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Abstract: Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological
processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases.
A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from
prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and
only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair
and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been
developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also
expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may
not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication.
Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019
(COVID-19).
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1 Human ADP-ribosylhydrolases

In response to DNA damage, adenosine diphos‐
phate (ADP)-ribosylation, including both poly (ADP-
ribosyl)ation (aka PARylation) and mono (ADP-
ribosyl)ation (aka MARylation), is quickly catalyzed by
the “writers” poly(ADP-ribose) polymerases (PARPs)
at DNA lesions and recognized by ADP ribose (ADPR)-
binding proteins (Li and Yu, 2015). Since many DNA
damage repair proteins contain the ADPR-binding motifs,
these “readers” facilitate DNA damage repair. Thus, ADP-
ribosylation is one of the earliest signals at DNA lesions
and mediates the first wave of DNA damage response.

In addition to the “writers” and “readers,” the
“erasers” ADP-ribosylhydrolases also play important

roles in DNA damage repair. Since ADP-ribosylation
mediates the recruitment of DNA damage repair fac‐
tors to DNA lesions, ADP-ribosylhydrolases need to
reverse ADP-ribosylation to unload DNA damage
repair factors from ADP-ribosylation sites (Liu et al.,
2017; Kassab and Yu, 2019). If the removal of ADP-
ribosylation is suppressed, DNA damage repair
factors will be trapped at the sites of ADP-ribosylation
because of high affinity between those repair fac‐
tors and ADPR (Grundy et al., 2013; Krietsch et al.,
2013). Thus, one of the biological functions of
ADP-ribosylhydrolases is to release DNA damage
repair factors from ADP-ribosylation for the next
step of DNA damage repair. The removal of ADP-
ribosylation (deADP-ribosylation) is not an antagonis‐
tic step of ADP-ribosylation during DNA damage
repair. Instead, it is a sequential step in DNA damage
repair.

Different ADP-ribosylhydrolases can reverse
different forms of ADP-ribosylation (Fig. 1).
Poly(ADP-ribose) glycohydrolase (PARG) is the
major enzyme to remove PARylation and accounts for
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more than 90% of dePARylation during DNA damage
repair (Min et al., 2010; Shirai et al., 2013). It is a
polypeptide with 976 amino acids localizing in several
cellular compartments including the nucleus, cytoplasm,
and mitochondria. PARylation is a polymeric form of
ADP-ribosylation, in which ADPR residues are cova‐
lently linked by a 1'-2' glycosidic bond (Talhaoui
et al., 2016; Rack et al., 2020). The enzymatic domain
of PARG is a macrodomain at its C-terminus, which
has both endo- and exo-glycosidase activity for the
cleavage of the 1'-2' glycosidic bond between two
ADPR residues in poly(ADP-ribose) (PAR) chains.
However, it cannot cut the ester bond between the
first ADPR and amino acid acceptors, and leaves a
single ADPR attached to the substrate (Lambrecht et al.,
2015). Thus, PARG trims PARylation into MARyla‐
tion during DNA damage repair (Fig. 1). The enzy‐
matic activity of this macrodomain is very potent, as
it can completely remove PARylation within 10‒30 min
following DNA damage. Although the structure of
PARG’s macrodomain has been solved, its detailed
activation mechanism remains elusive (Feijs et al.,
2013; Jankevicius et al., 2013; Rosenthal et al., 2013).
While the PARG macrodomain itself clearly recognizes
PAR (Barkauskaite et al., 2013; Lambrecht et al.,
2015), which may directly trigger dePARylation,
there should be other mechanisms for specific PARG
activation through sensing extended PAR areas and/or
protein interactors. For example, in addition to the C-
terminal macrodomain, PARG has an N-terminal regu‐
lator domain for catching the substrates or targeting
PARG to the sites of DNA damage. The binding
between the N-terminal regulator domain and its
functional partners, such as proliferating cell nuclear
antigen (PCNA), may induce intermolecular changes
for the activation of the macrodomain of PARG
(Kaufmann et al., 2017). In addition to the role of
macrodomains in protein deADP-ribosylation, some
catalytic macrodomains are known to act on ADPR
1"-phosphate (Shull et al., 2005), ADP-ribosylated
nucleic acids (Munnur and Ahel, 2017), and O-acetyl-
ADPR (Chen et al., 2011).

Accumulating evidence shows that PARG parti-
cipates in DNA damage repair. Following DNA damage-
induced PARylation, PARG quickly relocates the sites
of DNA damage (Patel et al., 2005; Fisher et al.,
2007). Cells lacking PARG have severe defects in the
repair of DNA double-strand breaks (DSBs) and

single-strand breaks (SSBs) (Amé et al., 2009; Gogo‐
la et al., 2019). Because dePARylation is a down‐
stream step of PARylation during DNA damage re‐
pair, suppression of the enzymatic activity of PARG’s
marcodomain will also impair DNA damage repair. If
tumor cells have inherited mutations, such as breast
cancer susceptibility gene 1 (BRCA1) or BRCA2 mu‐
tations, to partially abolish DNA damage repair, tar‐
geting the macrodomain, similar to targeting PARPs,
will induce tumor cell apoptosis via synthetic lethality
(Powell and Kachnic, 2003; Bryant et al., 2005; Au‐
deh et al., 2010; Michels et al., 2014; Garufi et al.,
2020). Based on this hypothesis, several small mole‐
cule inhibitors for targeting the macrodomain of
PARG have been developed recently. These inhibitor
treatments prolong the half-life of PARylation at the
sites of DNA damage, trap DNA damaging factors,
suppress DNA damage repair, and induce apoptosis of
tumor cells with DNA damage repair defects (Fauzee
et al., 2010; Gogola et al., 2019; Slade, 2020). Thus, it
is possible that like PARP inhibitors, PARG inhibitors
could in future be used for personalized cancer treat‐
ment. In addition, a sub-class of preclinical ovarian
cancer models is sensitive to PARG inhibitors owing
to potential DNA replication vulnerabilities (Pillay
et al., 2019).

In addition to PARG, several other ADP-
ribosylhydrolases, including terminal ADPR protein
glycohydrolase 1 (TARG1), MacroD1, and MacroD2,

Fig. 1 Schematic of (dePARylation) and (deMARylation).
The removal of adenosine diphosphate (ADP)-ribosylation,
poly(ADP-ribosyl)ation (dePARylation), and mono(ADP-
ribosyl)ation (deMARylation) mediated by macrodomain-
containing ADP-ribosylhydrolases including poly(ADP-
ribose) glycohydrolase (PARG), terminal ADP-ribose protein
glycohydrolase 1 (TARG1), MacroD1, and MacroD2.

also have a macrodomain (Rosenthal et al., 2013;
Sharifi et al., 2013; Kassab et al., 2020). Com‐
pared to PARG, these are much smaller proteins.
They have a macrodomain, but lack any regulatory
domain, suggesting that the activation of these
enzymes may be directly induced via the recognition
of ADP-ribosylation by the macrodomain. Moreover,
unlike the macrodomain of PARG, the macrodomain
of TARG1 cannot digest the 1'-2' glycosidic bonds
that make PAR chains (Sharifi et al., 2013). Instead, it
hydrolyzes only the ester bond between the first
ADPR and glutamic acid/aspartic acid residue, and thus
removes only MARylation, not PARylation (Fig. 1).
Similarly, MacroD1 and MacroD2 also favor removal
of MARylation over PARylation (Fig. 1) (Rack et al.,
2016; Feijs et al., 2020). However, similar to PARG,
all these enzymes play important roles in DNA
damage repair. It has been reported that TARG1 is re‐
quired for SSB repair by redeploying X-ray repair
cross-complementing group 1 (XRCC1) from one
DNA damage site to another (Wei and Yu, 2016; Büte‐
page et al., 2018; Kassab et al., 2020). MacroD2 is also
known to be recruited to DNA lesions, and participates
in DNA damage repair (Golia et al., 2017). When DNA
damage occurs, PARPs generate PARylation at DNA
lesions. PARG is recruited to DNA lesions for
dePARylation, but leaves MARylation at DNA lesions.
Thus, TARG1, MacroD1, and MacroD2 may act
downstream of PARG for removal of the remaining
MARylation at sites of DNA damage (Bütepage
et al., 2015; Feijs et al., 2020). Collectively, these
macrodomains are key enzymatic domains in human
ADP-ribosylhydrolases, and may act together to
orchestrate deADP-ribosylation during DNA damage
repair.

2 Enzymatically inactive macrodomain

Besides these ADP-ribosylhydrolases, other pro‐
teins such as MacroH2A and a set of PARPs also have
macrodomains (Amé et al., 2004; Kustatscher et al.,
2005; Yu et al., 2005; Egloff et al., 2006; Kleine et al.,
2008; Poltronieri and Miwa, 2016). These macrodo‐
mains are not able to reverse ADP-ribosylation because
they lack the key catalytic residues attacking the glyco‐
sidic bonds or ester bonds of ADP-ribosylation (Rack
et al., 2016). However, because of their conserved

secondary structure, some of these macrodomains can
still bind to ADPR as “readers.” A typical example is
MacroH2A, a histone H2A variant which can replace
canonical H2A and be incorporated into the nucleo‐
some (Kustatscher et al., 2005). However, unlike ca‐
nonical H2A that contains only a global domain and
two terminal tails, MacroH2A species have the macro‐
domain at the C-terminus, which is extended towards
the outside of the nucleosome, suggesting that the
macrodomain may play a key role in regulating chro‐
matin status. Human MacroH2A species are encoded
by two gene copies and have three different forms:
MacroH2A1.1, MacroH2A1.2, and MacroH2A2.
MacroH2A1.1 and MacroH2A1.2 are encoded by a
single gene and translated by different splicing
forms. The primary sequences of these three macro‐
domains are slightly different, and only MacroH2A1.1
recognizes ADPR, whereas MacroH2A1.2 and
MacroH2A2 do not bind to ADPR (Marjanović et al.,
2017; Ruiz et al., 2019). MacroH2A1.1 is able to be
incorporated into sites of DNA damage. It is possible
that incorporation of this unique histone variant in‐
duces local chromatin remodeling for DNA damage
repair.

In addition to MacroH2A, the macrodomain of
amplified in liver cancer 1 (ALC1) also recognizes
ADP-ribosylation (Ahel et al., 2009). ALC1 is a
nuclear polypeptide with a C-terminal macrodomain
and an N-terminal DNA helicase domain. Although
the DNA helicase domain may not be able to unwind
double-stranded DNA, it consumes adenosine
triphosphate (ATP) for sliding nucleosomes on the
chromatin. The interaction between the macrodomain
of ALC1 and poly(ADP-ribose) not only mediates the
recruitment of ALC1 to DNA lesions, but also facilitates
the sliding of nucleosomes on the chromatin. The
interaction induces intermolecular changes that
activate the DNA helicase domain to consume ATP.

PARPs themselves also have macrodomains. To
date, 17 PARP family members have been identified
in human cells (Vyas et al., 2014). Among them,
PARP9, PARP14, and PARP15 have tandem macrodo‐
mains at the N-terminus (Amé et al., 2004; Beneke
et al., 2004; Jankevicius et al., 2013). Since one macro‐
domain is sufficient to bind at least one ADPR
residue, these macrodomains may recognize PARyla‐
tion or multiple MARylation. As they lack the key
catalytic residues, these macrodomains cannot reverse
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ADP-ribosylation. The ADPR transferase domains of
these three PARPs exist at the C-terminus. However,
only PARP14 and PARP15 have potent ADPR trans‐
ferase activity. PARP9 has been reported to be a cata‐
lytically active ADPR transferase when it forms a
complex with deltex 3-like (DTX3L) (Yang et al.,
2017). It is still unclear if PARylation or multiple
MARylation may promote the ADPR transferase
activity of these PARPs.

3 Structure of the macrodomain

The crystal structures of these macrodomains
of ADP-ribosylhydrolases have been solved. They
share a common conformational fold, exhibiting a
three-layered α-β-α sandwich with a central β sheet
containing a mixture of anti-parallel and parallel
strands (Rack et al., 2020). The ADPR-binding pocket
in these macrodomains has an L-shaped fold, and the
ADPR molecule adopts a bent conformation with the
adenosine moiety located on the short side and the
pyrophosphate moiety and the distal ribose located
on the long side. However, the bending degree may
be slightly different among these macrodomains.

The structure of the macrodomain of PARG ex‐
hibits a twisted 10-stranded β -sheet core surrounded
by two additional α -helical subdomains on each side

(Fig. 2a) (Hassler et al., 2011; Tucker et al., 2012;
Lambrecht et al., 2015). The ADPR-binding cleft is
surrounded by the conserved ADPR diphosphate-
binding loop and the PARG-specific GGG-X6-8-QEE
motif (N744-C756), which places the catalytic residues
including Gln754, Glu755, and Glu756 at the edge of
the catalytic site. A third conserved Y792TGYA796
motif, termed the “Tyr-clasp,” forms the boundary of
the ADPR-binding cleft (Tucker et al., 2012). Glu756
works together with the catalytic water molecule to
attack the glycosidic bond in PAR. The side chain of
Tyr795 may be involved in substrate release. In addi‐
tion, the crystal structure of PAR fragments bound to
inactive Tetrahymena thermophila PARG (TTPARG)
reveals that canonical PARGs, including human
PARG, can predominantly act as exo-glycohydrolases
owing to the high-affinity binding of the PAR
terminus in exo-mode. The inherent binding prefer‐
ence is closely related to the conserved adenosine
stacking residue Phe902 (the corresponding residue in
T. thermophila PARG is Phe398) (Barkauskaite et al.,
2013). Moreover, other pockets are observed in this
catalytic domain, such as those on the surface of the
N-terminal extension and a deep hydrophilic pocket
located on the opposite face of the catalytic center. It
is possible that these pockets provide contact sites for
interactions with functional partners or protein sub‐
strates of PARG (Tucker et al., 2012).

Fig. 2 Structural analysis of human adenosine diphosphate (ADP)-ribosylhydrolases. The ADP-ribose (ADPR)
molecule is in yellow stick, and the catalytic water is shown in blue sphere. (a) The poly(ADP-ribose) glycohydrolase
(PARG) catalytic domain is a macrodomain (Protein Data Bank (PDB) code: 4B1H). The N-terminal extension is shown
in wheat cartoon, the terminal extension in light-blue, and the macrodomain core in green. The catalytic residue Glu756
is in green stick. The substrate release-related residue Tyr795 is in cyan stick, and the conserved Phe875 is in light-blue
stick. The Tyr-clasp is shown in cyan. Both the ADPR diphosphate-binding loop and the PARG-specific motif are in red.
(b) Structural analysis of the terminal ADP-ribose protein glycohydrolase 1 (TARG1)-ADPR complex (PDB code: 4J5S
and 2L8R). ADPR is located at the surface cleft in TARG1. The catalytic residues Asp125 and Lys84 are in sticks.
(c) Structural analysis of the MacroD1-ADPR complex (PDB code: 6LH4). The conserved catalysis-related residue
Phe272 is shown in light-blue stick, and the conserved hydrogen bond network is in red dash. (d) Structural analysis of
MacroD2-ADPR complex (PDB code: 4IQY). The conserved catalysis-related residue Tyr190 is shown in light-blue stick,
and the conserved hydrogen bond network is in red dash.
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Although the TARG1 macrodomain adopts a
similar three-layered α-β-α sandwich, the folding is
much simpler, with a six-stranded β sheet surrounded
by α-helices on each side. The ADPR-binding pocket
is formed by four surface loops (Fig. 2b). The catalytic
site consists of Ser35, Lys84, and Asp125. The
Lys84/Asp125 catalytic dyad is responsible for the re‐
lease of ADPR from protein substrates (Sharifi et al.,
2013).

Recently, we have determined the crystal struc‐
ture of the MacroD1-ADPR complex (Yang et al.,
2020). The MacroD1 exhibits a canonical macrodo‐
main fold and ADPR binds to its deep substrate-
binding cleft (Fig. 2c). Upon ADPR binding, signifi‐
cant conformational changes are observed in MacroD1.
The conserved Phe272, catalytic water and ADPR α-
phosphate are essential for MacroD1-mediated DPR
hydrolysis. Phe272 contributes significantly to
the orientation of ADPR distal ribose (Fig. 2c).
This residue is relatively conserved in a subset of
macrodomain-containing ADP-ribosylhydrolases, such
as PARG and MacroD2 with Phe875 and Tyr190,
respectively (Figs. 2a and 2d). However, the TARG1
macrodomain does not have a phenylalanine or tyro‐
sine at the same position. Instead, the corresponding
residue at the position for the aromatic amino residue
is Asp125 (Fig. 2b). Thus, the conformation of ADPR
in the TARG1 macrodomain is slightly different from
that in MacroD1. The catalytic water is held and
oriented by a conserved hydrogen-bond network in
MacroD1, which is universal in the macrodomain hy‐
drolases (Fig. 2c). MacroD2 is the closest homolog of
MacroD1, and they share a very similar structural
fold, with a root-mean-square deviation (RMSD)
value of 1.3 Å for their corresponding Cα atoms
(Fig. 2d). This results in an almost identical molecular
mechanism for the hydrolysis of ADP-ribosylation
(Jankevicius et al., 2013). Both MacroD1 and MacroD2
belong to a subset domain of the macrodomain,
namely the MacroD-type domain.

Unlike these catalytic active macrodomains, cata‐
lytic inactive macrodomains lose the key residues in the
catalytic center. A typical example is MacroH2A1.1,
in which the distal ribose of ADPR adopts a more
extended conformation. This is caused by the replace‐
ment of the phenylalanine with asparagine (Asn316 in
MacroH2A. 1.1) (Fig. 3a). Loss of the conserved
phenyl group of the phenylalanine abolishes steric

hindrance for the suitable conformation of the distal
ribose of ADPR in the catalytic site. Although the
overall structures of MacroH2A1.2 and MacroH2A2
are very similar to that of MacroH2A1.1, both
MacroH2A1.2 and MacroH2A2 cannot bind to ADPR.
Compared to MacroH2A1.1, three structural changes
in MacroH2A1.2, including the insertion of three
residues (Glu-Ile-Ser) into the adenine region, the verti‐
cal flip action of the adenine stacking residue phenyl‐
alanine, and the replacement of two Gly223-Gly224
residues by Lys224-Asp225, abolish the interaction
with ADPR (Fig. 3b) (Kustatscher et al., 2005).
For MacroH2A2,there structural differences render
the interaction with ADPR, including: (1) a proline
replacement distorts the ADPR phosphate-binding
loop (Pro315 in MacroH2A2); (2) a three-amino-acid
insertion occurs in the adenine-binding cleft, abolishing
the interaction between Asp203 and the adenosine moiety;
(3) the exchange of glycine (Gly224 in MacroH2A1.1
hydrogen-bonds the 1-OH of the distal ribose) with
charged residues (aspartate/glutamate) in MacroH2A2;
(4) the flip action of the adenine stacking residue
phenylalanine (Fig. 3c) (Kozlowski et al., 2018).

4 Evolution of the macrodomain

The macrodomain is an evolutionarily conserved
domain and exists in lower organisms such as bud‐
ding yeasts, bacteria, and viruses (Neuvonen and Aho‐
la, 2009; Leung et al., 2018). In Saccharomyces cere‐
visiae, two proteins containing macrodomain have
been identified, namely POA1 and YMR087W (Rack
et al., 2016). Both are involved in the metabolism of
ADPR 1"-phosphate (Appr1p), a byproduct of transfer

RNA (tRNA) splicing in yeast (Shull et al., 2005). As
phosphatases, these two macrodomains remove the
phosphate moiety from Appr1p. POA1 is also able to
remove ADPR from protein substrates in vitro,
although it is unclear if this enzymatic activity plays
any physiologically relevant role in vivo. However,
YMR087W is inactive in ADPR hydrolysis, which
may be attributed to the replacement of the conserved
aromatic amino acid with alanine in YMR087W
(Jankevicius et al., 2013).

Although the protein ADPR transferase has not
yet been identified in bacteria, ADP-ribosylation
of proteins does occur (Simon et al., 2014).
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Macrodomains have been identified in bacterial spe‐
cies (Perina et al., 2014; Rack et al., 2016; Leung et al.,
2018), suggesting that they may participate in ADP-
ribosylation. In particular, Escherichia coli YmdB has
a macrodomain protein that can hydrolyze ADPR.
Other bacterial macrodomains have been identified to
remove ADP-ribosylation in Staphylococcus aureus
and Streptococcus pyogenes (Rack et al., 2015).
Although the physiologically relevant functions of
these macrodomains remain elusive, it has been
reported that the macrodomain protein DarG from
Mycobacterium tuberculosis acts as an antitoxin
(Jankevicius et al., 2016).

5 Macrodomains in viruses

Macrodomains have also been identified in more
than 150 types of viruses, such as hepatitis E virus, al‐
phaviruses, and coronaviruses (Egloff et al., 2006; Malet
et al., 2006, 2009; Fehr et al., 2018). The open reading
frame 1 (ORF1) of the hepatitis E virus contains a
macrodomain that is fused with a helicase domain and
an RNA-dependent RNA polymerase (RdRp) domain
(Nan et al., 2014), suggesting that the macrodomain may
facilitate viral RNA replication. In alphaviruses (e.g.,
Chikungunya virus (CHIKV)) and coronaviruses (e.g.,
severe acute respiratory syndrome (SARS) and SARS
coronavirus 2 (SARS-CoV-2)) (Egloff et al., 2006;

Jankevicius et al., 2013; Barkauskaite et al., 2015), the
nonstructural protein 3 (nsP3) has a macrodomain with
secondary folding similar to that of human MacroD1 and
MacroD2. Structural comparison between the macro‐
domains of CHIKV, SARS, and SARS-CoV-2 reveals
the following structural characteristics: (1) The viral
macrodomain exhibits a canonical macrodomain fold
containing an α-β-α sandwich core; (2) the central β
sheet is structurally conserved, in spite of the diverse
number of β -strands in the β sheet; (3) although the
number of α helices located on each side of the β sheet
may vary, the positions of the common α helices are
well conserved; (4) an aspartic acid involved in the
specific binding of the adenine base is highly conserved
in all macrodomains; (5) the catalytically relevant phenyl
group of the key aromatic residue is conserved for
ADPR hydrolysis (Fig. 4a) (Egloff et al., 2006; Malet
et al., 2009; Rack et al., 2016). As a result, all these viral
macrodomains, like human ADP-ribosylhydrolases, are
able to reverse ADP-ribosylation. Moreover, they can
dephosphorylate Appr1p, a byproduct from tRNA
processing (Fehr et al., 2018). In addition, positively
charged patches are observed outside of the ADPR-
binding pocket (Fig. 4b), and can bind negatively
charged polymers, such as PAR and RNA. Recently, it
has been shown that the viral macrodomain proteins
from venezuelan equine encephalitis virus (VEEV) and
SARS viruses can hydrolyse ADP-ribosylation from
RNA (Munnur et al., 2019). Thus, it is possible that these

Fig. 3 Structural analysis of enzymatically inactive macrodomains including MacroH2A1.1, MacroH2A1.2, and
MacroH2A2. (a) MacroH2A1.1 is able to bind adenosine diphosphate (ADP)-ribosylhydrolases (ADP)-ribose (ADPR),
but is catalytically inactive for ADPR hydrolysis (Protein Data Bank (PDB) code: 3IID). MacroH2A1.1 is shown in cyan
cartoon, and the adenine-binding residue Asp203, the distal ribose-interacting residues Gly223 and Gly224, and ad‐
enine-stacking residue Phe351 are in cyan sticks. The non-conserved Asn316 is also in cyan stick. The hydrogen-bond is in
red dash. The ADPR is in yellow stick. (b) Structural comparison between the MacroH2A1.1-ADPR complex (PDB code:
3IID) and apo-MacroH2A1.2 (PDB code: 1ZR5). The MacroH2A1.1 and MacroH2A1.2 are in cyan and gray cartoon, re‐
spectively. The red loop indicates the insertion of three EIS residues into the adenine region. The Phe352 in Mac‐
roH2A1.2 is in gray stick and shows a vertical flip compared to the adenine stacking residue in MacroH2A1.1.
Residues Lys224 and Asp225 are in light-blue sticks. (c) Structural comparison between MacroH2A1.1 and
MacroH2A2 (PDB code: 6FY5). MacroH2A1.1 and MacroH2A2 are in cyan and magentas cartoon, respectively.
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viral macrodomains not only regulate RNA metabolism
for their amplification, but also may render ADP-
ribosylation and affect other cellular processes in hosts.

6 Perspective

Macrodomains share a similar secondary fold‐
ing and tertiary structure, and have diverse biologi‐
cal functions ranging from DNA damage repair to vi‐
ral replication (Rack et al., 2016). Due to their con‐
served structure, many macrodomains have ADP-
ribosylhydrolase activity (Jankevicius et al., 2013;
Rosenthal et al., 2013). Knowledge gained from the
analysis of human ADP-ribosylhydrolases, may fur‐
ther our understanding of the biological functions and
molecular mechanisms of the macrodomains during
pathogen invasion (Kowieski et al., 2008; Daugherty
et al., 2014), especially in relation to SARS-CoV-2.
Since it is required for viral amplification (Lastarza
et al., 1994; Gorbalenya et al., 2006), targeting the mac‐
rodomain could be a novel approach for suppressing
virus invasion. Using in silico and biochemistry

screening, small molecular inhibitors have been de‐
veloped for targeting the macrodomain of PARG.
These small molecular inhibitors directly block the
enzymatic center of PARG, thus abolishing its cata‐
lytic activity (Chen and Yu, 2019; Houl et al.,
2019; Kassab et al., 2020). Using a similar strategy,
it may be possible to develop novel inhibitors that
disrupt the ADP-ribosylhydrolase activity of the
macrodomain of SARS-CoV-2 for the eradication
of coronavirus disease 2019 (COVID-19).
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