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Tumor necrosis factor (TNF)-α is a well-known pro-inflammatory cytokine. Increased

expression of Tnf-α is a feature of inflammatory lung diseases, such as asthma,

emphysema, fibrosis, and smoking-induced chronic obstructive pulmonary disease

(COPD). Using a mouse line with lung-specific Tnf-α overexpression (SPC-TNF-α) to

mimic TNF-α-associated lung diseases, we investigated the role of chronic inflammation

in the homeostasis of lung trace elements. We performed a quantitative survey of

micronutrients and biometals, including copper (Cu), zinc (Zn), and selenium (Se), in the

transgenic mice tissues. We also examined the expression of Cu-dependent proteins in

the inflammatory lung tissue to determine whether they were affected by the severe Cu

deficiency, including cuproenzymes, Cu transporters, and Cu chaperones. We found

consistent lung-specific reduction of the metal Cu, with a mean decrease of 70%;

however, Zn and Se were unaffected in all other tissues. RT-PCR showed that two

Cu enzymes associated with lung pathology were downregulated: amine oxidase, Cu

containing 3 (Aoc3) and lysyl oxidase (Lox). Two factors, vascular endothelial growth

factor (Vegf ) and focal adhesion kinase (Fak), related with Cu deficiency treatment,

showed decreased expression in the transgenic inflammatory lung. We concluded that

Cu deficiency occurs following chronic TNF-α-induced lung inflammation and this likely

plays an essential role in the inflammation-induced lung damage. These results suggest

the restoration of lung Cu status as a potential strategy in both treatment and prevention

of chronic lung inflammation and related disorders.

Keywords: biometals, COPD, inflammation, micronutrients, oxidative stress

INTRODUCTION

Many pulmonary diseases feature significant upregulation of cytokines such as tumor necrosis
factor (TNF)-α. For example, pulmonary fibrosis (Raghu et al., 2008), steroid refractory asthma
(Berry et al., 2006), chronic obstructive pulmonary disease (COPD) (Keatings et al., 1996; Churg
et al., 2002; Sakao et al., 2002), pulmonary Langerhans’ cell histiocytosis (Vassallo et al., 2000), and
emphysema (Lucey et al., 2002; Vuillemenot et al., 2004) all demonstrate a trend of inflammatory
cytokine upregulation. Commonly adopted techniques for treating inflammatory lung diseases
involve directly inhibiting inflammatory signaling and halting inflammatory positive-feedback
loops (Barnes, 2013; Vettorazzi et al., 2015). Therapies targeting Tnf-α overexpression are currently
the most utilized treatment option. However, novel strategies are needed to more effectively
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combat inflammation-associated lung disorders. Current
treatments aim to block the progression of inflammatory
damage; however, they are not a permanent solution for
chronic inflammation. One shortcoming of this strategy is
that merely stopping continued inflammation is unlikely to
reverse lung dysfunction caused by prior inflammatory damage.
To investigate the mechanisms of damage associated with
chronic TNF-α induced lung inflammation, we utilized a mouse
model (SPC-TNF-α) constitutively overexpressing Tnf-α in the
lungs (Miyazaki et al., 1995). Histological and physiological
studies of the SPC-TNF-α lung suggest that it represents the
common/converging features of inflammation-induced lung
damage in fibrosis and COPD (Fujita et al., 2001; Lundblad
et al., 2005; Thomson et al., 2012). COPD is a prevalent multi-
systemic disorder with no cure and no efficacious treatment
options (Brusselle et al., 2011). We sought to identify reversible
physiological processes that are disrupted by the chronic
inflammation in COPD and other lung disorders. The SPC-TNF-
α model offers unique advantages to do so and may lead to the
discovery of novel treatment and prevention alternatives.

Maintaining homeostasis of trace elements (e.g., biometals
and minerals) is pivotal for normal physiology; imbalance in
any of them may lead to pathological outcomes in humans
(Rayman, 2012; Xu et al., 2013). Trace elements play a number
of roles which may link their level of activity to the severity
of COPD. Copper (Cu), zinc (Zn), and selenium (Se) are
all biometals/minerals that regulate redox balance, thereby
suppressing oxidative stress. Considering that oxidative stress is
involved in the progression of lung inflammation, any disruption
of these trace element levels in COPD patients may result in
tissue inflammation and damage (Chung and Adcock, 2008; Zuo
et al., 2012, 2015). Therefore, monitoring their levels in COPD
patients has potential significance when evaluating treatment
options. If trace elements are significantly disrupted following
chronic inflammation, this pathophysiological process may be
important for the therapeutic target of the disease. Currently,
trace elements in the clinical setting have failed to establish
a consensus regarding the relationship of their serum levels
and COPD partly due to the challenges of establishing accurate
measurement in the human lungs (Karul et al., 2003; Karadag
et al., 2004; Tanrikulu et al., 2011). In order to overcome these
barriers, we sought to investigate trace element status in an
animal model where we could directly take the measurements
from the tissue. These trace elements can then be assessed
for their association with the COPD-like lung phenotypes of
the SPC-TNF-α model as described previously (Zuo et al.,
2014). In this study, we examined the profiles of three key
biometals and micronutrients in chronically inflamed tissues.
We compared Cu, Zn, and Se contents in the tissues from
SPC-TNF-α and wild-type (WT) mice. We reported a marked
reduction of Cu levels in the lungs, but not other tissues in our
animal model. This coincided with a decreased expression of
multiple Cu-responsive genes, including relevant signal factors,
Cu-dependent enzymes (proteins requiring Cu as a cofactor),
and regulators for Cu homeostasis. These results also revealed a
discrepancy between direct Cu quantitation in lung with current
clinical approaches that attempt to infer Cu-status from plasma

(Kadrabova et al., 1996; Malavolta et al., 2010). Our results
suggest that TNF-α-induced chronic lung inflammation results
in severe Cu deficiency and such imbalance of Cu homeostasis
might contribute to the pathogenesis of chronic inflammatory
lung diseases such as COPD.

MATERIALS AND METHODS

Animal Care and Tissue Isolation
SPC-TNF-α transgenic mice used in this study demonstrated
chronic pulmonary inflammation as well as oxidative stress
resulting from the constitutive overexpression of Tnf-α in
the alveolar epithelial cells (Zuo et al., 2011, 2014). All
animal experiments were approved by the Oakland University
Institutional Animal Care and Use Committee (IACUC #15065).
Aged mice over 16 months old were used in this study. Age-
matched transgenic mice (n = 7) and WT mice (n = 7) were
weighed and sacrificed by CO2 asphyxiation. Whole blood, heart,
lung, liver, spleen, and kidney tissues were collected from each
mouse. One half of the tissue was snap frozen by liquid nitrogen
for gene expression analysis and the other half was weighed and
used for assessment of trace element content.

Fixation of Lungs and Quantification of
Airspace Enlargement
The lung was in situ fixed based on the method of Braber
et al. (2010). In order to prevent the flow of blood into the
bases of the lungs, the mice were exsanguinated by an incision
to the caudal vena cava (Braber et al., 2010). A cannula was
then inserted into the trachea and the left lung was inflated
by gentle infusion of cold 4% paraformalin for 5min. After
inflation, the lungs were immersed in fresh fixative for 24 h. The
lung lobes were then embedded in paraffin and cut into 5-mm
transverse sections. Sections were stained with hematoxylin and
eosin (H&E). Enlargement of alveolar spaces was determined by
the measurement of mean linear intercept (MLI) using image
analysis software (ImageJ) (Luthje et al., 2009).

Quantification of Cu, Zn, and Se in Animal
Tissues
Three trace elements Zn, Cu, and Se were measured in isolated
mouse tissue. Tissues were separated and digested in 100µL
of 70% nitric acid at 80◦C until dissolved. The samples were
then centrifuged and supernatants were diluted in 1% nitric
acid. Trace element content was quantified by an Inductively
CoupledMass Spectrometer (ICP-MS, Perkin-Elmer Nexion 300,
Waltham, MA) (Klemm et al., 2011).

Semi-Quantitative RT-PCR in Gene
Expression Studies
Lung samples were analyzed by semi-quantitative RT-PCR for
expression of genes related to Cu homeostasis and proteins that
use Cu as a cofactor. Primer sequences are given in Table 1. Total
RNA was isolated from mouse lung tissue using the RNAeasy
kit (Qiagen, Hilden, Germany), and an equal amount of RNA
was reverse transcribed into cDNA using M-MLV enzyme and
random hexamer primers. PCR products were separated by
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TABLE 1 | DNA sequence of primers used to detect gene expression by

semi-quantitative RT-PCR.

GENE FORWARD (5′-3′) REVERSE (5′-3′)

Cu transporter Ctr1 GGGCTTGGTAGAAGT

CCGTA

GAAAGTATCCCGTCC

CAGCC

Ctr2 CCGCAATCCTAGTCG

AGTCC

GTGGTCTGTCCCCTA

AAGGC

Atp7a GTGGGCTGGGAA

AGCCG

GTGCTGTGCTCTTCA

CAAGC

Atp7b GATGAAAGGACAGAC

GGCCA

TGCACTGCTCTTCAT

CCCTG

Cu chaperon Ccs GAACCATCGACGGCC

TAGAG

GCTACAGCACTTATCT

GCCCT

Atox1 ACTGCCCGTGT

GTGCC

GCCAAGGTAGGAAA

CAGCCT

Cox17 CAGGGTAGTCGGAGT

TTGGG

TCACAAAGTAGGCCA

CCACG

Cu protein Sod1 AACCATCCACTTC

GAGCA

CAATCCCAATCAC

TCCAC

Aoc3 TGGGTTTTACCCTCAC

CCCAT

TCCGGTTGCCAAGGT

ACAAT

Lox AGGGCGGATGTCAGA

GACTA

AATCCCTGTGTGTGT

GCAGT

Other genes Gapdh CCAATGTGTCCGTCGTG

GATCT

GTTGAAGTCGCAGG

AGACAACC

Tnf-α TAGCCCACGTCG

TAGCA

GGGGTCAGAGTAAAG

GGGTC

Vegf ACTGGACCCTGGCTT

TACTG

CTTGCGCTTTCGTTTT

TGACC

Fak AGCTTCAGCCCCAGG

AAATC

TGCTGATGAGCTCGC

CTAAG

electrophoresis on an agarose gel and quantified using ChemiDoc
Touch System (BioRad, Hercules, CA).

Statistical Analysis
Experimental results are expressed as mean ± SE. Differences
between groups were determined by an unpaired two-tailed
Student’s t-test using R software. Statistical significance was
achieved when p < 0.05.

RESULTS

Pathology Associated with Chronic Lung
Tnf-α Overexpression
Chronic constitutive overexpression of Tnf-α in our SPC-TNF-
α mouse model led to increased lung volume, as well as color
changes (Figure 1). H&E staining of lung tissue sections further
confirmed that SPC-TNF-α mice developed signs of COPD and
pulmonary emphysema, characterized by abnormal morphology
of enlarged air spaces (Figure 1). MLI, a common quantitative
measurement of emphysema, was used to quantify the degree
of air-space enlargement. MLI increased significantly (27.30 ±

0.69 vs. 73.97 ± 2.94µm, p < 0.01, n = 6) while body
weight decreased significantly (36.81 ± 1.35 vs. 27.38 ± 1.40 g,

p < 0.01, n = 7) in SPC-TNF-α mice compared to wild
type mice (Figures 2A,B). These data demonstrated that mouse
lungs with chronic overexpression of Tnf-α shares these hallmark
features of COPD, consistent with previous reports for mice of
various ages (Miyazaki et al., 1995; Fujita et al., 2001; Vuillemenot
et al., 2004; Eurlings et al., 2014).

Homeostasis of Cu is Specifically
Disrupted in the Tnf-α Transgenic Lung
Micronutrients and biometals have been reported to change
in response to different types of inflammation. It is known
that acutely inflamed tissues can experience decreased Se and
Zn, while Cu is often increased in plasma (Prasad, 2009;
Hodgkinson and Petris, 2012; Huang et al., 2012). Decreases in
levels of biometals and micronutrientss can promote numerous
pathologies that may lead to general tissue damage and the
progression of COPD (Karadag et al., 2004; Chung and
Adcock, 2008). Due to the association of micronutrient/biometal
deficiency with processes characteristic of COPD progression, we
quantified the levels of Cu, Zn, and Se in the whole blood, heart,
lung, liver, spleen, and kidney using ICP-MS (Roman et al., 2014).

Among these trace elements, Se concentrations remained
approximately constant in all analyzed tissues between SPC-
TNF-α and WT mice (Figure 3A). The Zn level in the tissues of
SPC-TNF-α and WT mice varied, but the differences were not
statistically significant (Figure 3B). Similar to Se and Zn, there
were no large differences in Cu concentration in the blood, heart,
liver, spleen, and kidney. However, Cu concentration in the lungs
significantly decreased (75%, p < 0.05) in the SPC-TNF-α mice
compared to the WT mice (Figure 3C). Notably, no significant
differences in Cu levels were observed in the whole blood of WT
and SPC-TNF-α mice.

Cu-Dependent Proteins Aoc3 and Lox, Cu
Transporters Atp7a and Atp7b, and
Cu-Responsive Signal Factors Vegf and
Fak Are Downregulated in the Transgenic
Tnf-α Lung
Following our finding that Cu is drastically decreased in the Tnf-
α transgenic mouse lung, we hypothesized this would result in
changes in the expression of Cu associated proteins, such as Cu
transporters, Cu chaperones, and Cu enzymes. We examined
the gene expression of these enzymes by semi-quantitative RT-
PCR (representative gel images are shown in Figure 4). We used
the expression level of Gapdh as a baseline control and then
investigated Cu homeostasis genes including Cu importers, Cu
transporter Ctr1 and Ctr2 as well as Cu intracellular and efflux
transporters ATPases asAtp7a andAtp7b. Altered expression was
only observed with Atp7a and Atp7b, which were downregulated
roughly two-fold (Figure 5). We examined other Cu homeostasis
genes, such as antioxidant 1 Cu chaperone (Atox1),Cu chaperone
for superoxide dismutase (Ccs), and cytochrome c oxidase Cu
chaperone (Cox17), both of which are chaperones involved in
intracellular Cu delivery and metabolism. However, the analyzed
genes showed no difference in expression between the two groups
(data not shown).
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FIGURE 1 | Representative lung morphology images showing the difference in size and color between H&E-stained lung sections of wild-type and

SPC-TNF-α mice.

FIGURE 2 | Mean data comparing the (A) mean linear intercept (MLI)

and (B) body weight between wild-type (n = 7) and SPC-TNF-α (n = 7)

mice. Data are expressed as mean ± SE. **Significantly different from control

(p < 0.01).

Next, we examined changes in the expression of several
cuproenzymes: superoxide dismutase 1 (Sod1), an antioxidant
protein; lysyl oxidase (Lox), an extracellular structural protein;
and amine oxidase, copper containing 3 (Aoc3), a vascular
adhesion protein. Among this group, both Lox and Aoc3 gene
expressions decreased in the inflamed lungs (Figure 5). Since
Lox plays an important role in the regulation of the extracellular
matrix (ECM) status (Mäki et al., 2005), the decrease of Lox
in inflamed lungs appears consistent with their observed gross
morphological defects (Figure 1).

We also measured the expression of vascular endothelial
growth factor (Vegf ) and focal adhesion kinase (Fak). Decreased
expression of these two factors is proposed to be involved
in lung function changes found in Cu-deficiency-induced
emphysema and smoking-induced emphysema (Mizuno et al.,
2012; Sakhatskyy et al., 2014). We found that the expression
levels of both genes significantly decreased in the inflamed lung
(Figure 5).

DISCUSSION

Lung inflammation becomes more prevalent with increasing
age and potentially predisposes elderly to several pulmonary

diseases (Canan et al., 2014). A large amount of research has
been dedicated to reducing inflammatory cascades; however,
little has focused on reducing or reversing the damage caused
by chronic inflammation (Chung and Adcock, 2008; Barnes,
2013). The SPC-TNF-α transgenic mouse model mimics the
common inflammatory features in human lung pathologies and
is a convenient tool for investigating the molecular mechanism
of lung inflammation. Our studies evaluated the homeostasis of
three important trace elements, Cu, Zn, and Se, in the tissues of
transgenic SPC-TNF-αmouse model. We report for the first time
that Cu is markedly downregulated by TNF-α-induced chronic
inflammation in the lungs. These results show that chronic
inflammation-induced Cu-deficiency likely plays a causative role
in the progression of lung inflammation.

Proper homeostasis of trace elements such as Cu, Zn, and Se is
crucial for normal physiology, as an imbalance of these elements
can lead to severe pathologies in mammals (Hodgkinson and
Petris, 2012; Rayman, 2012; Xu et al., 2013; Roman et al., 2014;
Zheng et al., 2015). Due to the multiple roles of these trace
elements, the physiological significance of their deficiencies are
numerous and complex. These elements have both direct and
indirect roles in inflammation, oxidative stress, and immune
responses. Their primary role is as cofactors for metalloproteins,
including antioxidants, signal transduction, and transcription
proteins (Prasad, 2009; Galli et al., 2012; Roman et al., 2014). The
emerging findings of Cu deficiency-induced emphysema have
suggested Cu as a paramount contributor in the progression of
COPD and other lung disorders (Mizuno et al., 2012). Our results
showed that chronic inflammation results in dramatic decreases
in lung Cu content (∼75%). This suggests Cu deficiency may
be a factor in disease progression. Interestingly, Zn and Se,
which are often decreased during acute severe inflammation,
were unaffected in the lungs or other tissues in our chronic
inflammation mouse model. Our analysis also showed that Cu
was not significantly altered in other tissues, including the whole
blood.

Cu is an essential component of antioxidant enzymes,
such as superoxide dismutase (SOD) and catalase (Marklund,
1982). Dietary Cu deficiency affects both innate and acquired
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FIGURE 3 | Mean data showing the concentrations of (A) selenium

(n = 7), (B) Zinc (n = 7), and (C) copper (n = 7) in tissues of wild-type

and SPC-TNF-α mice. Mice tissues were isolated and digested, then

quantified by ICP-MS. Concentrations were standardized using “wet” weight

concentration (ng Se/mg tissue). Data are expressed as mean ± SE.

*Significantly different from control (p < 0.05).

immunity (Koller et al., 1987; Percival, 1995; Percival et al.,
1995; Munoz et al., 2007). Some studies have shown elevated
serum Cu levels in COPD patients (Tanrikulu et al., 2011).
Other studies have reported increased Zn and Cu levels in
sputum samples from a wide range of lung diseases (e.g.,
bronchiectasis, cystic fibrosis, asthma, and COPD) (Gray et al.,
2010). However, contradictory studies have documented no
variation in serummetal concentrations of COPD patients (Karul
et al., 2003). These inconsistencies have rendered it difficult to
fully understand the status of trace element in COPD lungs as
well as other respiratory disorders. Most evaluations rely on
analyzing serum/urine/sputum samples, since they are easier to
access than the patient tissues. As a result of this limitation,
the evaluation and supplementation of minerals and biometals
remains unexplored and is not a recommended treatment in
COPD (Karul et al., 2003). Therefore, the most ideal alternative
is to directly examine the outcomes of chronic inflammation in
tissue samples using an animal model. Our SPC-TNF-α mouse
model, which displays a clear COPD-like pathological condition,
shows a trend of elevation of Cu in the whole blood, yet it

FIGURE 4 | Representative gel images showing the expression of

genes involved in Cu trafficking (transporters and chaperones) and

several Cu enzymes critical to immunity and ECM structure analysis in

lung tissues from SPC-TNF-α and WT mice.

FIGURE 5 | Bar graph comparing the relative gene expression of WT

and SPC-TNF-α lungs for two Cu transporters (Atp7a and Atp7b, n = 3

each); two Cu enzymes (Aoc3 and Lox, n = 3 each); and two signaling

proteins reported to relate to Cu-status (Vegf and Fak, n = 3 each).

Expression was quantified by ImageJ based on the gel images. Data are

expressed as mean ± SE. *Significantly different from control (p < 0.05).

**Significantly different from control (p < 0.01).

is not at significant. In contrast, Cu concentration is markedly
reduced in the lungs. This demonstrates that serum samples,
often the basis for the clinical diagnosis of Cu deficiency, in this
case appears not to accurately reflect tissue Cu status during
chronic lung inflammation. Consequently, Cu deficiency may be
an undetected occurrence in human lung disorders. This may be
a serious concern due to the known general importance of Cu to
normal lung function (Mahabir et al., 2007).

Our results indicated the Sod1 expression does not differ
between lungs with chronic inflammation and WT controls. We
also observed that several other Cu proteins are dysregulated due
to the lung pathology. Moreover, Aoc3, the Cu amine oxidase, is
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downregulated in the Tnf-α overexpressed transgenic lung. Aoc3
encodes a member of the semicarbazide-sensitive amine oxidase
family, which catalyzes the oxidative conversion of amines to
aldehydes in the presence of Cu and quinones. As an endothelial
adhesion molecule involved in the extravasations of immune
cells to sites of inflammation, dysregulation of Aoc3 is expected
to affect immune responses and may be associated with lung
pathologies (Figure 6; Dunkel et al., 2014). In addition, another
Cu-dependent enzyme gene Lox was found to be downregulated
in the SPC-TNF-α lung. Lox is responsible for the maturation
of collagen and elastin (Mäki et al., 2005). Lox is crucial for the
development of the respiratory system in humans. Transgenic
mice with decreased Lox expression show pathologies resembling
those found in human patients with emphysema and dilated
distal airways (Mäki et al., 2005; Kumarasamy et al., 2009).
This leads to the possibility that Cu-induced Lox deficiency may
contribute to the development and progression of emphysema.

Cu homeostasis is associated with cellular copper transporters,
including importers and exporters, as well as intracellular
endosomal and endoplasmic reticulum transporters. Here we
examined the expression of four transporters: Ctr1 and Ctr2
(importers); Atp7a and Atp7b (intracellular transporter and
exporter). Surprisingly, Cu importers were not downregulated
despite major Cu deficiencies in the lung. Both Atp7a and
Atp7b were downregulated in the SPC-TNF-α lung. Both of
these transporters are critical for the provision of Cu to
cuproenzymes and the efflux of intracellular Cu (La Fontaine

and Mercer, 2007). On the one hand, downregulation of Atp7a
and Atp7b may potentially decrease overall Cu delivery to
cuproenzymes and consequently inhibit their activities. On the
other hand, downregulation of the transporters Atp7a and Atp7b
is likely a protective response to preserve intracellular Cu during
deficiency.

Support for a causative role of decreased Cu in emphysema
development has been found in studies of rats where Cu-deficient
diets developed emphysema (Mizuno et al., 2012). In those
studies, Cu deficiency is reported to result in Fak and Vegf
downregulation. These encoded proteins are critically important
for the maintenance of the lung structure. For example, VEGF is
involved in maintenance of bronchial and alveolar structures in
the lungs (Tang et al., 2004). On the other hand, the loss of FAK
function causes anchorage-dependent apoptosis (Mizuno et al.,
2012). Our results showed that the expression of Vegf and Fak
is downregulated during Cu deficiency in the constitutive Tnf-α
overexpressing lungs. This suggests that the Cu deficiency may
impair the FAK pathway, leading to cell apoptosis and thus the
development of emphysema-like symptoms of SPC-TNF-α lungs
(Mizuno et al., 2012). Consequently, we have presented a putative
physiological mechanism involving Cu-mediated proteins such
as Atp7a, Aoc3, Vegf, Fak, and Lox in the chronic inflammatory
lung diseases (Figure 6). However, not all Cu-related proteins
were affected by the severe Cu deficiency in the SPC-TNF-α
lung. These included Cu chaperones: Cox17, Ccs, and Atox1,
cuproenzymes: Sod1 and Cu transporter: Ctr1 and Ctr2.

FIGURE 6 | Schematic illustrating a putative mechanism underlying chronic inflammatory lung diseases involving Cu-deficiency-induced gene

expression disruptions in TNF-α lungs. Tnf-α, tumor necrosis factor-α; Aoc3, amine oxidase, copper containing-3; Lox, lysyl oxidase; Vegf, vascular endothelial

growth factor; Fak, focal adhesion kinase; Atp7a, copper-transporting P-type ATPase 7a.
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Our SPC-TNF-α mouse model, which displays a clear COPD-
like pathological condition, displayed a trend toward an elevation
of Cu in whole blood, although this did not reach statistical
significance. It is also recommended to supplement individual
trace element when needed and avoid the use of parenteral multi-
trace element nutrition (Howard et al., 2007; Vanek et al., 2012).
Possible mechanisms of Cu supplementation benefit could be the
following: (1) restoring critical Cu-dependent enzyme function,
and (2) benefitting supraphysiological cupri-enzyme activities,
which are observed to be generally beneficial in counteracting
various forms of stress and to promote wound healing (Fukai
and Ushio-Fukai, 2011; Duncan and White, 2012). To date, Cu
supplementation is not a standard treatment for any human
lung disorder. However, based on our discussion above, we
point to the plausibility of such a regimen. Following our
discovery that severe lung pathology is associated with dramatic
Cu deficiency, we hypothesize that Cu supplementation can
prevent and ameliorate inflammatory damage. Lung-specific Cu
supplementation may be an interest of future research.
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