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Abstract: The higher-order structure (HOS) of protein therapeutics is directly related to the function
and represents a critical quality attribute. Currently, the HOS of protein therapeutics is characterized
by methods with low to medium structural resolution, such as Fourier transform infrared (FTIR), cir-
cular dichroism (CD), intrinsic fluorescence spectroscopy (FLD), and differential scanning calorimetry
(DSC). High-resolution nuclear magnetic resonance (NMR) methods have now been introduced,
representing powerful approaches for HOS characterization (HOS by NMR). NMR is a multi-attribute
method with unique abilities to give information on all structural levels of proteins in solution. In
this study, we have compared 2D 1H-13C HSQC NMR with two established biophysical methods, i.e.,
near-ultraviolet circular dichroism (NUV-CD) and intrinsic fluorescence spectroscopy, for the HOS
assessments for the folded and unfolded states of two monoclonal antibodies belonging to the sub-
classes IgG1 and IgG2. The study shows that the methyl region of the 1H-13C HSQC NMR spectrum is
sensitive to both the secondary and tertiary structure of proteins and therefore represents a powerful
tool in assessing the overall higher-order structural integrity of biopharmaceutical molecules.

Keywords: higher-order structure; tertiary structure; fluorescence; circular dichroism; NMR; HOS by
NMR; product characterization; biopharmaceuticals

1. Introduction

The higher-order structure (HOS) of proteins includes the secondary, tertiary, and qua-
ternary structure, and represents a critical quality attribute directly related to the structural
integrity and the function of therapeutic proteins. The characterization of HOS represents a
significant challenge for biopharmaceuticals and is currently being performed using low- to
medium-resolution biophysical methods, such as Fourier transform infrared spectroscopy
(FTIR), circular dichroism (CD) spectroscopy, intrinsic fluorescence spectroscopy (FLD),
and differential scanning calorimetry (DSC) [1,2]. With the increasing interest in different
protein modalities in biopharmaceutical development and the rapidly expanding area of
biosimilar development, there is a growing need for new analytical methods with higher
specificity than the methods commonly applied. During the development and lifecycle of
protein therapeutics, the innovator product will most often go through multiple process
changes, in which it is required to show that any process-related drug product variations
are within the acceptable criteria, and therefore considered comparable. In a similar fashion,
it is required to show similarity between the biopharmaceutical reference product and
developed biosimilars. The application of nuclear magnetic resonance (NMR) for the as-
sessment of HOS has been suggested as a technology with the potential to more accurately
assess differences in HOS as compared to established methods [3]. This technology, referred
to as Profile NMR, is based on a one-dimensional diffusion NMR method, in which the
strong signals from excipients are efficiently suppressed by dephasing the signals through
gradients due to faster Brownian motions of smaller excipient molecules as compared
to larger protein in the sample, leaving a spectrum of the protein product only [4,5]. In
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addition to the 1D NMR method, a 2D 1H-13C HSQC method was introduced [6], which
shows great promise for the HOS assessment of monoclonal antibodies (mAbs) [7]. Finally,
mass spectrometric methods, such as hydrogen-deuterium exchange experiments, have
also gained considerable interest for the assessment of biopharmaceuticals [8,9].

In this study, we have compared two established methods, near-ultraviolet circular
dichroism (NUV CD) and intrinsic fluorescence (FLD) spectroscopy, for the assessment of
HOS for biopharmaceuticals against a 2D 1H-13C HSQC NMR method modified to suppress
signals from excipients. To demonstrate the effect HOS has on each spectroscopic method,
we compared the folded and unfolded states of two monoclonal antibody subclasses, IgG1
and IgG2, with about 95% sequence identity.

2. Results

The NUV-CD spectra of the folded and unfolded states of IgG1 and IgG2 are shown
in Figure 1. The effects of HOS on the differential absorption of left and right circularly
polarized light can be seen in the spectral comparisons of the folded and unfolded states
of IgG1 and IgG2, in Figure 1A,B, respectively. In general, the NUV-CD spectra of native
proteins are characterized by distinct features at around 293 and 286 nm attributable to
tryptophan, at 285 to 270 nm attributable to tyrosine and tryptophan, and 250–265 nm
attributable to phenylalanine, superimposed over the disulfide signal from 250 to 280 nm.
While the unfolded spectra of both IgG’s show relatively featureless lines close to zero
(Figure 1D), the folded spectra show absorption changes for the chromophores: tryptophan,
tyrosine, and phenylalanine, indicating that these pendent groups are incorporated into
highly organized portions of the protein, i.e., tertiary structure. Furthermore, even small
differences in HOS and primary structure give rise to unique spectra for the folded states
of the two mAbs, allowing them to be distinguished from each other as well (Figure 1C).

Figure 1. NUV-CD spectra of the folded and unfolded samples of IgG1 (A) and IgG2 (B). Comparison of the spectra from
the folded states of the IgG1 and IgG2 molecules in (C), and the unfolded states for these two molecules in (D).

The FLD spectra of the folded and unfolded states of IgG1 and IgG2 are shown in
Figure 2. The emission wavelengths of the internal fluorophores: tryptophan, phenylala-
nine, and tyrosine, are sensitive to the polarity of their environments. Higher polarity
environments, particularly water from the solvent, cause the wavelengths of emission
to lengthen (i.e., red shift). Therefore, unfolded proteins with more solvent-exposed flu-
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orophores will appear more red-shifted than proteins whose tertiary structure tends to
sequester these fluorophores in internal, more non-polar environments (Figure 2A,B) [10].
In our study, for both the mAbs IgG1 and IgG2, the folded spectra have a peak around
323 nm, and upon unfolding, the peak shifts to around 345 nm. We also observe that the
fluorescence intensity upon unfolding increases (by almost 30%) for both mAbs and is due
to the fact that the fluorescence quenching groups are further apart in the unfolded protein
than in the native protein, resulting in significant lowering of energy transfer efficiency in
the native protein [11]. However, little else about the HOS of the mAbs can be seen by their
essentially indistinguishable folded spectra (Figure 2C). In addition, as clearly indicated in
Figure 2D, the unfolded spectra for the two mAbs are essentially identical.

Figure 2. FLD spectra of the folded and unfolded samples of IgG1 (A) and IgG2 (B). Comparison of the spectra from the
folded states of the IgG1 and IgG2 molecules in (C), and the unfolded states for these two molecules in (D).

The 1H-13C HSQC NMR methyl spectra of the folded and unfolded states of IgG1 and
IgG2 are shown in Figure 3. NMR relays information about the local magnetic environments
of the nuclei under investigation both through chemical bonds and spatially by the other
atoms surrounding them. Atoms in more magnetically shielded environments have lower
chemical shifts (plotted in ppms), while atoms in less shielded environments have higher
chemical shifts. 2D 1H-13C HSQC NMR experiments are designed to correlate both protons
(x-axis) and the carbon-13 atoms (y-axis) that they are directly attached to in a molecule.
Since proteins are almost entirely composed of protons and carbons, NMR provides a
wealth of information about primary structure and all levels of HOS. The resolution of
primary structure can be seen in the unfolded spectra of IgG1 and IgG2 (Figure 3B,D). In
the absence of any ordered secondary or tertiary structure, the unique chemical signals of
different amino acids are resolved and by comparison to reported random-coil (unfolded)
chemical shifts, side-chain units, particularly the methyl groups, can be tentatively assigned
(Figure 4) [12]. In the folded state, the various magnetic environments of each individual
amino acid disperse the side-chain signals to produce a truly unique spectrum for each
protein, which is dependent upon all levels of HOS, as shown in Figure 3A,C.
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Figure 3. 2D 1H-13C HSQC spectra of the folded and unfolded samples of IgG1 and IgG2. (A,B) show IgG1 in the folded
and unfolded state respectively, whereas (C,D) show IgG2 in the folded and unfolded states respectively. 1H is represented
on the x axis (f2), and 13C is represented on the y axis (f1).

Figure 4. Multiplicity-edited 2D 1H-13C HSQC spectra of the unfolded state of IgG2. Red peaks are either CH or CH3, blue
peaks are CH2. The methyl groups of each amino acid are shown in red boxes corresponding to the random coil 1H and 13C
shift ranges for the six methyl groups [12]. 1H is represented on the x axis (f2), and 13C is represented on the y axis (f1).
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3. Discussion

In this study, we have compared the ability of NUV-CD, FLD, and 2D NMR to measure
HOS in two monoclonal antibody subclasses, IgG1 and IgG2. Unlike NUV-CD and FLD,
which are only able to infer structural integrity from a limited number of chromophores
in a protein, 2D NMR provides structural information about the entire molecule and is
hence sensitive to even subtle changes in all levels of HOS. If low-resolution spectroscopic
methods such as NUV-CD and FLD currently set the bar for assessing the structural
integrity of biopharmaceuticals, we propose that vastly more informative 2D 1H-13C HSQC
NMR methods become a replacement in many cases for this type of HOS assessments, and
for the product characterization of biopharmaceuticals.

4. Materials and Methods
4.1. Sample Preparation

The test solutions were prepared from 100 mg/mL monoclonal antibodies IgG1 and
IgG2 in the formulation buffer: 10 mM sodium acetate buffer, 9% (w/v) sucrose, at pH 5.2.
The sequence identity comparing the IgG1 and Ig2 antibodies is 95% [13]. The IgG1
molecule harbors glycosylation on N302, while the IgG2 molecule contains glycosylation
modifications on N298. Stock solutions of intact (folded) IgG1 and IgG2 were prepared
at 50 mg/mL in the same formulation buffer. Stock solutions of the denatured (unfolded)
IgG1 and IgG2 were prepared at 50 mg/mL in the formulation buffer, with 6M urea and
50 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP).

4.2. Intrinsic Tryptophan Fluorescence Spectroscopy

Intrinsic tryptophan fluorescence spectra were obtained using an Applied Photo-
physics qCD Chirascan equipped with a fluorimeter at ambient temperature using cuvettes
with a path length of 1 cm. Samples were run with an excitation wavelength of 280 nm,
an excitation bandwidth of 5 nm, boxcar width of 5 nm, and averaged over 10 scans, with
each scan taking 1 s. All mAb samples were diluted to approximately 0.033 mg/mL with
buffer before measurements. Each sample was measured in triplicate and buffer blanks
were subtracted before data analysis. The spectra were overlaid with each other and
the similarity was compared by calculating the variability of the maximum fluorescence
intensity and the wavelength at the maximum fluorescence.

4.3. Near-Ultraviolet Circular Dichroism Spectroscopy

The NUV-CD spectra were obtained on an Applied Photophysics qCD Chirascan
spectropolarimeter at ambient temperature. The protein samples were analyzed at a
concentration of about 0.5 mg/mL (both folded and unfolded). Using cuvettes with
a pathlength of 1 cm, the spectra were corrected for concentration and contributions
from the buffer and are reported as Mean Residue Molar Ellipticity. Each spectrum is
an average of 4 scans and was smoothed with a 7-point smoothing function using the
OMNIC 32 software (Thermo Fisher Scientific Inc.). Background nitrogen blanks and buffer
blanks were measured to eliminate the signals from the nitrogen, cuvette, and buffer. The
parameters for the Near UV CD were: 1 cm path length, 240–350 nm wave range, 2 s
exposure time, 1 nm bandwidth, 0.5 nm step, and averaged over 4 runs with a 900 µL
sample volume.

4.4. Nuclear Magnetic Resonance

A Bruker Avance III 600 MHz NMR spectrometer equipped with a 5 mm CPTCI
cryoprobe was used to acquire NMR data at 310 K (37 ◦C) Bruker Biospin Corp, Billerica,
MA, USA). Samples were prepared in 5 mm step-down NMR tubes (Wilmad LabGlass,
Vineland, NJ, USA) with 5% D2O. A modified 2D gradient-selected, sensitivity-enhanced
1H-13C HSQC NMR method [14] with additional excipient signal suppression was used
to acquire the methyl fingerprints of the samples. The WET scheme [15] was used to
suppress the acetate signal, and the asymmetric adiabatic pulse (HS1/2, R = 10, 0.9 Tp;
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tanh/tan, R = 50, 0.1 Tp), with pulse length 375 µs [16], was applied to suppress the carbon
signals of the sucrose while exciting the methyl 13C signals of the protein. 2D 1H-13C
HSQC experiments for Figure 3 used the following parameters to acquire NMR data: The
f2 spectral width was 14 ppm centered on 4.7 ppm with 2048 points. The f1 spectral width
was 28 ppm centered on 21 ppm. Spectra were acquired with 128 increments with 50%
non-uniform sampling and 2048 scans in each increment, with recycle delay 0.5 s between
scans. The total experimental time was 26.5 h for each spectrum. Digital filtering for
0.4 ppm bandwidth was used to further remove the water signal. GARP decoupling was
applied during the WET scheme with 2.08 kHz RF power and the t2 acquisition with
4.16 kHz RF power. Shifted sine-squared bell window functions and zero filling were
applied to both dimensions before Fourier transform of the data. The final spectra were
4 k × 1 k. The spectrum in Figure 4 was acquired using the 1H-13C multiplicity-edited
HSQC (hsqcedetgpsisp2.2 in the Bruker library). The f2 spectral width was 9 ppm, centered
on 4.5 ppm with 2048 points. The f1 spectral width was 160 ppm centered on 80 ppm. The
2D data were obtained with 512 increments and 16 scans in each increment, with recycle
delay 1 s between scans. The total experimental time was 2.8 h. The data processing was
carried out using the spectrometer software (TopSpin, Bruker BioSpin Corp, Billerica, MA,
USA) and Mnova software (Mestrelab Research S.L., Santiago de Compostela, Spain).

5. Conclusions

The results show that 2D 1H-13C HSQC NMR is incredibly sensitive to primary,
secondary, tertiary, and quaternary structures, and provides unique fingerprints for both
the IgG1 and IgG2 subclasses used. Near-ultraviolet circular dichroism (NUV-CD) is also
able to differentiate between the two IgG subclasses, while intrinsic fluorescence (FLD) is
only able to distinguish between the folded and unfolded states of each protein, but not
able to distinguish IgG1 from IgG2. When the 2D NMR methyl fingerprints are visually
compared to the results from NUV-CD and FLD, the degree of HOS information captured
by 2D NMR is vastly superior to that of either currently established method. Our findings
therefore exemplify the superiority of NMR in the assessment of higher-order structural
attributes of biopharmaceuticals.
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HOS by NMR higher-order structure by nuclear magnetic resonance
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NUV-CD near-ultraviolet circular dichroism
FLD intrinsic fluorescence spectroscopy
NMR nuclear magnetic resonance
ppm parts per million
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