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ABSTRACT: Due to the low cost and printable nature of the carbon
paste, carbon-based perovskite solar cells (PSCs) are attractive for real
application. However, the poor contact at the perovskite/carbon
interface obviously hinders the achievable fill factor of the carbon-
based PSCs. In this work, we introduce a pressure-assisted method to
improve the contact at the perovskite/carbon interface. Via modulating
the applied pressure, the power conversion efficiency of CsPbBr3 PSCs
(small area) can be improved from the initial 7.40% to 7.95%
(pressing) and 8.34% (hot-pressing). A more remarkable feature is that
the hot-pressing process boosted the performance from 5.1% (normal)
to 6.9% (hot-pressing assisted) of large-scale (0.5 cm2) devices, a more
than 30% enhancement. Finally, the hot-pressing method introduced
in this work shows great prospects for improving the efficiency of carbon-based PSCs, especially large-scale PSCs.

■ INTRODUCTION

Benefited from their excellent optical and electrical properties,
organic−inorganic metal halide perovskite solar cells (PSCs)
have attracted great attention among both academic and
industrial fields.1−5 Meanwhile, conventional PSCs use noble
2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spiro-
bifluorene (Spiro-OMeTAD) and costly metal electrodes,
which reduce the cost-effectiveness of PSCs. Carbon-based
PSCs, which exclude hole transport materials and replace the
metal electrode with carbon paste, turn out to be an alternative
option. To start with, Han et al. first demonstrated the carbon-
based PSCs with a device structure of FTO/TiO2/ZrO2/
perovskite/carbon.6 Yang et al. later suggested that candle soot
can be an excellent hole extraction layer for PSCs.7

Subsequently, multiple carbon materials including graph-
ite,8−10 carbon black,11,12 spongy carbon,13 and carbon
cloth14 are developed for PSC application. Very recently, the
power conversion efficiencies (PCEs) of carbon-based HTL-
free PSC have been boosted to 18.9%,15 and fully printed
planar carbon-based PSCs shows a record PCE of 15.3%.16

Although progressive achievements have been reached for
carbon-based PSCs, the record efficiency (18.9%) is far lower
than that of conventional PSCs (25.5%).17 This is largely due
to the poor contact at the perovskite/carbon interface. To be
more specific, because the carbon paste is composed of a
graphite flake and carbon sphere, pinholes are unavoidable at
the perovskite/carbon interface. This results in pronounced
photo-carrier recombination. Several researchers have demon-
strated a better adhesion at the perovskite/carbon interface-

promoted carrier transportation.18−25 Then, interface engineer-
ing turns out to be an effective strategy for enhancing the
performance of carbon-based PSCs. Materials including
inorganic compounds (MnS26 and Mxene27) and organic
materials (PEDOT, PPy, PANi,28 CuPc,29 hexamethylenetetr-
amine,30 and 1-butyl-2, 3-dimethylimidazolium chloride
([BMMIm]Cl) ionic liquids (ILs)31) are introduced to
improve the interface contact and promote charge extraction.
Yang et al. introduced cesium acetate (CsAc) at the
perovskite/carbon interface, contributing to an improved
VOC.

25 What is more, formula engineering of the carbon
paste also results in a better contact of the perovskite/carbon
interface.32−36 Although the aforementioned methods are
attractive, they do not change the fluffy nature of the carbon
layer.
In this study, we propose a simple hot-pressing method to

solve the poor contact issue at the perovskite/carbon interface.
CsPbBr3 has been selected as the photoactive layer because the
PCEs of carbon-based CsPbBr3 PSCs are comparable or even
superior to those of conventional metal electrode-structured
devices.37−39 After pressure treatment, the pinhole-free perov-
skite/carbon interface with reduced carbon layer thickness
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suggests an enhanced interfacial contact, benefiting the carrier
extraction. We receive a PCE of 8.34% for hot-pressing-treated
PSCs, compared with 7.4% of the control devices. Moreover,
the method works better for large scale devices. PCE of large-
scale devices has been increased by ∼30% (5.1% to 6.9%) after
the hot-pressing treatment. Finally, thanks to the dense carbon
layer after the hot-pressing process, the hot-pressing-treated
PSCs also show improved stability at ambient conditions. After
all, the hot-pressing method seems to be an effective method
for developing high-efficiency, reproducible, and stable carbon-
based PSCs.

■ RESULTS AND DISCUSSION

We start by describing the device fabrication process. The
main difference of the device fabrication lies in the deposition
of the carbon electrode. For the control devices, the
commercial carbon paste is doctor-blade coated on the
CsPbBr3/SnO2/FTO substrates and heated at 100 °C for 20
min. The pressing process refers to applying pressure to the
fabricated devices at ambient conditions (Figure 1 G1).
Meanwhile, the hot-pressing process suggests adding pressure

on devices during the annealing process of the carbon paste
(Figure 1 G2). The experimental details are listed in the
Supporting Information. The influence of the G1 and G2
processes will be discussed later.
As for the CsPbBr3 film fabrication, we use the methanol

process developed by Tang et al.33,40,41 The phase transition
between CsPb2Br5, CsPbBr3, and Cs4PbBr6 can be tuned by
adjusting the spin-coating cycle of the CsBr precursor. With an
optimized spin-coating cycle (8), the prepared films show
diffraction peaks at 2θ = 15.2°, 21.6°, 30.7°, and 44.1° on the
XRD spectrum, corresponding with the (100), (110), (200),
and (220) lattice planes of the CsPbBr3 phase, respectively
(Figure S1). No additional peak showed up, which suggested
the phase pure nature of the prepared films. The UV−vis
absorption spectrum shows a distinct absorbance at ∼540 nm.
This also supports the high quality of the prepared CsPbBr3
films (Figure S2).
The SEM images illustrate that the prepared films are

polycrystalline with a crystal size of ∼2 μm (Figure 2a). Grain
boundaries are distinct, and pinholes can hardly be visible,
which support the high quality of the prepared films. The
average thickness of the prepared films is about 400−500 μm,

Figure 1. Schematic diagram of (G1) the pressing process and (G2) the hot-pressing process.

Figure 2. (a) Top-view SEM images of the CsPbBr3 films deposited on the SnO2/FTO substrate. (b) Cross-sectional SEM images of the CsPbBr3
films. Cross-sectional SEM images of (c) the control device and (d) the hot-pressing device.
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consistent with the previous research (Figure 2b).42 We are
more interested in the morphological transformation of the
carbon electrode layer before and after pressing. Listed in
Figure 2c, the thickness of the carbon electrode layer for the
control devices is ∼16 μm, whereas this has been reduced to
11 μm for the hot-pressing devices, an almost 1/3 shrinkage.
Moreover, shown on the side-view SEM images, there are
obvious cracks and un-touched areas at the perovskite/carbon
interface (marked in red), pointing to a poor contact (Figure
2c). Meanwhile, the hot-pressing carbon films show that the
graphite flakes in the carbon paste are horizontally aligned, and
the carbon electrode and the perovskite layer are tightly
connected (Figure 2d); thus, effective carrier transportation
can be guaranteed.
Next comes to the performance characterization. Under light

illumination, the generated photo-electrons flow from the
photo-active layer (CsPbBr3) down to SnO2 and are collected
by the FTO substrate. The reverse is the case for the photo-
holes (Figure 3a). As shown in Figure 3b and Table S1, the
control device received an open-circuit voltage (VOC) of 1.45

V, a short circuit current (JSC) of 6.80 mA cm−2, a fill factor
(FF) of 0.75, and an overall power conversion efficiency
(PCE) of 7.4%. This PCE has been increased from 7.40% to
7.93% (pressing) and 8.34% (hot-pressing). The integrated
photocurrents calculated from the incident photon-to-electron
conversion efficiency (IPCE) are 6.50 mA cm−2 (control) and
6.80 mA cm−2 (hot-pressing treated). The results are in good
agreement with the JSC measured from the J−V character-
ization (Figure 3c, Table S1). After introducing the pressure-
assisted process, the performance enhancement is mainly due
to an improved JSC (from 6.80 mA cm−2 to 7.18 mA cm−2) and
FF (from 0.75 to 0.79), corresponding well with a better
contact at the selective interface. As for the reproducibility of
the devices, 20 devices are selected for control and hot-
pressing-treated process separately. The corresponding stat-
istical histogram is provided in Figure 3d. The control devices
yield a PCE of only 5−7%. In comparison, most of the hot-
pressing-treated devices receive a PCE over 7%. Meanwhile,
photocurrent hysteresis for the control and hot-pressing-
treated devices is analyzed by the J−V curves (Figure S3 and

Figure 3. (a) Band alignment diagram of the CsPbBr3 PSCs. (b) J−V characterization of the PSCs. The J−V curves have been measured at 0.1 V/s.
(c) IPCE spectrum and the integrated JSC calculated from the IPCE spectrum of the prepared CsPbBr3 PSCs. (d) Histogram of the PCE values for
PSCs prepared from different processes. Twenty devices were collected.

Figure 4. J−V characterization of the large scale (0.5 cm2) PSCs prepared with (a) pressing process and (b) hot-pressing process. The J−V curves
are measured under AM 1.5G one sun illumination (100 mW/cm2) with a scan rate of 0.1 V/s.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06108
ACS Omega 2022, 7, 16877−16883

16879

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06108/suppl_file/ao1c06108_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06108/suppl_file/ao1c06108_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06108/suppl_file/ao1c06108_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06108?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Table S2). Following previous reports,43 photocurrent
hysteresis can be expressed by the photocurrent hysteresis
index (HI), which can be calculated as follows:

=
−

HI
PCE PCE

PCE
reverse forward

reverse

The HI of the hot-pressing-treated devices is 6.8%, which is
lower than that of the control devices (14.9%), indicating a
reduced defect and an enhanced contact at the interface
between the carbon and perovskite layer. Besides, the hot-
pressing-treated devices also show a narrow PCE distribution
(Figure 3d). These results indicate the advantages of the hot-
pressing process.
We are more interested in if the pressing process can be

applicable for large scale devices. A 0.5 cm2 device has been
selected, and the relating PCEs are recorded in Figure 4a,b and
Tables S3 and S4. The control process only exhibited a PCE of
5.13%, whereas this has been increased to 6.02% in the
pressing-assisted process. The hot-pressing process further
promotes the PCE to 6.93% with a JSC of 6.72 mA cm−2, VOC
of 1.37 V, and FF of 0.76. This is about 30% higher than that
of the control process. The results suggest that the hot-pressing
process is more effective for large-scale devices. It is more
interesting to note that the PCE of the pressing-treated PSCs
dropped after 24 h of storage, whereas the PCE for the hot-
pressing-treated PSCs remained almost constant during a 24 h
storage (Figure 4). The influence of the applied pressure on
the PCE of large-scale devices is listed in Figure S4 and Table
S5, and the value of the optimum pressure is 32 N cm−2. The
achievable PCE first rises with the increased pressure, possibly
due to a better contact. Meanwhile, further increasing the
pressure introduces current leakage, which is detrimental for
photo-carrier transportation. Besides, the PCE of large-scale
devices with an active area of 1.02 cm2 has been provided in
Figure S5 and Table S6. The hot-pressing-treated device shows

a PCE of 6.10%, which is nearly 30% higher than that of the
control process.
To offer a better insight into the performance improvement

caused by hot-pressing, the interfacial charge transfer and
recombination dynamics are investigated. Figure 5a records the
steady-state photoluminescence (PL) spectrum of the neat
CsPbBr3, CsPbBr3/carbon, and hot-pressing CsPbBr3/carbon
films. The PL spectrum peaked at ∼530 nm, pointing to the
formation of CsPbBr3. Compared with the neat perovskite
films, the PL intensity of the carbon-coated perovskite films
has been greatly reduced (Figure 5a). This is due to an
effective carrier transportation from the perovskite layer up to
the carbon-carrier collection layer. Besides, the lower the PL
intensity, the more effective the carrier transportation.4,44 The
hot-pressing process quenched the PL intensity to less than 1/
2 of the initial intensity (perovskite/carbon film), supporting a
better contact at the perovskite/carbon interface after hot-
pressing. Meanwhile, for the time-resolved photoluminescence
(TRPL) characterization, Figure 5b records the TRPL
spectroscopy of the prepared films, the curves are fitted with
a biexponential decay model of I = Ae − (t − t0)/τ1 + Be − (t
− t0)/τ2, and the carrier lifetime is extracted as summarized in
Table S7. Because a carrier-selective layer has been introduced,
the faster component (τ1) can be assigned to the photo-carrier
transportation, and the long lifetime τ2 can be considered the
intrinsic radiative recombination. The average carrier lifetime
(τave), which can be calculated by deriving the formula of τave =
(a1τ1

2 + a2τ2
2)/(a1τ1 + a2τ2), has been calculated to evaluate

the charge extraction ability. The τave of the CsPbBr3/FTO
substrate without the carbon layer is approximately 7.61 ns,
whereas the introduction of the carbon layer contributes to a
reduced τave, and the hot-pressing device shows a faster PL
decay, indicating an enhanced hole extraction.
Furthermore, the J−V characterization of various PSCs with

a symmetric structure of FTO/CsPbBr3/carbon is tested under

Figure 5. (a) Steady-state PL spectrum of the perovskite films. The measurements are conducted under a beam of 400 nm laser illuminated from
the FTO side. (b) TRPL decay curves of the perovskite films deposited on the FTO substrate. A 405 nm laser is illuminated from the FTO side.
IRF refers to the instrument response function. (c) Dark J−V curves of the symmetrical FTO/perovskite/carbon structure. The J−V curves are
measured under dark conditions with a scan rate of 0.1 V/s. (d) Nyquist plots of the as-prepared perovskite solar cells in the dark at 0 V.
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the dark condition (Figure 5c). A relatively lower dark current
density has been identified in the hot-pressing device, which
supports a reduction in charge recombination.30,32,42 Appa-
rently, the reduced carrier recombination is mainly due a better
contact of the perovskite/carbon interface. Next comes to the
electrochemical impedance spectra (EIS) characterization. In
the dark with an applied bias of 0 V, the arc on the EIS
spectrum can be assigned to the recombination resistance (Rr)
of the device.26 Here, Rr has been increased from 1.786 MΩ
for the control device to 3.228 MΩ of the hot-pressing device
(Figure 5d), further supporting a less possibility of carrier
recombination in the hot-pressing device. Finally, the hot-
pressing devices retain over 95% of their initial PCE after a 30
day-aging test (Figure S6), compared with 92% for the control
device; thus, a better stability can be guaranteed.

■ CONCLUSIONS

To sum up, high performance and large-scale CsPbBr3 PSCs
are prepared via introducing a simple hot-pressing process. The
hot-pressing process improves the contact at the perovskite/
carbon interface and contributes to a better carrier trans-
portation. Via adjusting the applied pressure, a superior PCE of
8.34% has been achieved for the hot-pressing-assisted device in
comparison with 7.40% (pristine) and 7.95% (pressing
devices). More importantly, the PCE of large-scale devices
received a ∼30% PCE improvement (from 5.1% to 6.9%) with
the hot-pressing treatment, indicating a more effective effect
for large area devices. Furthermore, the hot-pressing devices
showed an enhanced reproducibility and stability. Overall, the
hot-pressing method shows broad prospects for carbon-based
PSCs, especially for large-scale PSCs.

■ EXPERIMENTAL SECTION

Materials. The SnO2 colloid precursor was purchased from
Alfa Aesar (tin(IV) oxide). N,N-Dimethylformamide (DMF)
was purchased from J&K Chemicals. Lead bromide (PbBr2,
99.0%) and cesium bromide (CsBr, 99.9%) were obtained
from Xi’an Polymer Light Technology Corp. The commercial
carbon paste (including graphene and carbon black) was
purchased from Shanghai Mater Win New Materials Co., Ltd.
The other materials if not stated were purchased from TCI. All
materials were used without further purification.
Device Fabrication. All the devices were prepared in the

atmosphere environment. Fluorine-doped tin oxide (FTO)
glasses were washed with detergent, deionized water, acetone,
and isopropyl alcohol (IPA) in sequence for 15 min. The as-
cleaned FTO was treated with UV-Ozone before use. As
previously reported,45 the Li-doped SnO2 precursor solution
was obtained by mixing SnO2 (450 μL) colloid dispersion and
LiCl (300 μL) aqueous solution (17 mg/4 mL) with water (2
mL). A thin SnO2 layer was spin-coated onto the as-cleaned
FTO at a speed of 4000 rpm for 30 s and annealed at 160 °C
for 30 min. The CsPbBr3 films were prepared with a modified
method based on the multi-step spin-coating method reported
by Tang et al.40 In detail, the PbBr2/DMF solution (1.0 M)
was stirred at 70 °C for 30 min before being spin-coated onto
the SnO2 layer at a speed of 2000 rpm for 30 s. The substrates
were preheated at 90 °C prior to spin coating. The prepared
PbBr2 films were annealed at 90 °C for 40 min. After cooling
down, 0.07 M CsBr methanol solution was spin-coated onto
the PbBr2 film at 2000 rpm for 30 s and heated at 250 °C for 5
min. This process was repeated several times to fabricate the

cesium lead bromide films. The obtained perovskite films were
soaked in isopropanol for 30 min and dried at 250 °C again for
5 min. Finally, a carbon back-electrode was deposited on the
perovskite film by the doctor-blade coating method. For the
pressing device, the as-prepared device was placed glass face up
on a flat table, with a flexible polytetrafluoroethylene (PTFE)
thin film sandwiched between the carbon film and table as a
buffer layer. Then, weights were added to the top of the glass
to apply pressure. For the fabrication of hot-pressing PSCs, the
coated carbon paste was heated at 100 °C for 5 min.

Characterizations and Measurements. The XRD
patterns of the samples were measured on an Ultima IV X-
ray diffractometer with Cu Kα radiation. The J−V curves and
EIS data were collected with an electrochemical workstation
(CHI-760). The morphologies of the perovskite films were
recorded on a JSM-6510A SEM instrument. The UV−vis
absorption spectra were measured with a Hitachi U-3900
instrument. Steady-state PL (excitation at 400 nm) was
measured with an Edinburgh Instruments Ltd. instrument
(FLS980). TRPL was measured on an FL980 with the time-
correlated single photon counting method by excitation with a
405 nm laser.
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