:794=3

p
~97 cells deg{1 stage{1.

Radius of cortical cell receptive field. Gardner et al. [48]

measured subfield length in a sample of simple cells. The

geometric mean of their sample was 5.5u. Halving this value

gives a radius of rcort~2:750.
Distance between same-sign X-type ganglion cells. The

general model assumes more than one ganglion cell of the same

centre sign. The distance between ganglion cells of the same sign

can be as small as 0.2u, as described above, but can also be much

larger, as indicated by the radius of the cortical cell receptive field.

We chose a compromise distance of 0.75u: this produces an

elongated subfield that largely fits into the 20|20 receptive field

patch.

Temporal parameters
Cortical time constant. There is a problem in estimating

the time constant for model cells: the neurons modelled are

inhomogeneous in their temporal properties. Phototransduction,

for example, includes the time required for a series of reactions not

present in following cells. We have therefore taken a pragmatic

approach. The model assumes that temporal processes can be

lumped into one first-order low-pass filter for each neuron. The

impulse response of a series of z low-pass filters with time constant

t peaks at (z{1)t. For a first-stage cortical cell (z~5), this peak

time is 4t. Given that simple cell impulse responses peak at values

as low as 40 ms [49], tcort~40=4~10 ms.

Sub-cortical time constants. It has recently been shown

that off-centre X-type geniculate cells lead their on-centre

neighbours. In particular, the leading edge of the impulse

response in off-cells precedes that in on-cells by a mean of 3 ms

when measured at 40% of maximum response [16]. We set time

constants in the two sub-cortical channels as follows: toff~9 ms,

ton~11 ms. Figure 7b shows that the model approximates the

empirical finding.

Intensive parameters
Generator gain. The form of the generator function

(Figure 1c) and its gradient, grect~7:2 Hz=mV, are taken

directly from the work of Carandini and Ferster [24].

Geniculate contrast sensitivity. This parameter can be

calculated by integrating the centre mechanism’s spatial profile

over both dimensions:

ðð
gcen

pr2
cen

e{(x2zy2)=r2
cen dxdy~gcen ð20Þ

We set this equal to the contrast sensitivity of the X-type ganglion

cell centre mechanism, 620 Hz/contrast-unit (from the 2 Hz data

in Figure 12 of Frishman et al. [50]), multiplied by the attenuation

between retina and geniculate, 0.73 (from Figure 5A of Kaplan et

al. [25]). Finally, converting from Hz to mV, gcen is given by:

gcengrect~620|0:73~450 Hz=contrast-unit ð21Þ

Surround contrast sensitivity. We use Saul and

Humphrey’s [13] measurements of mechanism strength,

gsur=gcen~0:77.

Cortical contrast sensitivity. The contrast sensitivity of

stage 1 cortical cells is best determined from the responses of

simple cells to gratings of optimal orientation and spatial

frequency. We used the membrane potential measurements of

Carandini and Ferster [24] because they avoid the complications

of action potential threshold. Dividing response amplitude by

contrast, the maximum gradient for the three simple cells in their

Figure 13 averages 70 mV/contrast-unit. The geniculocortical

gain, gGC , was set so that the contrast sensitivity of stage 1 cortical

cells replicated this value.

Static hyperpolarisation. This parameter was estimated

from the work of Anderson et al. [51]. From their Table 1, the

median difference between threshold and resting potential in nine

simple cells is {9 mV. The second equality in Equation 17 was

solved for phyp by setting the left side to this value.

Intracortical gain. There is little evidence for consistent

contrast sensitivity differences between simple and complex cells

[40]. We therefore assumed unity gain between one cortical stage

and the next. The parameter gcort is then given by:

ðð
gcort

pr2
cort

e{(x2zy2)=r2
cort dxdy~gcort~1 ð22Þ

Static depolarisation. Cells in primary visual cortex have a

mean spontaneous impulse rate of 3.1 Hz [26]. From Equation

19, the mean impulse rate in model cortical cells is

(1zgcort)grectpdep=3. This value was set to 3.1 Hz and solved

for pd ep.

Stimuli
There is no surround antagonism in the basic model. By way of

compensation, stimuli are defined in terms of local contrast rather

than luminance. Local contrast is obtained by finding the

difference between local and background luminance, and dividing

the difference by background luminance. We use three types of

stimuli: gratings, spots, and bars.

Grating. The equation for a drifting grating is

s(t,x,y)~

c cos(vttzsin(h)vsxzcos(h)vsy) drifting

c cos(vtt)cos(sin(h)vsxzcos(h)vsyzq) contrast� reversing

( )ð23Þ

where

c~contrast

vt~temporal frequency radians=sð Þ

vs~spatial frequency radians=degð Þ

w~spatial phase radiansð Þ

h~orientation radiansð Þ

Spot, bar. For these stimuli

s(t,x,y)~c ð24Þ

during stimulus presentation and in the visual field area covered by

the stimulus. Otherwise s(t,x,y)~0.

Stimulus parameters matched published values as far as

possible. Neurons in primary visual cortex are typically broadly
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tuned for temporal frequency, and 2 Hz is often used in published

work; we also use this value. We show empirical data in several of

our figures. Each of the quoted studies used a range of grating

contrast, typically 0.25–0.5. Unless otherwise stated, we use a

grating contrast of 0.3. Spot and bar contrasts are usually not

stated in the literature; we use 1 for light stimuli and {1for dark.

Computation
All simulations were performed in Matlab (The MathWorks,

Inc); the model equations were numerically integrated using

Matlab’s ode45 function. We reduced the risk of coding errors in

two ways. First, the two authors implemented the model equations

independently before comparing results. Second, for low stimulus

contrasts the model’s equations are linear up to the production of

impulses in cortical stage 1 neurons. We solved these equations

analytically and ensured that the numerical and analytical

solutions agreed.

When compiling population statistics we needed some way of

deciding which neurons should be excluded because of insufficient

activation by the stimulus. This process of exclusion has a correlate

in the laboratory: the experimenter encounters a new cell with the

electrode and decides not to study it if it is insufficiently active.

Our criterion was as follows. A grating with optimal orientation

and spatial frequency was drifted across the receptive field at 2 Hz.

A neuron was excluded from analysis if the resulting elevation of

its mean impulse rate was less than a criterion level. Following

Romo et al. [52], we set the criterion at 5 Hz.
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