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A B S T R A C T   

The nonlinear frequency response of bi-directional functionally graded porous beams experienced 
range of various end conditions is investigated in this work. The end conditions which are simply 
supported, clamped-simply supported, clamped-clamped, and clamped-free are taken by using the 
Von Karman geometric nonlinearity, Green’s tensor and Reddy third-order shear deformation 
theory. A generalized differential quadrature technique (GDQM) accompanied by direct numer
ical iterance approach is proposed to solve equations. The findings are presented to aid in future 
research into the effects of various gradient indices, vibration amplitude ratios, porosity co
efficients, shear and elastic substrate parameters, boundary conditions, and vibration frequencies 
on the bi-directional functionally graded beams. The outcomes of this research have practical 
applications and can be utilized to enhance the design of bi-directional beams. The results are also 
highly useful in anticipating and identifying potential causes of failure in these beams.   

1. Introduction 

Ceramics and metal are the two main components of functionally graded materials. Ceramics is a structural material that can 
endure high heat since It resists high temperatures and has a low heat transfer constant. Metal, a different structural material, con
trasted with, offers the necessary flexibility. Notably, Functionally Graded Materials (FGMs) do not experience the discontinuity issues 
that are present in typical composite constructions due to the continual modifications in mechanical characteristics. FGMs are superior 
to traditional composite laminates in several ways, including reduced thermal tensions, low-stress concentrations, attenuated stress 
waves, etc. FGMs have therefore found extensive use as structural elements in contemporary sectors including mechanical, nuclear, 
and aerospace engineering. When creating structural elements, FGMs are employed in place of isotropic materials. There is a broad 
tendency toward vibration analysis of these components under various realistic operating and boundary conditions. Free and forced 
vibration have been two areas of a study done to date by using various beam theories. Some of them were following classical beam 
theory (CBT) which is suitable for slender FG beams. Due to overstating the frequencies and omitting the transverse shear deformation 
impact, the CBT is not relevant for deeper ones. Timoshenko beam theory, commonly known as the first-order shear deformation beam 
theory, addresses the transverse shear deformation influence in order to improve the CBT [1]. To identify the difference between actual 
and assumed stress levels, a shear correction factor must be applied to the top and bottom surfaces of the FBT [1]. 
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Higher-order shear deformation theories without a shear correction factor can accurately predict the intrinsic frequency, 
displacement, and stress variants of moderately thick beams. A higher-order shear deformation model was used to investigate the 
vibrational behavior of FG beams. Using a higher-order finite element technique, Wen and Zeng [2] studied the frequency analysis of 
beams. Free vibration of FG beams was examined by Aydogdu and Taskin [3]. A variety of higher-order theories were used by Simsek 
[4] to define the frequency behavior of FG beams in a variety of terminal situations. Based on a variety of higher-order shear 
deformation theories, Huu-Tai Thai [5] investigated the free frequency analysis and vibration of FG beams. As a result of different 
boundary condition collocations based on various higher-order shear deformation beam theories, Pradhan and Chakraverty [6] 
demonstrated the free vibration behavior of FG beams using the Rayleigh-Ritz method. Using the Chebyshev collocation method and 
third-order shear deformation theory, Wattanasakulpong et al. [7] investigate the natural frequencies of elastically supported FG 
beams. Wang et al. use the Chebyshev-Ritz method to study the nonlinear bending of a sandwich beam with metal foam and GPLRC 
face-sheets using a third-order shear deformation theory supported by the von Kármán nonlinearity [8]. Zhang and Wang have 
recently re-energized a created third-order shear deformation theory in the temperature-dependent thermo-mechanical outputs of 
porous functionally graded graphene-reinforced composite panels [9]. 

Mechanical beams are grounded in several engineering applications. There are many types of construction in this area, including 
rail lines, geotechnical regions, highway walkways, buildings, offshore constructions, towers, and pipelines. Many scientists investi
gate how beams form on different elastic substrates due to this reason. Vibrations and bending difficulties with elastically supported 
beams and columns are common in structural engineering and substructure. Due to its mathematical simplicity, the Winkler base is 
often used to simulate the elastic basis in soil structure difficulties. 

As a result, it has been demonstrated that the linear tensile spring model does not accurately represent the behavior of substrate 
materials in engineering. As a result of Pasternak’s framework, a simple physical model close to simple mathematics was established 
using two parameters with shear interactions. In several studies, elastic substrates have been found to influence free beam vibration. 
Based on a general solution, Zhou [10] evaluated the frequency of isotropic beams on varying Winkler elastic substrates. A frequency 
analysis of isotropic beams on variable-parameter elastic substrates has been conducted by Eisenberger [11]. A two-parameter elastic 
substrate supported by a FG sandwich beam was investigated by Pradhan and Murmu [12]. To conduct the free vibrations and buckling 
of two-parameter elastic substrates resting on isotropic thick beams, Malekzadeh and Karami [13] utilized a combined differential 
quadrature and finite element method. Using the notion of least total potential energy, Akbas [14] extracted the governing system and 
related end conditions for free vibration and bending of functionally graded (FG) beams resting on the Winkler foundation. The 
Navier-type measure is implemented for static deflections and fundamental frequencies. To discretize the governing equations, 
Zahedinejad [1] investigated the free frequency evaluation of functionally graded beams on elastic substrates. Using the 
Euler-Bernoulli-based generalized differential quadrature method (GDQ), Yas et al. [15] investigated the free vibration of FG beams 
supported by two elastic substrates. A Chebyshev collocation approach was used by Tossapanon and Wattanasakulpong [16] inves
tigate the frequency behavior of functionally graded beams on two elastic substrates. In many current buildings, the material prop
erties of some structural components will vary in multiple directions due to the temperature field and mechanical stress distributed in 
multiple directions in the working environment. FG materials with multidirectionally changing material properties should therefore be 
investigated in two- and three-dimensions. All of the preceding research has focused on FG structures, whose material properties vary 
solely in one orientation. As a result, traditional FG structures fail to meet the stress and temperature dispersion criteria for aero
nautical applications in a variety of orientations. Li et al. investigated two-dimensional functionally graded beams [17]. The 
two-dimensional FG beams were analyzed with the aid of the Euler-Bernoulli beam theory and the generalized differential quadrature 
measure to estimate the linearized and nonlinearized displacements. Lei et al. [18] present a study of functionally graded 
bi-directionally defective beams based on third-order shear deformation theory. Based on Timoshenko beam theory, Mesut Simsek 
[19] investigated the free frequency behavior of bidirectional functionally graded materials, employing the implicit time integration 
Newmark method to solve the governing differential system. Zhi-hai Wang et al. [20] investigated an analytical solution for varied 
supports for two-dimensional functionally graded beams using the Euler-Bernoulli theory, as well as stability analyses of bidirectional 
functionally graded beams supported on elastic substrate Ghorbanpour [21] has investigated the transient stability of bi-directional 
functionally graded beams under harmonic excitation and a thermal environment. The study by Kazemzaeh-Parsi et al. [22] exam
ines multi-directional functionally graded plates using 3D elasticity solutions. 

Due to the progressive shift in volumetric constituent proportions, functionally graded materials have a non-uniform micro
structure and continuously properties. Almost all of the material in this device is ceramic on one side, which is heat-resistant, and metal 
on the other side, which is strong and durable. Functional grade materials combine these two essential features to enhance heat- 
resistant properties. The constant modification of these materials prevents cracking and scaling, which are common in layered 
composites. As the material cures, it can develop tiny holes, voids, or pores due to a significant difference in freezing temperatures 
between the components. Due to technological difficulties [23], FG materials are expected to have porosities and micro-voids. A 
number of porosities could result from contraction between the compositions of the metal and ceramic phases in FGM, as described by 
Zhu et al. [24]. There is a wide span of applications in sectors such as civil engineering, automotive, and aerospace for lightweight 
beams made of delibrately porous materials. A promising option for structures subjected to unstable stresses is to fabricate FGMs from 
porous materials [25]. Chen et al. [25] studied shear-induced free and forced vibrations of functionally graded porous beams. They 
employed the Timoshenko beam hypothesis, the Lagrange equation technique, and Ritz trial functions to account for transverse shear 
strain in the equation of motion. The equation of motion is then solved in the time domain using the Newmark approach. Based on the 
theories of Euler-Bernoulli and Timoshenko beams, Rjoub [26] used a transfer matrix approach to derive the natural frequency 
equations for functionally graded porous beams. Navvab Shafiei et al. [27] proposed a Timoshenko theory-based vibration assessment 
of bi-directional imperfect functionally graded nano/micro beams made of two unique porous materials. Solving the governing 
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equations under diverse end conditions is achieved using the generalized differential quadrature method (GDQM). Using a 
higher-order thermomechanical theory and an analytical solution based on Navier-type solutions, Ebrahimi [28] investigated the 
frequency evaluation of temperature-dependent FGM beams with voids. Two examples of porous beams were evaluated using a higher 
order shear deformation and Chebyshev collocation approach by Nauttawit Wattanasakulpong et al. [29]. Jian Lei et al. [18] 
investigated functionally graded imperfect bidirectional beam post-buckling using a novel third-order shear deformation theory. The 
extended differential quadrature method, the minimum potential energy concept, and von Karman’s nonlinear theory are used to 
formulate and solve nonlinear partial differential equations. The nonlinear vibration of Timoshenko beams with pores was examined 
by Ebrahimi et al. [30]. The extended differential quadrature approach was used by Khakpour et al. [31] to investigate how func
tionally graded porous beams vibrate in a temperature environment. 

Our daily experience is dominated by nonlinear phenomena (large amplitude), especially dynamic phenomena such as vibrations. 
In some cases, nonlinear systems exhibit characteristics that linear systems lack. In the workplace, it is often acceptable to assume 
linear behavior when dealing with nonlinear problems. However, the scientific community has begun to account for the improved 
accuracy of findings as a consequence of modern technical breakthroughs. Consequently, nonlinear difficulties have become an 
important subject in engineering, physics, and other disciplines. Bridges, skyscrapers, robotic arms, and other structures can be 
thought of as flexible beams from an engineering perspective. These structures are also described using nonlinear motion equations 
because they respond to natural vibrations in a nonlinear manner. There are three distinct ways in which a structure may become 
nonlinear: physically, geometrically or due to boundary conditions. 

Ebrahimi and Zia [30] proposed porous Timoshenko beams based on the nonlinear vibration features of FGM beams and studied 
how material variation, void volume percentage, slender ratio and mode number affect vibrational response. Using a massless elastic 
rotating spring, Kitipornchai et al. [32] studied the nonlinear frequency of edge-fractured functionally graded beams whose material 
characteristics were based on exponential form through the beam thickness. The Ritz methodology is utilized to create the governing 
eigenvalue equation in order to determine the nonlinear vibration frequencies of cracked FGM beams with different end supports. To 
solve the equation, the direct iterative technique is used. Malekzadeh and Shojaee [33] investigated the surface and nonlocal effects on 
the nonlinear free vibration of non-uniform nanobeams using Hamilton’s principle and Eringen’s nonlocal elasticity theory in the 
Euler-Bernoulli beam theory (EBT) and Timoshenko beam theory (TBT). Geometric nonlinearity has been modeled using Green’s 
tensor and von Karman’s assumptions. Wattanasakulpong and Chaikittiratana [34] used the differential transformation method (DTM) 
to solve linear and nonlinear vibration issues of elastically end restrained beams. Using the proposed differential quadrature technique 
to resolve displacements of bi-dimensional functionally graded (FG) beams rooted in Euler-Bernoulli beam theory (GDQM), Li et al. 
[17] investigated the nonlinear bending of bi-dimensional functionally graded beams. Tianzhi Yanga et al. [35] investigated 
bi-directional functionally graded nanobeams with exponential thickness and length gradations. The differential quadrature technique 
(DQM) is used to solve nonlinear problems. Ghayesh [36] discretized the governing equations of axially functionally graded tapering 
beams (AFG) subjected to external harmonic excitations using the Galkin technique and the third-order shear deformation beam 
theory. The force and frequency-amplitude diagrams of the AFG system are used to examine gradient index and tapered ratios. Ke Xie 
et al. [37] performed a nonlinear free vibration analysis on functionally graded beams using a variety of shear deformation theories. In 
this study, the Ritz method and the Lagrange equation were employed to construct discrete formulations. Songsuwan et al. [38] have 
investigated the nonlinear frequency of functionally graded-graphene platelet-reinforced composite (FG-GPLRC) beams subjected to 
various time-dependent stresses. The displacement fields are represented using third-order shear deformation theory, and the geo
metric nonlinearity is based on the von Kármán assumption. To obtain linear or nonlinear results, the study employs the 
Gram-Schmidt-Ritz approach with an iterative measure. Nonlinear transient response of sandwich beams possessing functionally 
graded porouscore under the action of moving load has recently been investigated by Songsuwan and Wattanasakulpong [39]. The 
governing equation system was developed using third-order shear deformation theory and the von Kármán assumption of geometrical 
nonlinearity. To achieve convergence in both the time and geometrical domains, the Gram-Schmidt-Ritz approach was used, together 
with iterative measures based on Newmark’s time-integration. 

Due to the inherent complexity of the higher-order shear deformation theory [1], powerful numerical measures are demanded to 
solve constitutive relations for diverse support conditions. In a range of scientific and technological fields, Bellman et al. [40] 
introduced the differential quadrature method (DQM). Beginning and boundary value problems can be effectively addressed using the 
DQM. An overview of the totally improvement of the DQ methodology can be found in Bert and Malik’s [41]. The differential 
quadrature method, with its global domain, is believed to be more effective for nonlinear problems than conventional numerical 
methods, in particular finite elements and finite differences [42]. 

Based on Reddy third-order shear deformation theory (RBT), no study has been conducted on the nonlinear frequency of bi- 
directional FG porous beams. Bi-directional FG porous beams lying on elastic substrates have not been studied for nonlinear fre
quency assessment. Based on the mid-plane bending and shear variants of the FG beam, a new notation for bi-directional FG beam 
analysis considers the transverse shear deformation. We study how porosity indexes, aspect ratios, power gradient indexces, and elastic 
substrate properties affect frequency behavior for a variety of end conditions. In order to calculate the large amplitude frequencies of 
FG beams exposed to varied end conditions, the Generalized Differential Quadrature Method (GDQM) accompiend by a precise and 
effective numerical method, is developed. Material properties change based on two models of power-law and exponential, in both 
thickness and axial directions of the beam. The technique’s convergence behavior is proven by comparing the findings to other so
lutions for isotropic and FG beams. The results reveal that non-linear frequency ratios increase with increasing amplitude ratios and 
decrease with increasing elastic substrate stiffnesses. In addition, as porosities and material indexes increase in two directions, non- 
dimensional frequencies decrease sharply. 
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2. Theory and formulation 

2.1. Kinematics and constitutive relations 

An elastic Winkler and Shear substrate is applied to a two-directional functionally graded beam with length L and a rectangular 
cross-section b × h. As shown In Fig. 1, the length, width, and height of the beam are measured in Cartesian coordinates (x, y, z). 

Using third-order shear deformation beam theories, displacement fields are selected according to the following assumptions. Wb 

and Ws are the bending and shear components of transverse displacement of a point on the mid-plane of the beam. In addition, the 
bending component of the axial displacement is similar to that supplied by the CBT. A bi-directional beam’s top and bottom shear 
stresses should diminish as well. The shear component of the axial displacement generates the higher-order variation of shear strain 
across the depth of a beam. As a result of these assumptions, the displacement field may be represented as follows [1]: 

U(x, z, t) = u(x, t) − z
∂wb(x, t)

∂x
− f(z)

∂ws(x, t)
∂x

W(x, z, t) = wb(x, t) + ws(x, t)
(1)  

In this case, u represents the axial displacement of a point from the beam’s midplane. In the midplane of a beam, the bending and shear 
components are Wb and Ws, respectively. The form function f illustrates how transverse shear stress and strain are distributed along FG 
beam’s thickness direction f(z). Since the shape function f (z) fulfills the stress-free boundary conditions on the top and bottom surfaces 
of the beam, no shear correction factor is needed. This is supported by Reddy’s third-order beam shear deformation theory [1]. F(z) can 
be expressed as follows Eq. (2): 

f(z) =
4z3

3h2
(2) 

Considering the displacement field Eq. (1), The von Karman strain formula which is actually the non-zero components of the 
nonlinear Green’s tensor, is derived in the form Eq. (3) [32,35,43,44]: 

Eqs. (4) and (5) represent the non-zero stresses. 

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

− z
∂2w
∂x2 (3)  

σxx =Е(x, z)

⎛

⎜
⎜
⎜
⎝

− z
∂2wb(x, t)

∂x2 − f(z)
∂2ws(x, t)

∂x2 +
∂u(x, t)

∂x
+

∂wb(x, t)
∂x

∂ws(x, t)
∂x

+
1
2

(
∂wb(x, t)

∂x

)2

+
1
2

(
∂ws(x, t)

∂x

)2

⎞

⎟
⎟
⎟
⎠

(4)  

σxz =G(x, z)
(

∂ws(x, t)
∂x

−
∂f(z)

∂z
∂ws(x, t)

∂x

)

=G(x, z)g(z)
∂ws(x, t)

∂x
(5)  

2.2. Bi-directional FG material porous properties 

According to the PFGM, metal and ceramic have variable volume fractions across thickness and axis as a result of the power-law 
distribution across the bi-directional beam (Fig. 1). Regarding the volume fractions of the constituents, specifically [26]: 

Vc + Vm = 1

Vc =

(
1
2
+

z
h

)Pz(x
L

)Px (6)  

where − h/2 ≺ z ≺ h/2 and px, pz are the material power-law indexes along length and thickness direction respectively, which accept 
values that are larger than zero. A wholly ceramic beam is represented by px and pz equal to zero, but a nearly entirely metallic beam is 

Fig. 1. Sketch of Bi-directional FG beam lying on substrate.  
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shown by px and pz close to infinity. The ceramic and metal volume fractions are indicated by the values Vc and Vm. Young’s modulus E, 
Poisson’s ratio ν, and e0 stands for the porosity formation throughout manufacturing processes which is inevitable. The each property P 
(x,z) can be written as [27]: 

P(x, z)=Pm

(
Vm −

e0

2

)
+ Pc

(
Vc −

e0

2

)
(7)  

which designates the components made of metal and ceramic by the subscripts m and c. Young’s modulus and mass density are stated 
as Eq. (8) [27] by substituting Eq. (6) into Eq. (7): 

P(x, z) = Pm + (Pc − Pm)

(
1
2
+

z
h

)Pz(x
L

)Px
−

e0

2
(Pc + Pm)

E(x, z) = Em + (Ec − Em)

(
1
2
+

z
h

)Pz(x
L

)Px
−

e0

2
(Ec + Em)

ρ(x, z) = ρm + (ρc − ρm)

(
1
2
+

z
h

)Pz(x
L

)Px
−

e0

2
(ρc + ρm)

(8) 

The fact that different kinds of functions are utilized to describe how the physical characteristics of FGM vary is also important to 
note. That is why, this paper utilizes an exponential function called the exponential function gradient model (EFGM) to explain the 
fluctuations in material traits that occur across the length and thickness of a beam. The EFGM is employed to capture the variability in 
porous material properties within the beam by using an exponential function Eq. (9) [45]. 

P(x, z) = Pm(1 − exp(e0))e
px

(

x
L+

1
2

)

+pz

(

z
h+

1
2

)

E(x, z) = Em(1 − exp(e0))e
px

(

x
L+

1
2

)

+pz

(

z
h+

1
2

)

ρ(x, z) = ρm(1 − exp(e0))e
px

(

x
L+

1
2

)

+pz

(

z
h+

1
2

)

(9)  

2.3. Fundamental formulations 

2.3.1. Constitutive relations 
From Hamilton’s law, it is possible to infer the constitutive relations. This may be stated as follows Eq. (10) [1–4] 

∫t2

t1

(
δK − δU − δVef

⎞

⎠dt = 0 (10)  

where t is the time, δK is the variation in kinetic energy, δU is the variation in strain energy, and δVef is the variation in potential energy 
of the elastic substrate. 

The strain energy of mechanical stresses of the beam is presented as follows Eqs. (11) and (12) [1,3,4] 

U=
1
2

∫L

0

∫

A

(σxxεxx +σxzεxz) dAdx (11)  
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U =

∫L

0

[

A(x)
∂u(x, t)

∂x
∂wb(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

A(x)
(

∂wb(x, t)
∂x

)3∂ws(x, t)
∂x

+
3
4

A(x)
(

∂wb(x, t)
∂x

)2(∂ws(x, t)
∂x

)2

+
1
2

A(x)
∂wb(x, t)

∂x

(
∂ws(x, t)

∂x

)3

+
1
2

A(x)
∂u(x, t)

∂x

(
∂wb(x, t)

∂x

)2

+
1
8

A(x)
(

∂wb(x, t)
∂x

)4

+
1
8

A(x)
(

∂ws(x, t)
∂x

)4

+
1
2

A(x)
∂u(x, t)

∂x

(
∂ws(x, t)

∂x

)2

+
1
2
As(x)

(
∂ws(x, t)

∂x

)2

+
1
2

A(x)
(

∂u(x, t)
∂x

)2

+
1
2

D(x)
(

∂2wb(x, t)
∂x2

)2

−

1
2

Bs(x)
(

∂wb(x, t)
∂x

)2∂2ws(x, t)
∂x2 − B(x)

∂2wb(x, t)
∂x2

∂wb(x, t)
∂x

∂ws(x, t)
∂x

− Bs(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
∂2ws(x, t)

∂x2

−
1
2

B(x)
∂2wb(x, t)

∂x2

(
∂ws(x, t)

∂x

)2

− B(x)
∂u(x, t)

∂x
∂2wb(x, t)

∂x2 −
1
2

B(x)
∂2wb(x, t)

∂x2

(
∂wb(x, t)

∂x

)2

+

Ds(x)
∂2wb(x, t)

∂x2
∂2ws(x, t)

∂x2 − Bs(x)
∂u(x, t)

∂x
∂2ws(x, t)

∂x2 −
1
2
Bs(x)

(
∂ws(x, t)

∂x

)2∂2ws(x, t)
∂x2

+
1
2
Нs(x)

(
∂2ws(x, t)

∂x2

)2]

dx

(12) 

According to Ref. [1], the Kinetic energy and Potential one caused by the elastic substrate are Eqs. (13)–(16): 

K=
1
2

∫L

0

∫

A

ρ(z

⎞

⎠
(

U̇2 + Ẇ2
)

dAdx (13)  

K =

∫L

0

[

J2(x)
∂2wb(x, t)

∂x∂t
∂2ws(x, t)

∂x∂t
− I 1(x)

∂u(x, t)
∂t

∂2wb(x, t)
∂x∂t

+
1
2
I 2(x)

(
∂2wb(x, t)

∂x∂t

)2

− J1(x)
∂u(x, t)

∂t
∂2ws(x, t)

∂x∂t
+

1
2
K2(x)

(
∂2ws(x, t)

∂x∂t

)2

+ I 0(x)
∂wb(x, t)

∂t
∂ws(x, t)

∂t
+

1
2
I 0(x)

(
∂wb(x, t)

∂t

)2

+
1
2
I 0(x)

(
∂ws(x, t)

∂t

)2

+
1
2
I 0(x)

(
∂u(x, t)

∂t

)2
]

dx

(14)  

Vef =

∫l

0

1
2
kw(wb + ws)

2
+ kg

(
∂wb

∂x
+

∂ws

∂x

)2

+
1
4

kN(wb + ws)
4dx (15)  

Vef =

∫L

0

[

Κg
∂wb(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

Κg

(
∂wb(x, t)

∂x

)2

+ KNwb(x, t)3ws(x, t) +
3
2
KNwb(x, t)2ws(x, t)2

+

KNwb(x, t)ws(x, t)3
+

1
4
KNwb(x, t)4

+ Κwwb(x, t)ws(x, t) +
1
2
Κwwb(x, t)2

+
1
2

Κg

(
∂ws(x, t)

∂x

)2

+
1
4
KNws(x, t)4

+
1
2

Κwws(x, t)2
]

dx

(16)  

where the Winkler and shearing-layer elastic coefficients of the substrate, Kw and Kg, respectively, rely on the bed traits, such as the 
soil length, elastic modulus, and Poisson’s ratio of the soil. The elastic foundation’s nonlinear coefficient is KN. The constitutive re
lations of the bi-directional beam are given below by inserting Eqs. (11)–(16) into Eq. (10) and integrating parts concerning spatial and 
time variables. 

δu:
∂Nxx(x, t)

∂x
= I 0(x)

∂2u(x, t)
∂t2 − I 1(x)

∂3wb(x, t)
∂x∂t2 − J1(x)

∂3ws(x, t)
∂x∂t2

(17)  
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δwb:

∂2Mb(x, t)
∂x2 + Nxx(x, t)

∂2wb(x, t)
∂x2 + Nxx(x, t)

∂2ws(x, t)
∂x2 +

∂Nxx(x, t)
∂x

∂ws(x, t)
∂x

+
∂wb(x, t)

∂x
∂Nxx(x, t)

∂x

− Κwwb(x, t) − Κwws(x, t) + Κg
∂2wb(x, t)

∂x2 + Κg
∂2ws(x, t)

∂x2 − KNws(x, t)3
− KNwb(x, t)3

− 3KNwb(x, t)2ws(x, t) − 3KNwb(x, t)ws(x, t)2
= I 1(x)

∂3u(x, t)
∂x∂t2 +

∂I 1(x)
∂x

∂2u(x, t)
∂t2 + I 0(x)

∂2wb(x, t)
∂t2

− I 2(x)
∂4wb(x, t)

∂x2∂t2 −
∂I 2(x)

∂x
∂3wb(x, t)

∂x∂t2 + I 0(x)
∂2ws(x, t)

∂t2 − J2(x)
∂4ws(x, t)

∂x2∂t2 −
∂J2(x)

∂x
∂3ws(x, t)

∂x∂t2

(18)  

δws:

∂Qxz(x, t)
∂x

+
∂2MS(x, t)

∂x2 + Nxx(x, t)
∂2wb(x, t)

∂x2 + Nxx(x, t)
∂2ws(x, t)

∂x2 +
∂wb(x, t)

∂x
∂Nxx(x, t)

∂x

+
∂Nxx(x, t)

∂x
∂ws(x, t)

∂x
− Κwws(x, t) − Κwwb(x, t) + Κg

∂2wb(x, t)
∂x2 + Κg

∂2ws(x, t)
∂x2

− KNws(x, t)3
− KNwb(x, t)3

− 3KNwb(x, t)2ws(x, t) − 3KNwb(x, t)ws(x, t)2

= J1(x)
∂3u(x, t)

∂x∂t2 +
∂J1(x)

∂x
∂2u(x, t)

∂t2 + I 0(x)
∂2wb(x, t)

∂t2 −
∂J2(x)

∂x
∂3wb(x, t)

∂x∂t2

− J2(x)
∂4wb(x, t)

∂x2∂t2 + I 0(x)
∂2ws(x, t)

∂t2 − K2(x)
∂4ws(x, t)

∂x2∂t2 −
∂K2(x)

∂x
∂3ws(x, t)

∂x∂t2

(19) 

The parameters Nxx; Mb; Ms Eqs. (20)–(23) and other stress resultants are extracted as Eqs. (24) and (25): 

Nxx =A(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

A(x)
(

∂wb(x, t)
∂x

)2

+
1
2

A(x)
(

∂ws(x, t)
∂x

)2

+A(x)
∂u(x, t)

∂x
− B(x)

∂2wb(x, t)
∂x2 − Bs(x)

∂2ws(x, t)
∂x2 (20)  

Mb =B(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

B(x)
(

∂wb(x, t)
∂x

)2

− D(x)
∂2wb(x, t)

∂x2 +
1
2

B(x)
(

∂ws(x, t)
∂x

)2

+B(x)
∂u(x, t)

∂x
− Ds(x)

∂2ws(x, t)
∂x2 (21)  

MS =
1
2
Bs(x)

(
∂wb(x, t)

∂x

)2

+Bs(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
− Ds(x)

∂2wb(x, t)
∂x2 +Bs(x)

∂u(x, t)
∂x

+
1
2

Bs(x)
(

∂ws(x, t)
∂x

)2

− Нs(x)
∂2ws(x, t)

∂x2 (22)  

Qxz = g(z)2G(x, z)
∂ws(x, t)

∂x
(23)  

where 

I 0(x) =
∫b/2

− b/2

∫h/2

− h/2

ρ(x, z)dA

I 1(x) =
∫b/2

− b/2

∫h/2

− h/2

zρ(x, z)dA

I 2(x) =
∫b/2

− b/2

∫h/2

− h/2

z2ρ(x, z)dA

J1(x) =
∫b/2

− b/2

∫h/2

− h/2

f(z)ρ(x, z)dA

J2(x) =
∫b/2

− b/2

∫h/2

− h/2

zf(z)ρ(x, z)dA

K2(x) =
∫b/2

− b/2

∫h/2

− h/2

f(z)2ρ(x, z)dA

(24)  
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A(x) =
∫b/2

− b/2

∫h/2

− h/2

Е(x, z)dA

B(x) =
∫b/2

− b/2

∫h/2

− h/2

zЕ(x, z)dA

D(x) =
∫b/2

− b/2

∫h/2

− h/2

z2Е(x, z)dA

As(x) =
∫b/2

− b/2

∫h/2

− h/2

g(z)2G(x, z)dA

Bs(x) =
∫b/2

− b/2

∫h/2

− h/2

f(z)Е(x, z)dA

Ds(x) =
∫b/2

− b/2

∫h/2

− h/2

zf(z)Е(x, z)dA

Нs(x) =
∫b/2

− b/2

∫h/2

− h/2

f(z)2Е(x, z)dA

(25) 

The constitutive relations can be constructed regarding the displacements as follows Eqs. (26)–(28) by inserting the stress resultants 
in Eqs. (20)–(23) into Eqs. (17)–(19). 

δu:

A(x)
∂2u(x, t)

∂x2 +
∂A(x)

∂x
∂u(x, t)

∂x
+

∂2wb(x, t)
∂x2

(

A(x)
∂wb(x, t)

∂x
+ A(x)

∂ws(x, t)
∂x

−
∂B(x)

∂x

)

+
1
2

∂A(x)
∂x

(
∂wb(x, t)

∂x

)2

− B(x)
∂3wb(x, t)

∂x3 +
∂2ws(x, t)

∂x2

(

A(x)
∂wb(x, t)

∂x
+ A(x)

∂ws(x, t)
∂x

−
∂Bs(x)

∂x

)

+
1
2

∂A(x)
∂x

(
∂ws(x, t)

∂x

)2

− Bs(x)
∂3ws(x, t)

∂x3 +
∂A(x)

∂x
∂wb(x, t)

∂x
∂ws(x, t)

∂x
= I 0(x)

∂2u(x, t)
∂t2 − I 1(x)

∂3wb(x, t)
∂x∂t2 − J1(x)

∂3ws(x, t)
∂x∂t2

(26)  
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δwb:

B(x)
∂3u(x, t)

∂x3 +
∂2u(x, t)

∂x2

(

2
∂B(x)

∂x
+ A(x)

∂wb(x, t)
∂x

+ A(x)
∂ws(x, t)

∂x

)

+

∂u(x, t)
∂x

(
∂2B(x)

∂x2 +
∂A(x)

∂x
∂wb(x, t)

∂x
+ A(x)

∂2wb(x, t)
∂x2 +

∂A(x)
∂x

∂ws(x, t)
∂x

+ A(x)
∂2ws(x, t)

∂x2

)

+
1
2

∂A(x)
∂x

(
∂wb(x, t)

∂x

)3

+
1
2

∂2B(x)
∂x2

(
∂wb(x, t)

∂x

)2

+
3
2

∂A(x)
∂x

∂ws(x, t)
∂x

(
∂wb(x, t)

∂x

)2

+
3
2

∂A(x)
∂x

(
∂ws(x, t)

∂x

)2∂wb(x, t)
∂x

+
∂2B(x)

∂x2
∂ws(x, t)

∂x
∂wb(x, t)

∂x
− 2

∂D(x)
∂x

∂3wb(x, t)
∂x3 − D(x)

∂4wb(x, t)
∂x4

+
∂2wb(x, t)

∂x2

(
3
2
A(x)

(
∂wb(x, t)

∂x

)2

+
∂B(x)

∂x
∂wb(x, t)

∂x
+ 3A(x)

∂ws(x, t)
∂x

∂wb(x, t)
∂x

+
3
2

A(x)
(

∂ws(x, t)
∂x

)2

−
∂2D(x)

∂x2 +
∂B(x)

∂x
∂ws(x, t)

∂x
+ Κg +

∂2ws(x, t)
∂x2 (B(x) − Bs(x))

)

+
1
2

∂A(x)
∂x

(
∂ws(x, t)

∂x

)3

+
1
2

∂2B(x)
∂x2

(
∂ws(x, t)

∂x

)2

+
∂2ws(x, t)

∂x2

(
3
2
A(x)

(
∂wb(x, t)

∂x

)2

+2
∂B(x)

∂x
∂wb(x, t)

∂x
−

∂Bs(x)
∂x

∂wb(x, t)
∂x

+ 3A(x)
∂ws(x, t)

∂x
∂wb(x, t)

∂x

+
3
2

A(x)
(

∂ws(x, t)
∂x

)2

+ 2
∂B(x)

∂x
∂ws(x, t)

∂x
−

∂Bs(x)
∂x

∂ws(x, t)
∂x

−
∂2Ds(x)

∂x2 + Κg

)

+

(
∂2ws(x, t)

∂x2

)2

(B(x) − Bs(x)) +
∂3ws(x, t)

∂x3

(

B(x)
∂wb(x, t)

∂x
− Bs(x)

∂wb(x, t)
∂x

+B(x)
∂ws(x, t)

∂x
− 2

∂Ds(x)
∂x

−
∂ws(x, t)

∂x
Bs(x)

)

− KNwb(x, t)3
− KNws(x, t)3

−

3KNwb(x, t)2ws(x, t) − Κwws(x, t) + wb(x, t)
(
− 3KNws(x, t)2

− Κw
)
−

∂4ws(x, t)
∂x4 Ds(x)

= I 1(x)
∂3u(x, t)

∂x∂t2 +
∂I 1(x)

∂x
∂2u(x, t)

∂t2 + I 0(x)
∂2wb(x, t)

∂t2 − I 2(x)
∂4wb(x, t)

∂x2∂t2

−
∂I 2(x)

∂x
∂3wb(x, t)

∂x∂t2 + I 0(x)
∂2ws(x, t)

∂t2 − J2(x)
∂4ws(x, t)

∂x2∂t2 −
∂J2(x)

∂x
∂3ws(x, t)

∂x∂t2

(27)  
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δws:

Bs(x)
∂3u(x, t)

∂x3 + A(x)
∂2u(x, t)

∂x2
∂ws(x, t)

∂x
+ A(x)

∂u(x, t)
∂x

∂2ws(x, t)
∂x2 + 2

∂Bs(x)
∂x

∂2u(x, t)
∂x2 +

∂2Bs(x)
∂x2

∂u(x, t)
∂x

+A(x)
∂u(x, t)

∂x
∂2wb(x, t)

∂x2 +
∂A(x)

∂x
∂u(x, t)

∂x
∂ws(x, t)

∂x
+ A(x)

∂2u(x, t)
∂x2

∂wb(x, t)
∂x

+
∂A(x)

∂x
∂u(x, t)

∂x
∂wb(x, t)

∂x
+

1
2

∂A(x)
∂x

(
∂wb(x, t)

∂x

)3

+
1
2

∂2Bs(x)
∂x2

(
∂wb(x, t)

∂x

)2

+
3
2

A(x)
∂2wb(x, t)

∂x2

(
∂wb(x, t)

∂x

)2

+
3
2

∂A(x)
∂x

∂ws(x, t)
∂x

(
∂wb(x, t)

∂x

)2

+
3
2

A(x)
∂2ws(x, t)

∂x2

(
∂wb(x, t)

∂x

)2

+
3
2

∂A(x)
∂x

(
∂ws(x, t)

∂x

)2∂wb(x, t)
∂x

−

∂B(x)
∂x

∂2wb(x, t)
∂x2

∂wb(x, t)
∂x

+ 2
∂Bs(x)

∂x
∂2wb(x, t)

∂x2
∂wb(x, t)

∂x
− B(x)

∂3wb(x, t)
∂x3

∂wb(x, t)
∂x

+

3A(x)
∂2wb(x, t)

∂x2
∂ws(x, t)

∂x
∂wb(x, t)

∂x
−

∂Bs(x)
∂x

∂2ws(x, t)
∂x2

∂wb(x, t)
∂x

+ 3A(x)
∂ws(x, t)

∂x
∂2ws(x, t)

∂x2
∂wb(x, t)

∂x

− Ds(x)
∂4wb(x, t)

∂x4 +
3
2

A(x)
∂2wb(x, t)

∂x2

(
∂ws(x, t)

∂x

)2

−
∂B(x)

∂x
∂2wb(x, t)

∂x2
∂ws(x, t)

∂x
− 2

∂Ds(x)
∂x

∂3wb(x, t)
∂x3

−
∂2Ds(x)

∂x2
∂2wb(x, t)

∂x2 − Bs(x)
∂2wb(x, t)

∂x2
∂2ws(x, t)

∂x2 − B(x)
∂2wb(x, t)

∂x2
∂2ws(x, t)

∂x2 − B(x)
∂3wb(x, t)

∂x3
∂ws(x, t)

∂x

− B(x)
(

∂2wb(x, t)
∂x2

)2

+
1
2

∂2Bs(x)
∂x2

(
∂ws(x, t)

∂x

)2

+
1
2

∂A(x)
∂x

(
∂ws(x, t)

∂x

)3

+
∂As(x)

∂x
∂ws(x, t)

∂x
+

3
2

A(x)
(

∂ws(x, t)
∂x

)2∂2ws(x, t)
∂x2 +

∂Bs(x)
∂x

∂ws(x, t)
∂x

∂2ws(x, t)
∂x2 − 2

∂Нs(x)
∂x

∂3ws(x, t)
∂x3 −

∂2Нs(x)
∂x2

∂2ws(x, t)
∂x2 +

∂K2(x)
∂x

∂3ws(x, t)
∂x∂t2 + As(x)

∂2ws(x, t)
∂x2 − Bs(x)

(
∂2ws(x, t)

∂x2

)2

+ Bs(x)

((
∂2wb(x, t)

∂x2

)2

+
∂wb(x, t)

∂x
∂3wb(x, t)

∂x3

)

− Bs(x)
∂ws(x, t)

∂x
∂3ws(x, t)

∂x3 +
∂ws(x, t)

∂x

(
∂2Bs(x)

∂x2
∂wb(x, t)

∂x
+ 2

∂Bs(x)
∂x

∂2wb(x, t)
∂x2 + Bs(x)

∂3wb(x, t)
∂x3

)

+2
∂2ws(x, t)

∂x2

(
∂Bs(x)

∂x
∂wb(x, t)

∂x
+ Bs(x)

∂2wb(x, t)
∂x2

)

+ Bs(x)

((
∂2ws(x, t)

∂x2

)2

+
∂ws(x, t)

∂x
∂3ws(x, t)

∂x3

)

− Κwwb(x, t) − 3KNwb(x, t)2ws(x, t) − Κwws(x, t) − KNwb(x, t)3
− KNws(x, t)3

− 3KNwb(x, t)ws(x, t)2

+Κg
∂2ws(x, t)

∂x2 + Κg
∂2wb(x, t)

∂x2 = J1(x)
∂3u(x, t)

∂x∂t2 +
∂J1(x)

∂x
∂2u(x, t)

∂t2 + I 0(x)
∂2wb(x, t)

∂t2 −
∂J2(x)

∂x
∂3wb(x, t)

∂x∂t2

− J2(x)
∂4wb(x, t)

∂x2∂t2 + I 0(x)
∂2ws(x, t)

∂t2 − K2(x)
∂4ws(x, t)

∂x2∂t2 + Нs(x)
∂4ws(x, t)

∂x4

(28)  

2.3.2. End conditions 
The following end conditions for the bi-directional beam’s boundary conditions may be condensed to Eqs. (29)–(33): 

u= 0 or − A(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
−

1
2

A(x)
(

∂wb(x, t)
∂x

)2

−
1
2

A(x)
(

∂ws(x, t)
∂x

)2

− A(x)
∂u(x, t)

∂x

+B(x)
∂2wb(x, t)

∂x2 +Bs(x)
∂2ws(x, t)

∂x2 = 0
(29)  

∂ws

∂x
= 0 or

1
2
Bs(x)

(
∂wb(x, t)

∂x

)2

+Bs(x)
∂wb(x, t)

∂x
∂ws(x, t)

∂x
− Ds(x)

∂2wb(x, t)
∂x2 +Bs(x)

∂u(x, t)
∂x

+
1
2
Bs(x)

(
∂ws(x, t)

∂x

)2

− Нs(x)
∂2ws(x, t)

∂x2 = 0
(30)  

∂wb

∂x
= 0 or B(x)

∂wb(x, t)
∂x

∂ws(x, t)
∂x

+
1
2

B(x)
(

∂wb(x, t)
∂x

)2

− D(x)
∂2wb(x, t)

∂x2 +
1
2

B(x)
(

∂ws(x, t)
∂x

)2

+B(x)
∂u(x, t)

∂x
− Ds(x)

∂2ws(x, t)
∂x2 = 0

(31)  
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ws = 0 or J2(x)
∂3wb(x, t)

∂x∂t2 + K2(x)
∂3ws(x, t)

∂x∂t2 +
3
2

A(x)
(

∂wb(x, t)
∂x

)2∂ws(x, t)
∂x

+
3
2

A(x)
∂wb(x, t)

∂x

(
∂ws(x, t)

∂x

)2

+ A(x)
∂u(x, t)

∂x
∂wb(x, t)

∂x
+

1
2

A(x)
(

∂wb(x, t)
∂x

)3

+

A(x)
∂u(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

A(x)
(

∂ws(x, t)
∂x

)3

+ As(x)
∂ws(x, t)

∂x
+ Bs(x)

∂2wb(x, t)
∂x2

∂wb(x, t)
∂x

− B(x)
∂2wb(x, t)

∂x2
∂ws(x, t)

∂x
+ Bs(x)

∂2wb(x, t)
∂x2

∂ws(x, t)
∂x

+
1
2

∂Bs(x)
∂x

(
∂wb(x, t)

∂x

)2

+

∂Bs(x)
∂x

∂wb(x, t)
∂x

∂ws(x, t)
∂x

− B(x)
∂2wb(x, t)

∂x2
∂wb(x, t)

∂x
+ Κg

∂wb(x, t)
∂x

− Ds(x)
∂3wb(x, t)

∂x3 −

∂Ds(x)
∂x

∂2wb(x, t)
∂x2 + Bs(x)

∂2u(x, t)
∂x2 +

∂Bs(x)
∂x

∂u(x, t)
∂x

+
1
2

∂Bs(x)
∂x

(
∂ws(x, t)

∂x

)2

+Κg
∂ws(x, t)

∂x
− J1(x)

∂2u(x, t)
∂t2 − Нs(x)

∂3ws(x, t)
∂x3 −

∂Нs(x)
∂x

∂2ws(x, t)
∂x2 = 0

(32)  

wb = 0 or I 2(x)
∂3wb(x, t)

∂x∂t2 + J2(x)
∂3ws(x, t)

∂x∂t2 +
3
2

A(x)
(

∂wb(x, t)
∂x

)2∂ws(x, t)
∂x

+

3
2

A(x)
∂wb(x, t)

∂x

(
∂ws(x, t)

∂x

)2

+ A(x)
∂u(x, t)

∂x
∂wb(x, t)

∂x
+

1
2

A(x)
(

∂wb(x, t)
∂x

)3

+

A(x)
∂u(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

A(x)
(

∂ws(x, t)
∂x

)3

+ B(x)
∂wb(x, t)

∂x
∂2ws(x, t)

∂x2 −

Bs(x)
∂wb(x, t)

∂x
∂2ws(x, t)

∂x2 +
∂B(x)

∂x
∂wb(x, t)

∂x
∂ws(x, t)

∂x
+

1
2

∂B(x)
∂x

(
∂wb(x, t)

∂x

)2

+

Κg
∂wb(x, t)

∂x
− D(x)

∂3wb(x, t)
∂x3 −

∂D(x)
∂x

∂2wb(x, t)
∂x2 + B(x)

∂ws(x, t)
∂x

∂2ws(x, t)
∂x2 −

Bs(x)
∂ws(x, t)

∂x
∂2ws(x, t)

∂x2 +
1
2

∂B(x)
∂x

(
∂ws(x, t)

∂x

)2

+ B(x)
∂2u(x, t)

∂x2 +

∂B(x)
∂x

∂u(x, t)
∂x

+ Κg
∂ws(x, t)

∂x
− Ds(x)

∂3ws(x, t)
∂x3 −

∂Ds(x)
∂x

∂2ws(x, t)
∂x2 − I 1(x)

∂2u(x, t)
∂t2 = 0

(33) 

The following solutions may be taken into account for the displacement components in free vibration analysis. 

2.4. Numerical solution method 

The constitutive equations and associated end conditions are converted into algebraic equations using the Generalized Differential 
Quadrature (GDQ), wheras the discretization procedures follow Gauss-Lobatto-Chebyshev sampling points Eq. (34) [1,34]. 

xi =
1
2

{

1 − cos
(

i − 1
N − 1

)

π
}

i= 1, 2, ...,N − 1 (34) 

Take xi the discrete point, the nth-order partial differential of f(x) concerning x is Eq. (35): 

f(n)x (xi)=
∑N

i=1
C(n)

ij f(xi) (35)  

where N is designated as the number of grids in the x direction of the GDQ domain. C(n)
ij Eqs. (36) and (37) are weighting coefficients 

related to the discrete point xi. The nth-order partial differential of f(x) concerning x. Here is the first [1,33,35]: 

C1
ij =

M(xi)
(
xi − xj

)
M
(
xj
) (36)  

where 

M(xi)= Π
N

j=1 j∕=i

(
xi − xj

)
(37) 

The following recurrence relation can be used to determine the weighting coefficients of higher-order derivatives. Eqs. (38) and 
(39) 
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C(n)
ij = n

(

C(n− 1)
ij C1

ij −
C(n− 1)

ij
(
xi − xj

)

)

i, j= 1, 2, ...N (38)  

C(n)
ij = −

∑N

j=1 j∕=i
Cn

ij n = 1, 2, ...N − 1 (39) 

The partial derivatives of a function can be expressed as Eq. (40) [33,35,46,47] using this methodology: 

∂f(x, t)
∂x

|x=xi
=
∑N

j=1
Aijf
(
xj, t
)

i = 1, 2, ...,N

∂f2(x, t)
∂x2 |x=xi

=
∑N

j=1
Bijf
(
xj, t
)

∂f3(x, t)
∂x3 |x=xi

=
∑N

j=1
Cijf
(
xj, t
)

∂f4(x, t)
∂x4 |x=xi

=
∑N

j=1
Dijf
(
xj, t
)

(40)  

where Aij; Bij; Cij; Dij are the first, second, third, and fourth-order weighting coefficients of the DQM, respectively Eq. (41) [33,46,47]. 
[
Bij
]
=
[
Aij
][

Aij
]
=
[
Aij
]2
,

[
Cij
]
=
[
Aij
][

Bij
]
=
[
Aij
]3
,

[
Dij
]
=
[
Bij
][

Bij
]
=
[
Aij
]4

(41) 

The GDQ approach may be used to obtain the nonlinear constitutive differential equations of motion’s discrete form Eqs. (42)–(46) 

δu:

∑N

j=1

{
(
AiBij + ÃiAij

)
uj +

[
1
2
AiAij

(
∑N

k=1
Bikwbk

)

+
1
2
AiAij

(
∑N

k=1
Bikwsk

)

+
1
2
(
AiBij + ÃiAij

)∑N

k=1
Aikwbk

+
1
2
(
AiBij + ÃiAij

)
(
∑N

k=1
Aikwsk

)

− BiCij − B̃iBij

]

wbj +

[
1
2
AiAij

(
∑N

k=1
Bikwbk

)

+
1
2

AiAij

(
∑N

k=1
Bikwsk

)

+
1
2
(
AiBij + ÃiAij

)∑N

k=1
Aikwbk +

1
2
(
AiBij + ÃiAij

)∑N

k=1
Aikwsk − B̃siBij − BsiCij

]

wsj

}

= I 0i
d2ui

dt2 − I 1i

∑N

j=1
Aij

d2wbj

dt2 − J1i

∑N

j=1
Aij

d2wsj

dt2

(42)  
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δwb:

∑N

j=1

{
(
BiCij + B̃iAij + 2B̃iBij

)
uj +

[
1
2
BiAij

(
∑N

k=1
Cikwbk

)

+
1
2

BiAij

(
∑N

k=1
Cikwsk

)

+
(
BiBij + B̃iAij

)∑N

k=1
Bikwbk

+
(
BiBij + AijB̃i

)∑N

k=1
Bikwsk +

1
2
(
BiCij + AijB̃i + 2BijB̃i

)∑N

k=1
Aikwbk +

1
2
(
BiCij + B̃iAij + 2B̃iBij

)∑N

k=1
Aikwsk

+BijNxxi + AijÑxxi − DiDij − 2D̃iCij − D̃iBij+

ΚgBij − Κwδij − KNδij(wbi)
2
− 2KNδijwbiwsiKNδij(wsi)

2
]
wbj

[
1
2
BiAij

(
∑N

k=1
Cikwbk

)

+
1
2
BiAij

(
∑N

k=1
Cikwsk

)

+
(
BiBij + B̃iAij

)∑N

k=1
Bikwbk +

(
BiBij + B̃iAij

)∑N

k=1
Bikwsk+

1
2
(
BiCij + B̃iAij + 2B̃iBij

)∑N

k=1
Aikwbk +

1
2
(
BiCij + B̃iAij + 2B̃iBij

)∑N

k=1
Aikwsk + AijÑxxi + BijNxxi − DsiDij

− 2D̃siCij − D̃siBij + BijΚg − δijΚw − KNδij(wbi)
2
− 2KNδijwbiwsiKNδij(wsi)

2
]
wsj

}

= I 1i

∑N

j=1
Aij

d2uj

dt2 + Ĩ 1i
d2ui

dt2 + I 0i
d2wbi

dt2 − I 2i

∑N

j=1
Bij

d2wbj

dt2 − Ĩ 2i

∑N

j=1
Aij

d2wbj

dt2

+I 0i
d2wsi

dt2 − J2i

∑N

j=1
Bij

d2wsj

dt2 − J̃2i

∑N

j=1
Aij

d2wsj

dt2

(43)  

δws:

∑N

j=1

{
(
BsiCij + B̃siAij + 2B̃siBij

)
uj +

[
1
2

BsiAij

(
∑N

k=1
Cikwbk

)

+
1
2
BsiAij

(
∑N

k=1
Cikwsk

)

+
(
BsiBij + B̃siAij

)∑N

k=1
Bikwbk

+
(
BsiBij + B̃siAij

)∑N

k=1
Bikwsk +

1
2
(
BsiCij + B̃siAij + 2B̃siBij

)∑N

k=1
Aikwbk +

1
2
(
BsiCij + B̃siAij + 2B̃siBij

)∑N

k=1
Aikwsk

+BijNxxi + AijÑxxi − DsiDij − 2D̃siCij − D̃siBij+

ΚgBij − Κwδij − KNδij(wbi)
2
− 2KNδijwbiwsiKNδij(wsi)

2
]
wbj+

[
1
2
BsiAij

(
∑N

k=1
Cikwbk

)

+
1
2
BsiAij

(
∑N

k=1
Cikwsk

)

+
(
BsiBij + B̃siAij

)∑N

k=1
Bikwbk +

(
BsiBij + B̃siAij

)∑N

k=1
Bikwsk+

1
2
(
BsiCij + B̃siAij + 2B̃siBij

)∑N

k=1
Aikwbk +

1
2
(
BsiCij + B̃siAij + 2B̃siBij

)∑N

k=1
Aikwsk + AijÑxxi + BijNxxi − HsiDij

− 2H̃siCij − H̃siBij + AsiBij + ÃsiAij + BijΚg − δijΚw − KNδij(wbi)
2
− 2KNδijwbiwsiKNδij(wsi)

2
]
wsj

}

= J1i

∑N

j=1
Aij

d2uj

dt2 + J̃1i
d2ui

dt2 + I 0i
d2wbi

dt2 − J̃2i

∑N

j=1
Aij

d2wbj

dt2 − J2i

∑N

j=1
Bij

d2wbj

dt2 + I 0i
d2wsi

dt2 − K2i

∑N

j=1
Bij

d2wsj

dt2

− K̃2i

∑N

j=1
Aij

d2wsj

dt2

(44)  

where: 

α̃=
dα
dx

for(α=A,As,B,Bs,D,Ds,Hs,I 1,I 2, J1, J2,K2,Nxx) (45)  

Nxxi =
∑N

j=1

{

AiAijuj +

(
1
2

AiAij

∑N

k=1
Aikwsk +

1
2

AiAij

∑N

k=1
Aikwbk − BiBij

)

wbj +

(
1
2

AiAij

∑N

k=1
Aikwbk +

1
2

AiAij

∑N

k=1
Aikwsk − BsiBij

)

wsj

}

(46) 

The end conditions discretized form is shown as Eqs. (47)–(50) 

u = 0 or
∑N

j=1

{

AiAijuj +

(
1
2
AiAij

∑N

k=1
Aikwbk +

1
2
AiAij

∑N

k=1
Aikwsk − BiBij

)

wbj

+

(
1
2
AiAij

∑N

k=1
Aikwbk +

1
2

AiAij

∑N

k=1
Aikwsk − BijBsi

)

wsj

}

= 0

(47)  
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wb = 0 or
∑N

j=1

{

uj
(
BiBij +AijB̃i

)
+

(
1
2

(
∑N

k=1
Bikwbk

)

AijBi +
1
2

(
∑N

k=1
Bikwsk

)

AijBi

+
1
2

(
∑N

k=1
Aikwbk

)

BiBij +
1
2

(
∑N

k=1
Aikwsk

)

BiBij − CijDi +AijNxxi

+AijΚg +
1
2

(
∑N

k=1
Aikwbk

)

AijB̃i +
1
2

(
∑N

k=1
Aikwsk

)

AijB̃i − BijD̃i

)

wbj

+

(
1
2

(
∑N

k=1
Bikwbk

)

AijBi +
1
2

(
∑N

k=1
Bikwsk

)

AijBi +
1
2

(
∑N

k=1
Aikwbk

)

BiBij

+
1
2

(
∑N

k=1
Aikwsk

)

BiBij − CijDsi +AijNxxi +AijΚg +
1
2

(
∑N

k=1
Aikwbk

)

AijB̃i

+
1
2

(
∑N

k=1
Aikwsk

)

AijB̃i − BijD̃si

)

wsj

}

=I 1i

∑N

j=1
Aij

d2uj

dt2 − I 2i

∑N

j=1
Bij

d2wbj

dt2

− J2i

∑N

j=1
Bij

d2wsj

dt2

(48)  

ws = 0 or
∑N

j=1

{

uj
(
BijBsi + AijB̃si

)
+

(
1
2

(
∑N

k=1
Bikwbk

)

AijBsi +
1
2

(
∑N

k=1
Bikwsk

)

AijBsi+

1
2

(
∑N

k=1
Aikwbk

)

BijBsi +
1
2

(
∑N

k=1
Aikwsk

)

BijBsi − CijDsi + AijNxxi + AijΚg+

1
2

(
∑N

k=1
Aikwbk

)

AijB̃si +
1
2

(
∑N

k=1
Aikwsk

)

AijB̃si − BijD̃si

)

wbj+

(

AsiAij +
1
2

(
∑N

k=1
Bikwbk

)

AijBsi +
1
2

(
∑N

k=1
Bikwsk

)

AijBsi +
1
2

(
∑N

k=1
Aikwbk

)

BijBsi

+
1
2

(
∑N

k=1
Aikwsk

)

BijBsi + AijNxxi + AijΚg +
1
2

(
∑N

k=1
Aikwbk

)

AijB̃si+

1
2

(
∑N

k=1
Aikwsk

)

AijB̃si − BijН̃si − CijНsi

)

wsj

}

= J1i

∑N

j=1
Aij

d2uj

dt2 − J2i

∑N

j=1
Bij

d2wbj

dt2

− K2i

∑N

j=1
Bij

d2wsj

dt2

(49)  

∂wb

∂x
= 0 or

∑N

j=1

{

AijBiuj +

(
1
2
BiAij

∑N

k=1
Aikwbk +

1
2
AijBi

∑N

k=1
Aikwsk − BijDi

)

wbj

+

(
1
2
AijBi

∑N

k=1
Aikwbk +

1
2
AijBi

∑N

k=1
Aikwsk − BijDsi

)

wsj

}

= 0

∂ws

∂x
= 0 or

∑N

j=1

{

AijBsiuj +

(
1
2
AijBsi

∑N

k=1
Aikwbk +

1
2

AijBsi

∑N

k=1
Aikwsk − BijDsi

)

wbj

+wsj

(
1
2
AijBsi

∑N

k=1
Aikwbk +

1
2
AijBsi

∑N

k=1
Aikwsk − BijНsi

)}

= 0

(50) 

Eqs. (42)–(44) and associated boundary conditions can be stated in the matrix form as Eq. (51) [33,35], which reduces them to an 
eigenvalue problem. 

(KL +KNL)d+Md.. = 0 (51)  

the linear and nonlinear stiffness matrixes, respectively, are KL and KNL. The mass matrix M. 
The unidentified vector d = {{u− }, {wb

−
}, {ws

−
}}

T in where d stands for domain points. 
The unidentified vector b = {{u− }, {wb

−
}, {ws

−
}}

T where b stands for boundary points. 
The harmonic form is presumed for free vibration analysis Eq. (52), so [33,35]: 

d= d0eiωt, u = u− eiωt,wb = wb
− eiωt,ws = ws

− eiωt (52)  
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where ω is the natural frequency without dimensions. The unidentified coefficient (d0) is connected to various displacement com
ponents. 

Eq. (52) is substituted into Eq. (51) to produce Eqs. (53) and (54) [33,35,47]. 
(
KL +KNL − ω2M

)
d0 = 0 (53)  

[
Mbb 0
0 Mdd

]{
db

..

dd
..

}

+

[
KL

bb + KNL
bb Kbd

Kdb Kdd

]{
db
dd

}

= {0} (54) 

Malekzadeh explained how to use the harmonic balancing approach, and this results in Eq. (55) [33,35,47]: 
⎡

⎣
KL

bb +
3
4
KNL

bb Kbd

Kdb Kdd

⎤

⎦

{
db
dd

}

− ω2
[

Mbb 0
0 Mdd

]{
db
dd

}

= {0} (55) 

Considering the defined displacements for 3 N unknowns (N is the number of discrete points), and taking into account the boundary 
conditions for a simple supported beam, the number of unknowns and consequently the required number of equations is reduced to 10 
equations out of the total number of equations (two conditions for longitudinal displacement, four conditions for transverse 
displacement including bending and shear, and four conditions for moments). 

Where M dimension is (3N-10) × (3N-10) and M matrix is the mass matrix, and the dimension of Kbb is 10 × 10 matrix, Kdb is 10 ×
(3N-10) matrix, and Kbd is 10 × (3N-10) matrix, respectively. 

Equation (55) is a nonlinear eigenvalue problem, which means that it cannot be addressed using standard techniques that rely on 
linear solutions. The nonlinear constitutive equations are solved in this work using an iterative method. The following stages are taken 
during the operation [33,35,47]: 

Step 1. From Eq. (55), a linear frequency ωL and its corresponding eigenvector are derived without taking into account the nonlinear 
component kNL. 

Step 2. A new eigenvalue and its corresponding eigenvector can be extracted by doing kNL calculations using the acquired 
eigenvector. 

This step involves normalizing the eigenvectors linked to the eigenvalues of Eq. (55) concerning the deflection of the corresponding 
FG beam section (xm). These vectors are then created by multiplying them by the factor (Wm /r). Wm is a value representing the 

transverse displacement of section x = xm and r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

bh3/12A
√

is the radius of cross-sectional gyration. 

Step 3. The iterative process is repeated until the nonlinear frequency from the two international consecutive stages equal 0.0001 for 
a particular value (Wm /r). then ωNL, a nonlinear frequency is attained. 

3. Numerical results and discussion 

Ensure that the results are accurate by comparing them with other solutions. In nonlinear vibration states, a bi-directional beam is 
proposed consisting of Tungsten (W) in the top layer and Copper (Cu) in the bottom layer. Therefore, using the suggested formulations 
for FG beams exposed to various boundary conditions, it is necessary to examine convergence behavior and correctness. In Table 1 
[37], these materials are listed according to their properties. 

It is stated as the non-dimensional frequency parameter Eq. (56) 

λn =
ωnL2

h

̅̅̅̅̅̅
ρm

Em

√

(56)  

where ρm and Em stand for the metallic part’s density and Young’s modulus, respectively. 
Additionally, the numerical findings are provided as the elastic substrate constants utilized in equations. Eq. (57) 

Kw =
kwL4

EmI
,Kg =

kgL2

π2EmI
(57)  

where I is considered as Eq. (58) 

Table 1 
Material properties [37].   

E (GPa) ρ (kg /m3) υ 

Tungsten (W) 411 19,250 0.3 
Copper (CU) 120 8960 0.3  
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Table 2 
Convergence of the frequency ratio λi = ωNL/ωL (RBT) for simply supported Bi-di beam (Kw = Kg = 0, e0 = 0, pz = 2, ωmax/r = 0.5).  

L/h  Number of grid points Nx 

5 Nmode 7 9 11 13 15 17 
1 1.101 1.1118 0.9725 0.9725 0.9725 0.9724 
2 1.0602 1.0502 1.0517 1.0517 1.0517 1.0517 
3 1.0021 0.8454 0.8659 0.8229 0.8229 0.8228 

10 1 0.9588 0.9700 1.1089 0.9691 0.9691 0.9690 
2 1.0626 1.0429 1.0459 1.0460 1.0462 1.0461 
3 1.0411 1.0526 1.0801 1.0736 1.0736 1.07464  

Table 3 
Convergence of the frequency ratio λi = ωNL/ωL (RBT) for clamped-clamped Bi-di beam (Kw = Kg = 0, e0 = 0, px = 2, ωmax/r = 0.4).  

L/h  Number of grid points Nx 

5 Nmode 7 9 11 13 15 17 
1 0.9899 1.00362 1.0133 1.0133 1.0134 1.0144 
2 1.0116 1.0109 1.0187 1.0188 1.0187 1.0189 
3 1.00701 1.0792 1.0793 1.0793 1.0792 1.0791 

10 1 1.00536 1.0099 1.0097 1.0055 1.00554 1.0055 
2 1.00129 1.00137 1.00139 1.00232 1.00232 1.00231 
3 1.00229 1.00301 1.00369 1.00315 1.00315 1.00313  

Table 4 
Difference of frequency ratios λi = ωNL/ωL between EBT, TBT [33], and current study (RBT) for isotropic FG beam.   

Wm/r = 1 Wm/r = 2 Wm/r = 3  

EBT TBT RBT (Present) EBT TBT RBT (Present) EBT TBT RBT (Present) 

C–C (λ1) 1.0222 1.0240 1.0357 1.0858 1.0939 1.1352 1.1833 1.2048 1.2818 
C–C (λ2) 1.0485 1.0630 1.0854 1.1793 1.2505 1.2986 1.3636 1.5987 1.5715 
S–C (λ1) 1.0641 1.0653 1.0809 1.2319 1.2376 1.2820 1.4605 1.4767 1.5371  

Fig. 2. The influence of various end conditions on Nonlinear-to-linear parameter ωNL/ωL for the isotropic beam for L/h = 100, L/h = 8 in respect of 
various amplitude ratio ωmax/r. 
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I=
bh3

12
(58) 

In each scenario, the nonlinear to linear frequency ratio of the bi-directional FG beam concerning the quantity of DQ grid points 
along x direction is investigated first. Under simple support conditions and clamped-clamped supported end conditions, the nonlinear 
to linear convergence behavior of bi-directional FG beams is shown in Tables 2 and 3 for three modes. With Nx = 13, converged results 
are obtained. 

Nonlinear to linear frequency ratios λ = ωNL/ωL of beams with CC and CS end conditions are shown in Table 4. A comparison is 
made between the results of Malekzadeh and Shojaee [33] based on EBT and TBT. A strong agreement can be seen between the current 
work (RBT) and the previous techniques. It is observed that the lowest frequency ratio is related to the Clamp-Clamp support and the 
highest one is related to the Clamp-Simply support. It should be noted that although it was expected that the highest frequency ratio 
would be related to the CC support, due to the geometry of the supports and the lack of geometric symmetry in the CS support, the 
highest frequency ratio is observed for this type of support. 

In Fig. 1, The Sketch of bi-directional FG beam lying on substrate is illustrated. The frequency ratios λ = ωNL/ωL between nonlinear 

Fig. 3. Effect of the substrate stiffness Kw and Kg on nonlinear to linear parameter of SS isotropic beam (l/h = 5, ωmax/r = 0.6).  

Fig. 4. Nonlinear to linear frequency parameter altering of C–C porous beams in respect of power law indexes pz, px for various porosity coefficients 
(l/h = 5, ωmax/r = 1). 
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and linear isotropic beams with various end conditions are shown in Fig. 2(a and b) via various amplitude ratios ωmax/ r for L/h = 100 
and L/h = 8 respectively. One of the important features of this analysis is the investigsation of vibration frequencies versus amplitude 
ratios, which is well shown in this dependence curve. Whereas amplitude ratios less than 0.5 the slope of the graph of non-linear 
frequency changes is very low, and in the range of 0.5–2, the trend of changes is increasing with a steep slope and this trend con
tinues with a constant slope in the end. A clamped-free end assumption has the least tendency to affect frequency ratio, while simply 
supported end conditions have the greatest tendency. In addition, the ratio of nonlinear to linear frequency is found to be significantly 
impacted by the soar of amplitude ratio values. 

In Fig. 3(a and b), variation of amplitude ratios under Kw and Kg are shown respectively for nonlinear to linear frequency of 
isotropic beams with different boundary conditions. When an end condition is clamped-free, the frequency ratio is the least likely to be 
affected, whereas when it is simply supported, the frequency ratios under Kw and Kg is most likely to be affected. Furthermore, an 
increase in shear stiffness of the substrate Kg values significantly impact the ratio of nonlinear to linear parameter. 

Fig. 5. Impact of the shear substrate stiffness Kg on the nonlinear to linear frequency of the CC and SS FG beams concerning various values of the 
amplitude ratio ωmax/r (l/h = 5, Pz = 2). 

Fig. 6. The influence of Winkler substrate stiffness Kw on the nonlinear to linear frequenncy of the CC and SS FG beams concerning various values of 
the amplitude ratio ωmax/r (l/h = 5, Pz = 2). 
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In Fig. 4(a and b), the growth of porosity coefficients is examined in relation to the nonlinear to linear frequency parameter of a bi- 
dimensional beam for both power-law and exponential FG different indexes pz, px. A gradual decline in the nonlinear to linear 
parameter is evident as each pz or px increases. Therefore, increasing porosity coefficients result in a substantial fall in frequency 
ratios. So, by increasing the porosity coefficient and material gradient in two directions, the frequency ratio decreases significantly due 
to the decrease in beam stiffness. The difference between exponential and power-law model frequencies can be seen by comparing the 
figures. This difference is due to the difference in the changes of material properties with the increase of the gradient of material 
properties in the two models; So that with the soar of material gradient in two directions, the rate of change of material properties in 
the exponential model is higher and the reduction of the beam stiffness is more severe and as a result, the decrease of the dimensionless 
nonlinear frequency is more severe in the exponential model. 

CC and SS end conditions are shown in Fig. 5(a and b) respectively, along with different amplitude ratios ωmax/r for different shear 
substrate stiffness Kg for l/h = 5 and pz = 2. There is no doubt that raising the deflection ratio values causes the frequency ratio to grow 
for both clamped and simply supported FG beams. SS beams, though have a more abrupt rise than clamped beams. Moreover, as the 
magnitude of the shear substrate stiffness Kg increases, the nonlinear to linear parameter noticeably decrease. Due to the increased 
stiffness of the shear substrate Kg, the beam’s total stiffness increase 

Fig. 6(a and b) show how the Winkler substrate stiffness Kw affects the nonlinear to linear frequency of the CC and SS FG beams 
concerning various ωmax/r values for the amplitude rising. As can be observed, the frequency parameter steadily decreases as Winkler 
substrate stiffness increases to raise FG beam stiffness. The thing is, FG beam stiffness having a greater impact on linear frequency than 
nonlinear frequency. Additionally, the frequency parameters are smaller under higher Winkler substrate ratios stiffness Kw than they 
are under lower stiffness, and the disparity between these tendencies increases at higher amplitude ωmax/r. In addition, the soar in the 
coefficient of the Winkler elastic substrate leads to a decline in the ratio of the nonlinear frequency to the linear for all boundary 
conditions. It should be mentioned that the presence of the linear elastic substrate causes a climb in the stiffness of the beam and 
ultimately a soar in the linear and non-linear frequencies, But a linear frequency increase is greater than a non-linear one. 

In Fig. 7(a and b), the trend of nonlinear to linear parameter changing via material gradients pz, px is given for both power-law and 
exponential bi-directional FG beams. It is evident that for the gradual increase of material gradients in each direction the frequency 
ratio mostly drops but it does not follow the same trend for each boundary condition except for E-FGM in the SS end condition. It 
should also be noted that when the gradient of the properties of the material in z direction is reduced below the number one, the 
frequency ratio increases, which is due to the increase in the stiffness of the beam in this range, and the index number of the gradient 
one in the z direction is the turning point of this change. 

4. Conclusion 

The nonlinear frequency of a bi-directional porous functionally graded beam is evaluated in this study utilizing third-order shear 
deformation theory, Green’s tensor, and von Karman geometric nonlinearity. In this situation, Hamilton’s principle is applied to 
construct constitutive equations and end conditions. A precise and efficient numerical methodology, the generalized differential 
quadrature method (GDQM) uses a direct iteration approach to solve discretized nonlinear equations. The FGM material model, vi
bration amplitude ratios, material indices, elastic substrate parameters, porosity coefficient, and various boundary conditions are all 

Fig. 7. Various end conditions influence on nonlinear to linear parameter ωNL/ωL of the Bidirectional FG beam versus power law indexes pz, px (l/h 
= 8, ωmax/r = 0.6). 
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evaluated to confirm the results. Based on the findings, the following conclusions were reached:  

1) The ratio of nonlinear to linear frequency to amplitude increases depending on the type of end condition; however, this trend does 
not exist for C–F endpoints.  

2) The nonlinear to linear frequency ratio fluctuates with the z and x material gradients. 
3) The influence of porosity coefficients, power law, and material indexes increases as the nonlinear to linear frequency ratio de

creases due to the stiffness of bi-directional FG beams decreasing.  
4) The frequency ratio under porosity influences tends to be more influenced by the power-law index along the x-orientation than by 

the power-law index in the z-orientation.  
5) How an isotropic beam’s nonlinear to linear frequency ratio is impacted by the altering Kw and Kg substrate stiffness.  
6) Study examines nonlinear to linear frequency ratios as a function of amplitude ratios by varying the FG beam’s Shear and Winkler 

substrate stiffness and comparing their trends. 
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