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B I O P H Y S I C S

Probing allosteric regulations with  
coevolution-driven molecular simulations
Francesco Colizzi1*† and Modesto Orozco1,2*

Protein-mediated allosteric regulations are essential in biology, but their quantitative characterization continues 
to posit formidable challenges for both experiments and computations. Here, we combine coevolutionary infor-
mation, multiscale molecular simulations, and free-energy methods to interrogate and quantify the allosteric 
regulation of functional changes in protein complexes. We apply this approach to investigate the regulation of 
adenylyl cyclase (AC) by stimulatory and inhibitory G proteins—a prototypical allosteric system that has long 
escaped from in-depth molecular characterization. We reveal a surprisingly simple ON/OFF regulation of AC 
functional dynamics through multiple pathways of information transfer. The binding of G proteins reshapes the 
free-energy landscape of AC following the classical population-shift paradigm. The model agrees with structural 
and biochemical data and reveals previously unknown experimentally consistent intermediates. Our approach 
showcases a general strategy to explore uncharted functional space in complex biomolecular regulations.

INTRODUCTION
The free-energy landscape of proteins drives the functioning and 
regulation of cellular processes (1–3). Underlying these highly 
controlled activities is the balance among different conformational 
states, which is often regulated by allosteric effectors—ligands that 
produce a structural change in the target in a region distant from 
their binding site (2, 4). Despite notable advances (3, 5–7), the 
quantitative characterization and prediction of allosteric mechanisms 
continue to posit formidable challenges for both experiments and 
computations. The molecular underpinnings of allosteric changes 
in protein structures are often hindered by averaged metrics, the 
transient nature of the species involved (8), the difficulty to repro-
duce biological events in vitro (9), or the great deal of computational 
power required to model uncharted free-energy surfaces (9, 10). 
Nonetheless, allosteric regulations are widespread in biology (11–18), 
and the characterization of the underlying free energy is critical to 
understand and control the functional conformational landscape of 
biomolecules (19). The objective of this work is thus to devise a 
computational procedure to efficiently explore the functional free- 
energy landscape of a protein with and without the allosteric 
effector bound, thereby gaining insight into how conformational 
equilibria translates into function. We focus on the conserved 
regulation of adenylyl cyclase (AC) by stimulatory and inhibitory 
G proteins—a prototypical example of protein-protein allostery at 
the center of the G protein–coupled receptor (GPCR) signaling 
cascade, the target of nearly half of all drugs. Despite extensive 
molecular research conducted on this system (20–22), there are still 
open questions.

When hormones or drugs bind to GPCRs, they activate G proteins, 
which, in turn, activate or inhibit AC (20–22). ACs control the rate 

of conversion of adenosine 5′-triphosphate (ATP) into 3′,5′-cyclic 
adenosine monophosphate (cAMP)—the second messenger that, by 
interacting with protein kinase A, triggers the phosphorylation of a 
myriad of downstream targets (23). The most conserved regions of 
ACs are the pseudo-symmetric catalytic domains (called C1 and C2) 
that work as obligate dimers with the active site at the dimer inter-
face, a feature rarely found in other enzymes (24). This unique 
feature makes the catalytic rate markedly affected by structural 
movements at the seam of the two domains (22, 24). X-ray crystal-
lography (25–27) and cryo–electron microscopy (cryo-EM) (22, 28) 
experiments have detailed two conformational states in AC structure. 
They are coupled to the formation of the complex with stimulatory 
Gs protein and include the reorientation of AC catalytic domains, 
together with a small displacement of an  helix opposite to the 
binding site of stimulatory Gs (22, 24–27).

The high versatility of signal transduction encoded in AC struc-
ture (22, 24, 29) suggests, however, that the known states are only 
snapshots of a much wider and diverse set of functional ensembles 
that still have to be captured and quantified. In this context, 
computer simulations (30) could bring about a major productivity 
leap. Recently, insight has been generated from long molecular 
dynamics (MD) simulations, confirming the high structural plasticity 
of AC and providing a general blueprint of AC dynamics in a variety 
of biological contexts (31–37). Although extremely informative, 
these studies have offered only a qualitative description of the 
complicated link between effector binding and AC dynamics, raising 
challenging questions on the mechanisms and the free-energy 
landscape governing the functional ensemble of AC structures.

To face these challenges, we devised a multiscale MD approach 
guided by coevolutionary data (38) that allowed the free-energy 
landscape of a fully solvated atomistic model of AC with and without 
the bound G protein to be reconstructed. Coevolutionary-based 
approaches have been used to predict native structures in proteins 
(39, 40) and nucleic acids (41, 42) and to generate conforma-
tional ensembles (43–45). Our work is unique in that it leverages 
coevolutionary information to reduce the complexity of the config-
urational space in protein-protein regulations, thereby focusing 
only on the functional free-energy landscape obtained from residue 
coevolution. By doing so, we expand and manipulate AC structural 
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ensembles consistently with—and beyond—experiments. We focus 
on human AC type 5 (hAC5) as quintessential allosteric unit con-
trolled by both stimulatory and inhibitory G proteins (20). We find 
AC populating two main conformational ensembles with all the exist-
ing experimental structures falling into just one of these ensembles. 
Notably, AC shifts from one ensemble to the other depending on 
which G protein it binds to. The results complement, and are in 
agreement with, structural (22) and biochemical (29, 46) data, and 
extend our understanding of the mechanisms of protein-induced 
allostery in AC. Furthermore, they provide a general framework for 
investigating and manipulating complex biomolecular regulations.

RESULTS AND DISCUSSION
Coevolutionary analysis captures functional domain 
reorientations
We performed direct coupling analysis (DCA; see Methods) (40, 47) 
on a multiple sequence alignment of hAC5 homologs, selecting 
those coevolving pairs that are not in contact in the native structure, 
and which thus bear information on possible alternative, unknown, 
conformations (i.e., nontrivial pairs; Fig. 1A, red dots) (43). Nontrivial 
pairs appear between C1 and C2 catalytic domains (Fig. 1A, left), 
suggesting that interdomain movements are linked to function. 

DCA scores were filtered and introduced as ensemble restraints in 
coarse-grained discrete MD (dMD) simulations (43, 48–51), which 
allowed us not only to detect functionally relevant conformations 
but also to generate trajectories connecting them (43). The trajectories 
resulted in hAC5 conformational transitions dominated by the 
opening and closing of the catalytic site as shown by the analysis of 
its principal components (Fig.  1B). The closure movement of C1 
and C2 domain modulates the shape and accessibility of the catalytic 
site to ATP, providing a molecular glimpse on the major regulation 
mechanism of AC activity (22, 24–27).

Functional free-energy landscape from path metadynamics
To probe the energetic feasibility of the coevolution-based dMD tran-
sition, we back mapped the coarse-grained transition into a fully atom-
istic one, characterizing its free-energy landscape with path-based (52) 
metadynamics (53, 54) simulations in explicit solvent (see Methods and 
the Supplementary Materials). We observed that the apo (ligand-free) 
hAC5 populated two free-energy basins with a similar well-depth of 
4 kcal/mol (Fig. 2 and fig. S3). Such free-energy minima corresponded 
to a sparse “open” ensemble (Fig. 2, A and B) and to a well-defined 
closed conformation of the catalytic domain and active site. Notably, 
the open ensemble included the experimental structures of activated 
AC bound to Gs together with an ATP analog (P-site inhibitor) 
and the activator forskolin (1cjk) (26), a forskolin derivative alone 
(1azs) (25), and a guanosine 5′-triphosphate (GTP)–based substrate 
analog and forskolin (6r4o) from cryo-EM experiments (28) of the 
full-length membrane AC (Fig. 2A, gray circles). As the above AC 
structures were experimentally solved in complex with the stimula-
tory Gs, we label this open ensemble as the “active conformation”; 
the residues forming the active site are apart from each other and 
appear in an ATP-binding competent state. Although ATP was not 
present in our simulations, note that an ATP-bound conformation 
is a free-energy minimum encoded in AC intrinsic dynamics.

Moving along the functional transition, we observed a metastable 
state (labeled 2 in Fig. 2) with reduced interdomain distance than 
the open ensemble. This intermediate conformation features a salt 
bridge between D518 and R1208 from C1 and C2 domain, respec-
tively. D518 has been experimentally observed interacting with 
catalytic Mg2+ and R1208 with the -phosphate of ATP analogs and 
is thus essential for ATP binding and catalysis (26). The desolvation 
of D518 and R1208 side chains likely contributes to the energy 
barrier for reaching this intermediate state from the open ensemble. 
Further progression along the functional reaction coordinate leads 
the system to a compacted closed conformation (labeled 3 in Fig. 2) 
with the interdomain distance dropping below 25 Å. Such a closed 
conformation is characterized by an additional bidentate salt bridge 
between D474 and E596 and the catalytic K1244. This interaction 
“seals” AC into a conformation with no accessible binding site for 
ATP (Fig. 2, A and B). As ATP binding is essential for cAMP 
production, this conformation is catalytically inactive. We remark 
that closed conformations of AC have not yet been observed experi-
mentally, likely because the structure of AC could only be solved 
either in complex with the stimulatory Gs (25, 26, 28, 55–57) or 
with the active site occupied by the activator forskolin (27). These 
results motivate and challenge the design of future experimental 
research. Overall, path metadynamics allowed the atomistic de-
scription of functional transitions in hAC5 and the efficient re-
construction of the underlying free-energy landscape with an estimated 
error in the order of kBT (Fig. 2C).

Fig. 1. Residue coevolution is used to explore the functional conformational 
landscape of hAC5. (A) Contact map (left) of hAC5 showing residues that are within 
8 Å in the native structure (cyan dots) together with coevolved pairs of residues 
that are not in contact in the native structure (red dots) and that might thus be 
informative of alternative protein conformations. Coevolved pairs of residues that 
are in contact in the native structure are shown as blue dots. Right: Structural rep-
resentation (red lines) of nontrivial coevolved pairs in hAC5 (cyan ribbons). For the 
sake of clarity, only the top 30 DCA contacts for hAC5 are shown. The quantitative 
threshold used to determine which contacts were included in the coarse-grained 
simulations is described in Methods. (B) Deformation arrows (in red) showing the 
motion corresponding to the first principal component of the functional transition 
reconstructed from DCA and coarse-grained simulations. The closure movement 
of C1 and C2 domain modulates the shape and accessibility of the catalytic site.
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Population shifts upon G protein binding
To assess the effect of stimulatory and inhibitory G proteins on the 
regulation of hAC5 structural plasticity, we perturbed the free-energy 
landscape of hAC5 with the presence of either stimulatory Gs or 
inhibitory Gi (Fig. 3). The stimulatory G protein, Gs, binds within 
a cleft in the C2 domain of AC, while Gi binds within the opposite 
cleft in the C1 domain (Fig. 3) (29). When Gs binds to hAC5, the 
conformational ensemble of AC is shifted to the open conformation 
that becomes ~6 kcal/mol more stable than the closed state (Fig. 3A, 
blue lines, and figs. S1 and S3). Notably, this open conformation 
belongs to the same ensemble comprising the experimental struc-
tures of AC complexed with stimulatory Gs, thus validating the 
theoretical framework used here (see Fig. 2A for reference). In 
notable contrast, however, when we simulated hAC5 bound to the 
inhibitory Gi, the open/closed equilibrium shifted toward the 
closed conformation of AC that becomes ~8 kcal/mol more stable 
than the open state (Fig. 3A, black lines, and figs. S2 and S3). The 
closure of the ATP-binding site is consistent with biochemical data 
indicating that P-site inhibitors (ATP analogs) bind with greatly 
reduced affinity to AC in the presence of Gi (46). This behavior 
suggests a straightforward mechanism of AC regulation by G proteins. 
That is, when Gs binds to hAC5 (Fig. 3B), the open ensemble of 
conformations is selected and the cyclase becomes competent to 
host ATP in its active site; vice versa, when Gi binds to hAC5 
(Fig. 3C, the binding of Gi is symmetrically opposed to Gs), the 

ensemble of hAC5 conformations shifts toward a closed state that 
impedes or perturbs ATP binding, thus resulting in the inhibition 
of cAMP production.

Multiple pathways of information transfer
The structural dynamics of ACs systems was further investigated 
with community network analysis (see Methods) (58) to identify 
and compare major pathways of signal transduction and allosteric 
communication (Fig. 4). Analyzing the community network of the 
hAC5/Gs system, a major communication path is found between 
the binding site of Gs (community #1) and the community (#6) 
including the small 4 and 7 helices, which line the extension of 
the catalytic site in the C1 domain (Fig. 4A). The communication is 
mediated by correlated motions in the  sheet (1, 4, and 5) 
connecting the two communities, as found in other globular proteins 
(59), and in the hAC5/Gs system, they further mediate a weaker 
allosteric communication between communities 3 and 4, also lining 
the catalytic site. The dynamical network of the hAC5/Gi system 
shows quite different features, as the communication from the 
binding site of inhibitory Gi (community #3) propagates to the 
rest of the protein through the -helix 3 of C1 domain (Fig.  4B). 
Particularly, Gi allosterically modulates the binding site of Gs 
(community #1), suggesting a mechanism to inhibit cAMP production 
by interfering with binding of the stimulatory Gs, as it has been 
proposed previously (29, 32, 35). Therefore, the binding of Gi not 

Fig. 2. Mapping the coevolution-driven conformational transition of hAC5 with fully atomistic metadynamics simulations. (A) Free-energy landscape of hAC5 
conformational change reconstructed as a function of the progress along the functional transition and the distance between the C1 and C2 domain, using Asn558 and 
Met1250 as reference (red spheres in the structure inset). The encircled numbers correspond to the open, metastable, and closed hAC5 states shown in panel. Gray transparent 
circles with corresponding PDB codes represent the position of known experimental AC structures in the explored conformational space. In the inset, the structure of 
hAC5 is represented by cyan ribbons, with ATP-binding site and interdomain distance highlighted. (B) Snapshots of the metadynamics trajectory showing key residues 
of the catalytic site (carbon atoms in pink) and the main interactions (dotted black lines) formed at the interface between C1 and C2 domain in an open (1), metastable (2), 
and closed conformation (3). The residues highlighting the interdomain distance (red spheres) are shown as a reference; hAC5 is represented by cyan ribbons. (C) Diffusion 
of the system in the functional-transition space as a function of simulated time (top), highlighting the exploration of the same region multiple times. Error in the reconstructed 
free energy with different length of block averages (bottom).
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only selects the closed state of hAC5 catalytic domain but also triggers 
information transfer to the binding site of Gs, likely modulating 
its capability to activate the cyclase. Furthermore, the residues 
participating in the salt bridges observed in the intermediate and 
closed state are involved in different communication pathways 
depending on which G protein AC binds to. In the hAC5/Gs com-
plex, residues D474 and E596 are the critical nodes connecting 
communities 6 and 4, respectively, while D518 is the critical node 
connecting communities 4 to 3. Residues K1244 and R1208 belong 
to community 5 (Fig. 4A, left). There is no direct communication 
between communities 5 and 6, 4, likely reflecting the observation 
that the free-energy landscape of the hAC5/Gs complex is shifted 
toward the open state where no salt bridges are formed. In the 
hAC5/Gi complex, residues K1244 and R1208 fall into communities 
5 and 4, respectively (Fig. 4B, left). In this complex, we observe a 
direct communication between communities 3 and 4 that could 

mediate the formation of the salt bridge between D518 and R1208 
featured in the intermediate state (Fig. 2B). Notably, community 5, 
including the catalytic K1244, appears to communicate mostly with 
community 4, suggesting a possible flow of information between 
intermediate and closed state. We further note that the asymmetry 
in the communication pathways activated when Gs binds AC 
compared to Gi binding could be related to the asymmetry in the 
relative (de)stabilization of open/closed states by the two G proteins 
(with Gs stabilizing by ~6 kcal/mol the open conformation, while 
Gi stabilizing by ~8 kcal/mol the closed one). In particular, a qualita-
tive comparison of the networks shown in Fig. 4 (A and B) suggests 
that the binding of Gi to AC triggers a much wider flow of infor-
mation with high correlation (or energy of interaction) (58) be-
tween nodes than the binding of Gs to AC. Last, the large number 
of highly conserved residues at the interface between communities 
(critical nodes) suggests that the response to external stimuli (e.g., 
to inhibitory Gi) among different AC isoforms can be achieved by 

Fig. 3. Modulation of hAC5 functional transition by the binding of stimulatory 
and inhibitory G proteins. (A) Comparison of the free-energy minima populated 
by hAC5 with no regulatory protein bound (red plot), in complex with stimulatory 
Gs (blue plot), and in complex with inhibitory Gi (black plot); contours drawn at 
1 kcal/mol intervals from 0 to 3 kcal/mol, after alignment of each minimum to zero. 
hAC5 alone can populate both closed and open states, the binding of Gs stabilizes 
an open state, while the binding of Gi favors the closed conformation of hAC5. 
(B) Structural representation of the complex between hAC5 (cyan ribbons) and Gs 
(pink ribbons); blue tubes on hAC5 represent main pathways of signal transduction 
between C1 and C2 domain from community network analysis (see text). (C) Structural 
representation of the complex between hAC5 (cyan ribbons) and Gi (orange 
ribbons); gray tubes on hAC5 represent main pathways of signal transduction 
between C1 and C2 domains from community network analysis (see text).

Fig. 4. Pathways of signal transduction and allosteric communication in hAC5 
from community network analysis. Community network representation for 
hAC5 bound to (A) Gs and (B) Gi. The communities are shown in different colors 
as filled circles (left) or cartoon structures (right). Major communication pathways 
in the network are identified by the intercommunity connections shown as lines, 
with width proportional to the cumulative betweenness of intercommunity edges 
(left). Residues forming salt bridges in the metastable and closed state are shown 
under the belonging community (left). The binding site of G proteins is highlighted 
by dashed gray lines. Binding of Gs to the C2 domain is communicated to the C1 
domain via the -sheet motif formed by 1, 4, and 5 (intercommunity connections 
1-6 and 3-4). The modulation of hAC5 dynamics by Gi is achieved through a larger 
network reaching the C1 domain mainly passing through the helix 3 (inter-
community connection 3-2). As highlighted by the community network, the 
binding of one G subunit can produce allosteric effects at the binding site for 
the other, with the binding of Gi having the major allosteric modulation on 
the dynamics of Gs binding site.
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sequence changes as well as by specific binding to effectors that, in 
turn, modulate intracommunity dynamics (60).

By combining recent breakthroughs in coevolutionary analysis 
with multiscale modeling and free-energy methods, we have dissected 
the allosteric regulation of AC intrinsic dynamics by G proteins—a 
fundamental process in biology and pharmacology. Our model 
reveals quantitative details on the regulation mechanism and demon-
strates that signal transduction in AC/G protein systems operates 
through the selective (de)stabilization of the particular state to which 
ATP preferentially binds following the classical “Monod-Wyman- 
Changeux” population-shift paradigm (2, 61). These results create a 
common reading frame among multiple lines of experimental data 
and provide an unprecedented spatiotemporal resolution on the 
molecular mechanisms regulating cAMP generation. A possible 
limitation of the present work is that coevolutionary information 
was encoded only in the dynamics of AC, thus assuming that the 
activated GTP-bound state of G proteins fluctuates around the 
observed crystallographic structure (22).

Overall, the general procedure outlined here can be used to 
probe other allosteric regulations in uncharted conformational 
space for a wide range of complex systems. Advances in genomic 
sequencing make the procedure applicable to thousands (43) of 
macromolecules for which functionally relevant transitions can be 
efficiently perturbed. Molecular design strategies can be combined 
with the approach presented here to interrogate desirable functional 
intermediates, change the kinetics, or reprogram the mechanism 
of these systems with far-reaching consequences for pharmaceutical 
and biotechnological applications.

METHODS
3D structural models
The catalytic domains of hAC5 (UniProt: O95622) were built by 
homology modeling using SWISS-MODEL (62), based on up to 
98% sequence identity with the crystal structure of the mammalian 
hybrid AC5/AC2 in complex with Gs [Protein Data Bank (PDB) 
ID: 1AZS]; GTP-activated human Gs (UniProt: P63092) in 
complex with hAC5 was built from the same PDB template. The 
crystal structure of GTP-activated human Gi (UniProt: P63096; 
2GTP) was used to generate the complex with hAC5 that resulted in 
Gi binding the C1 domain in an orientation symmetrically opposed 
to Gs with respect to AC5 in the 1AZS complex, as suggested by 
mutagenesis data (29). Myristoylation of Gi was modeled following 
the procedure described in (63).

Coevolutionary analysis and coarse-grained simulations
The pairwise coevolved amino acid positions correlate strongly with 
spatial proximity in the three-dimensional (3D) space (38–40, 47) 
and can be used to fuel the search for biologically relevant confor-
mational ensembles (43–45) and to identify functionally relevant 
transitions in proteins (43, 44) and nucleic acids (41, 42). Multiple 
sequence alignment (1261 hits) from the clustered UniProt database 
(uniclust30_2018_08) (64) was generated using hAC5 (UniProt code: 
O95622) as query with HHblits (65), and DCA (47) was used to 
measure residue-residue coevolution with default parameters. DCA 
outputs a direct information (DI) score per pair of residues that was 
then filtered and used as input for the coarse-grained dMD simulations 
as described by Sfriso et al. (43). Briefly, given a DI-ranked list of 
coevolution pairs, we keep for further analysis only the first n pairs 

(n = 1000 in the case of AC) that maximize the Matthew’s correla-
tion coefficient resulting from the prediction of contacts (<10 Å) in 
the initial structure. Intuitively, in this step, we extend to the number 
of DCA contacts that are still informative about the initial structure. 
For the n pair selected, we test the accessibility of each residue pair 
in the structure by means of dMD pulling simulations where DCA 
pairs are brought close in space (one independent dMD simulation 
for each pair). By doing so, we filter the DCA output to remove 
uninformative or impossible contact pairs; individual trajectories 
are accepted only if they show better coincidence with coevolution 
information than a given threshold. For this, we check whether 
coevolutionary contacts are spontaneously established along the 
pulling trajectory and compute receiver operating characteristic 
(ROC) curves to quantify the agreement between the conformations 
generated and the list of n coevolution pairs. The area under the 
resulting ROC curve (AUC) provides a means to compare and rank 
the coherence between trajectories and the coevolutionary fingerprint. 
We retain instances exceeding 1.5 of the interquartile range in the 
AUC distribution (16 generated models in the case of AC), and the 
corresponding pairs of residues are incorporated as weighed (43) 
square potentials (904 wells were added to the native 9631 wells in 
the case of AC) into a multiple structure-based model (SBM). 
Coevolution pairs are thus reflected in the multiple SBM by favorable 
energy interactions that guide an ad hoc sampling strategy (43) in 
the exploration of the conformational landscape with dMD. Implicitly, 
this approach filters noise in the DCA signal and reveals the protein 
ensemble encoded by coevolution. The dMD simulations are 
clustered and analyzed to provide a trajectory that is representative 
of the functional conformational landscape. Last, the trajectory was 
discretized in 80 equidistant frames (66), which were sufficient to 
describe the functional transition with the necessary resolution for 
metadynamics. We note that our approach is similar to the one 
proposed by Morcos et al. (44), with the main difference being the 
filtering step of the DCA contacts. While Morcos et al. (44) directly 
incorporate top-ranked DCA pairs as energy minima of the SBM, 
our protocol includes the filtering of coevolution pairs with the 
dMD pulling simulations mentioned above. We have shown (43) that 
filtering of DCA contacts is not critical when abundant sequences 
(>10,000) are available, yielding strong evolutionary signal. However, 
when fewer homologs are aligned (in the order of few thousands), 
conformational transitions could not be modeled without filtering 
DCA contacts due to noise in the coevolution map. In our experience, 
few high-quality coevolved pairs are thus necessary to robustly 
guide protein dynamics, making the detection of these constraints  
decisive.

System setup and MD simulations
Each system was solvated with a 1-nm-thick truncated octahedron 
box of TIP3P (67) water molecules with periodic boundary condi-
tions. Equations of motion were integrated with a time step of 2 fs. 
For all nonbonded interactions, the real space cutoff was set to 1.0 nm, 
and the electrostatic long-range interactions were treated using the 
default particle-mesh Ewald settings (68). Bonds involving hydrogen 
atoms were constrained using the LINCS algorithm (69). After min-
imization and thermalization in the canonical ensemble (NVT), each 
system was further equilibrated at constant pressure and tempera-
ture (1 atm, 298 K) for 100 ns; metadynamics production runs 
were then generated in the isothermal–isobaric ensemble (NPT) 
using the stochastic velocity rescaling thermostat (70) and the 
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Parrinello-Rahman barostat (71). The active site of G proteins was 
modeled with one crystallographic Mg2+ ion and a GTP molecule. 
N-terminal myristoylation was present in Gi and modeled follow-
ing the procedure described in (63). AMBER parameters for Mg2+ 
(72), GTP (73), and myristoyl group (63) were used. All simulations 
were run using GROMACS 2018.3 (74) and PLUMED 2.4.3 (75) with 
the Amber ff99SB-ILDN force field (76).

Atomistic metadynamics simulations
Well-tempered metadynamics (77) was used to reconstruct the 
underlying free energy as a function of two collective variables 
(CVs) or reaction coordinates based on the functional path generated 
from the coevolutionary-driven coarse-grained simulations. In this 
framework, the microscopic coordinates of the system, q, are mapped 
in the CV space by s(q), which measures the progress along the 
functional path (52), and z(q), which measures the distance from 
the preassigned path. Using these variables, one can explore the 
free-energy landscape between an initial and final state and can find 
low free-energy pathways connecting them—pathways that, in turn, 
can be different from the originally assigned one (52). Proper 
reweighting (78) allowed the resulting free-energy landscape to be 
projected on the interdomain distance and s(q) (see also figs. S1 
to S3). We ran 2.3 s of well-tempered metadynamics simulations 
for each system.

Community network analysis
Allosteric network in the AC systems was examined through 
community network analysis (58) and visualized (79) with VMD 
(80). Briefly, the metadynamics trajectory of the AC systems is used 
to group C carbons (nodes) into communities—a set of nodes that 
move in concert with each other. Edges between pair of nodes are 
drawn if the average internode distance is below a certain threshold 
(5 Å); edge distances between node i and j have correlation-based 
weights, wij = −log(∣Cij∣), which define the probability of informa-
tion transfer across a given edge. Major communication pathways 
are identified by the edge betweenness, the number of shortest 
paths that cross a given edge (58).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj0786

View/request a protocol for this paper from Bio-protocol.
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