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Abstract

Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a
novel method of statistically identifying interactions in a neuron–glia network. We attempted to identify neuron–glia
interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a
generalized linear model (GLM) of a neuron–glia network. The interactions in our interest included functional connectivity
and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of
connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or
removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput,
multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the
reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the
estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method
can elucidate undiscovered functions of neuron–glia systems.
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Introduction

Information processing in the brain is primarily performed by

neurons [1,2]. Some studies, however, have revealed the existence

of crosstalk between neurons and astrocytes [3–6,6–14] that

neighbor the neurons and envelop the neuronal synapses [15].

The observations in these studies suggest the involvement of glia in

the brain’s information processing [16]. Stimulation applied to the

main type of glial cells (i.e., astrocytes) may induce the exocytosis

of gliotransmitters, which in turn modulates post-synaptic currents

[17] and increases post-synaptic excitability [18,19]. Stimulation

applied to neurons, on the other hand, elevates the Ca2+ activity

of astrocytes [8]. This effect occurs both in culture and in acute

brain slices, and is most likely mediated by astrocyte receptors for

neuro-active molecules, neurotransmitters and neuromodulators

[8]. In vitro astrocytes are known to exhibit relatively slow non-

electrical activities (100 ms*1 min) [15]. In contrast, neurons

exhibit rapid depolarization, or ‘spikes’ (*1 ms). Furthermore,

in vivo animal experiments have suggested that glia affect neural

networks in the sensory cortex [20,21] and in the motor cortex

[22]. These in vivo results imply that glia may play an important

role in the information processing associated with sensory and

motor functions. These findings clarify the necessity to shift our

focus from pure neuronal networks to neuron–glia networks [23–

26]. Unless otherwise noted, we will denote astrocytes as glia after

this.

To clarify the roles of neuron–glia interactions in brain

information processing, we need to examine neuronal and glial

activities in a network in an unmanipulated state. For example,

some experiments have artificially generated epileptiform bursting

activities of neurons and glial cells, and then examined the

contributions of glial activity via further pharmacological manip-

ulation [6,7,27]. Such approaches are very appropriate for clinical

applications. However, one needs to assess the concise contribu-

tion of glial activities in networks in a resting state to elucidate their

functions in information processing. In this case, the sheer

complexity of the networks makes it extremely difficult to estimate

neuron–glia interactions. The dissociation of glial effects from

other neuronal effects is a challenging problem, especially when

indirect interactions via other neurons in the network are taken

into consideration. Also, such indirect interactions may themselves

be important for identifying neuron–glia interactions.

Generalized linear models (GLMs) have been developed for

pure neuronal networks (without glia) to analyze their interactions

in terms of both response functions and functional connectivity

[28–33]. One can identify the characteristics of multivariate time
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series by estimating the model parameters in the GLM-based

approaches. In the framework of the GLMs, the probability of

spike events in a network at any given time depends on the history

of the activity time series. The response functions and functional

connectivity are estimated from the observed time-series of multi-

neuronal spiking activities. The estimated response functions

measure the extent to which the other neuronal spikes causally

affect the spiking activities of target neurons. The estimated

functional connectivity, on the other hand, represents the pathways

over which the neuronal activities propagate. Although the

functional connectivity does not necessarily correspond to a specific

synaptic or non-synaptic connection (e.g., gap-junction) [34,35],

existing studies have shown that synaptic connections are closely

linked to the connections that can be functionally estimated based on

Ca2+ imaging [36] and multi-electrode physiological measurements

in vivo [37,38]. Friston et al. argued that functional connectivities,

particularly the ones that depend on the context of environments

and behaviors, represent information flow propagating through

anatomical connectivity [39] in their research on fMRI datasets.

One may then use the response functions and functional connectivity

to address how each component contributes to information

processing in the brain, either in a controlled environment or in

the resting state. This type of data-driven approach is important in

analyzing experimental data with high throughput, and in our

particular case of identifying unknown neuron–glia interactions,

even with a lack of a priori biological knowledge.

Neuronal spiking activity is binary, while glial activity may be

regarded as being graded time series [18]. Since we cannot directly

apply the existing GLM-based techniques to such heterogeneous

neuron-glia networks, we propose a new GLM-based statistical

method in this paper to identify the interactions between neurons

and glial cells. We applied this statistical method to the time-lapse

imaging data of the rat hippocampal CA3 region based on high-

resolution (184|94 pixels) and high-speed (100 Hz) Ca2+ imaging

[40]. We determined the response functions and functional

connectivity of the neuron–glia network from spontaneous activities

of neurons and glial cells, which were then quantified by measuring

the Ca2+ signal averaged over each cell. The reliability of the

determined connectivity was evaluated with a statistical test based

on a surrogate method. Our analysis revealed several characteristics

of interactions between neurons and glia, including the positive

effect of glial activities on the activities of neighboring neurons.

These results obtained solely by using the proposed method were

compatible with existing knowledge on neuron–glia interactions,

reinforcing the previous neurobiological observations and providing

new insights into the functions of neuro–glia systems.

Results

Methods overview
We developed a statistical method to identify the functional

connectivity and response functions of neuron–glia networks

in situ, which may reflect the dynamics of ionic receptors on

neurons and glial cells. We applied it to a Ca2+ imaging dataset of

an in vitro brain slice (see ‘ In vitro Ca2+ imaging’ section in

Methods), by using the Ca2+ signal (concentration) as an indicator

of neuronal as well as glial activities. We conducted high-resolution

(184|94 pixels) and high-speed Ca2+ imaging (100 Hz) from a

CA3 region (184 mm|94mm) of a rat’s hippocampal slice to

prepare the dataset by using Nipkow-type spinning-disk micros-

copy [40]. We observed spontaneous Ca2+ activities of neurons

and glial cells within the 10 min of a fluorescence image series. An

image preprocess applied to the image series extracted binary

activities of 48 neurons and graded activities of six glial cells

(Figs. 1E and 1H). The spike frequency of the 48 neurons was

0.03–1 Hz. The activity dataset thus consisted of the observation

time series of 48 neurons and six glial cells.

We tried to identify the neuron–glia system based on this

observation time series by estimating the parameters of our

neuron–glia network model (Fig. 2A. See ‘Generative model and

MAP estimation’ section of Methods). We developed a generalized

linear model (GLM) of a neuron–glia network as a variation of

previous GLMs used for neuronal networks [41]. We could

efficiently and uniquely obtain maximum a posteriori (MAP)

estimates of the parameters by assuming that the present activities

of neurons and glial cells were independent conditional on their

past. Using the MAP estimates, we could avoid ‘overfitting’, where

the model estimates were disturbed by noise involved in the

relatively short observation time series.

We evaluated the quality-of-fit of the estimated model to the

observation time series by using K-fold cross-validation (see

‘Functional connectivity analysis’ section of Methods). The obser-

vation time-series dataset in the K-fold cross-validation was

partitioned into K subseries. A single subseries was used as the

dataset to evaluate the estimated model, while the remaining K{1
subseries were used as the training dataset to estimate the model

parameters. Our measure of the quality-of-fit was the cross-validated

likelihood, i.e., the model’s predictability of the activities of neurons

and glial cells in the test dataset averaged over K folds (for more

details, see ‘Functional connectivity analysis’ in Methods section).

Since the cross-validated likelihood depended on the network

structure of the model, i.e., the connectivity pattern within the

neuron–glia system, it could be used to identify the connectivity

between neurons and glial cells. For a specific connection from a

glial cell to a neuron (a glia-to-neuron connection), we accepted

the connection if a network structure with the new connection

indicated a better cross-validated likelihood than the network

structure that did not include the connection. In contrast, for a

specific connection from a neuron to a glial cell (a neuron-to-glia

connection), we preferred a network structure without the connection

Author Summary

Many neuroscientists believe that neurons mainly perform
information processing in the brain. Glial cells have
traditionally been regarded as passive cells, whose roles
have been limited to mechanical support and energy
transfer to neurons. However, some studies have recently
demonstrated the existence of interactions between
neurons and glial cells and implied the involvement of
crosstalk between neuronal and glial systems in informa-
tion processing. Nevertheless, the details on neuron–glia
communication largely remain unknown. One way of
addressing this issue is to use a powerful statistical
methodology to identify the network structure based on
high-throughput time-lapse imaging from neuron–glia
networks. We developed a new statistical method for
functional connectivity analysis that was suitable for
examining neuron–glia interactions. We applied the
method to multicellular Ca2+ imaging data, where
neurons and glial cells carried out spontaneous activities
in a rat hippocampal CA3 culture. We found in a data-
driven manner that each glial cell facilitated the activities
of neighboring neurons with a peak latency of 500 ms. Our
study is the first of its kind to present a statistical
framework to investigate the functional connectivity
between neurons and glial cells. Our statistical method is
thus capable of identifying neuron–glia interactions by
utilizing the high-throughput imaging technique.

Identification of Neuron-Glia Interactions
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Figure 1. Outline of image preprocessing. (A) The rectangle indicates the target circuit of our analysis, a part of the hippocampal CA3 region of
a rat, whose area was 184mm|94mm. (B) The average Ca2+ fluorescence image over the whole observation period of 10 min. (C) Neuronal ROIs were
defined as the regions exhibiting sufficiently large temporal variance within the Ca2+ imaging data (blue numerals. For more details on the detection
procedure, see Methods). (D) Neuronal spikes in each ROI were detected as signal peaks (red points) with substantially high intensities in comparison

Identification of Neuron-Glia Interactions
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if the reduced network structure indicated a better cross-validated

likelihood than the one with the connection (see ‘Functional

connectivity analysis’ section in Methods). We identified the best

network structure, i.e., the connectivity and response functions of the

neuron–glia system, by repeating this set of procedures (the addition/

removal of connections including MAP-based parameter estimation

inside). The reason for our different treatment of glia-to-neuron and

neuron-to-glia connections will be discussed later.

We conducted surrogate analysis to verify the reliability of the

extracted functional connections as follows. First, we created a set

of artificial time series for neurons and glial cells by applying

‘‘cyclic’’ rotations in which the cross correlations were destroyed

but the autocorrelations were preserved. We then applied our

algorithm to this artificial data set, and compared the number of

identified connections against the number of connections we had

identified from the original data. This obtained a statistical

evaluation of the bulk number of connections that could be

identified with our method.

Recent studies have shown that glial activities affect neuronal

activities on various time scales, ranging from several tens of

milliseconds to several hours [6,12,14]. We focused on interactions

that lasted for a relatively short duration with a delay ranging

between 100 and 500 ms in this study. This is because our method

could not deal with interactions with longer delays in our time-

lapse image dataset of 10 min (see ‘Limitations of proposed

method’ in the Discussion section). A detailed description of the

overall method is found in Methods and Text S1. The codes for

our generative model and statistical analyses have been uploaded

to GitHub (https://github.com/nakae-k/glia-neuron).

Response functions of neuron–glia interactions
We estimated the response functions, aij(s),bij(s),cij(s), and

dij(s), which corresponded to the connections between neurons,

the connections from glial cells to neurons, the connections from

neurons to glial cells, and the connections between glial cells (see

Fig. 2A and ‘Generative model and MAP estimation’ in Methods).

Here, i denotes the index of the ‘‘sender’’ cells, j denotes that of

the ‘‘receiver’’ cells, and s denotes the delay time.

Fig. 3A shows the identified connectivity matrix of the neuron–

glia network. Here, we assumed that the functional connections

between neurons and glia were directional because the neuron-to-

glia and the glia-to-neuron connections are believed to depend on

different biophysical processes [23]. There are small numbers of

connections with substantially larger values than the other connec-

tions at the top left of the matrix, i.e., inter-neuronal connections.

This observation is consistent with existing physiological studies,

which report that the strength of inter-neuronal connections in the

hippocampus obeys a log-normal distribution [42] We can also see

some strong glia-to-neuron connections at the top right.

We took temporal averages of aij(s) and dij(s), and determined

connections corresponding to positive values as excitatory. We

similarly determined connections corresponding to negative values

as inhibitory. Approximately half of the inter-neuronal connec-

tions were found to be excitatory (Fig. 3B). This may suggest some

sort of a balance in inter-neuronal and inter-glial connections.

Positive values for the temporal averages of bij(s) and cij(s) were

found for 63% of the former and for 11% of the latter, suggesting

that there were major excitatory effects from glial cells to neurons

but minor inhibitory effects from neurons to glial cells.

Functional connectivity analysis between neurons and
glia

We determined the existence of a connection (N/G) from the

j-th glial cell to the i-th neuron using a newly designed t-statistic,

tN/G
ij , which determined whether the increase in the cross-

validated likelihood resulting from the addition of the new

to the standard deviation within the baseline. The baseline was estimated with an iterative procedure (see Methods). The blue line indicates the
signal profile after baseline correction that includes detrending. (E) A spike profile for the ROIs from which we selected 48 ROIs that showed high
frequencies of spikes. (F) We selected small and bright cell-like regions as glial ROIs (for more details, see Methods) in parallel with the detection of
neuronal ROIs. (G) We took the time series as the average signal intensity within the ROI region for each glial ROI. (H) We obtained the activity time
series of six glial ROIs after linear detrending and smoothing.
doi:10.1371/journal.pcbi.1003949.g001

Figure 2. Outline of functional connectivity analysis. (A) We statistically estimated the whole network of neurons and glial cells based on the
neuronal and glial activities obtained from time-lapse Ca2+ imaging. A neuron–glia system consists of four types of possible connections (depicted
by arrows): between neurons (blue), from glial cells to neurons (orange), from neurons to glial cells (green), and between glial cells (red). (B) Each
specific connection in the neuron-glia network was identified by basically comparing the cross-validated likelihood between two network structures:
(1) one with the connection and (2) the other without the connection.
doi:10.1371/journal.pcbi.1003949.g002
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connection was significant or not (see ‘Functional connectivity

analysis’ section in Methods). We found that 24% of the glia-to-

neuron pairs increased the cross-validated likelihood, and the

remaining 76% decreased the cross-validated likelihood (Fig. S3).

We also found that only 17 out of 288 possible glia-to-neuron

connections could significantly increase the cross-validated likeli-

hood (pv0:05) by performing the statistical test based on tN/G
ij .

This suggested sparsity in glia-to-neuron connections (Fig. 4A).

When we compared the activities of a neuron–glia pair that was

identified as connected (e.g., neuron 6 and glial cell 2) with another

pair that was identified as not connected (e.g., neuron 6 and glial

cell 1), the correlation between the neuronal firing rate and glial

activity was higher for the connected pair (r~0:81) than that for

the non-connected pair (r~0:53) (Fig. S4).

We also identified 89 neuron-to-glia connections out of 288

neuron-to-glia pairs with a similar t-statistic, tG/N
ij (pv0:05),

where G/N denotes the neuron-to-glia connection (Fig. 5A) (see

‘Functional connectivity analysis’ section in Methods). The

average response function of the identified neuron-to-glia connec-

tions suggested small and inhibitory effects of neuronal activities

on glial activities. The t-test (pv0:05) determined the temporal

average of the response functions to be significantly negative.

These results seemed to be inconsistent with those in experimental

studies [8,27], which have demonstrated excitatory neuron-to-glia

connections. This inconsistency can be attributed to effects from

other brain areas that were not considered in our study (e.g., the

dentate gyrus), or to different experimental conditions. We need to

emphasize that we observed spontaneous activities in our

experiment while the preceding experiments mostly measured

activities evoked by stimulation [19,43] (also see Discussion).

We examined the reliability of connectivity from each of the six

glial cells to neurons, measured in terms of the bulk number of

identified connections by using the surrogate method (see

‘Surrogate method’ in Methods). We prepared 1000 surrogate

glial activities for each glial cell. This analysis suggested that glial

cells 2 and 5 had significantly large numbers of connections to

neurons (pv0:05). We similarly examined the reliability of

connectivity from neurons to each of the six glial cells, measured

in terms of the bulk number of identified connections. This

analysis indicated that no glial cells received a significantly large

numbers of connections from neurons (pv0:05).

Spatial and temporal features of identified connections
The identified 17 glia-to-neuron connections out of 288 glia-to-

neuron pairs are depicted in Fig. 4A. These connections had an

interesting topological character, i.e., the range of functional

connectivity from glia to neurons was local (20*50mm, see Fig.

S6). We performed the following statistical test to statistically

confirm this observation. We let Ck be the set of identified

connections from the k-th glial cell to the 48 neurons and let nk be

the size of Ck. The values of nk’s were n1 = 2, n2 = 5, n3 = 3, n4~1,

n5~4 and n6~2. We then randomly selected nk neurons from the

total of 48 neurons for each glial cell k, and measured the distance

between the k-th glial cell and all the selected neurons. We then

computed the median distance of such random glia-to-neuron

connections over the six glial cells. We repeated this sampling 1000

times to obtain an empirical distribution of the median distance of

randomly prepared glia-to-neuron connections. When the median

distance of the glia-connected neurons from their respective glial

cells was compared against this empirical distribution, it was found

to be significantly lower (p~0:015).

We found from visual inspections that each neuron had some

tendency to be under the functional projection of a unique glial

cell. This tendency was particularly strong for neurons under the

functional projection of glial cells 1, 2, 3, and 4 (Fig. 4B). These

Figure 3. Neuron–glia network estimated from Ca2+ imaging data. (A) Connectivity matrix of the neuron–glia network estimated with our
method. Each column and each row of the matrix correspond to ‘‘sender’’ (i.e., from) neuron/glia and ‘‘receiver’’ (i.e., to) neuron/glia. Indices of 48
neurons and indices of six glial cells are segmented by white lines on the matrix. Each matrix entry denotes the root mean square of the
corresponding response function; the root mean square is normalized within the entry values of a,b,c, and d individually. This is because the
magnitude of the response functions was considerably different across a,b,c and d. For example, the element (1, 49) indicates the magnitude of the
response function from neuron 1 to glial cell 1 (~49{48). (B) The proportions (as percentages) of the response functions, aij(s),bij(s),cij(s), and dij(s),
which took positive values are depicted in the top left, top right, bottom left, and the bottom right panels, respectively. The self-feedback
connections of neurons, represented by aii(s), were all inhibitory, which would demonstrate the refractoriness of neurons. On the other hand, the
self-feedback connections of glial cells, represented by dii(s), were all excitatory. This could be due to the timescale of the glial activities, which are
much slower than the sampling frequency.
doi:10.1371/journal.pcbi.1003949.g003
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findings are consistent with the anatomy of astrocytes, where they

are known to occupy nonoverlapping local territories whose

diameter is about 30mm. The findings are also in agreement with

the hypothesis of functional islands of neurons modulated by

individual astrocytes [44,45]. Fig. 6 (left) suggests that the

excitatory glia-to-neuron connections have a mean peak latency

of around 500 ms. The t-test (pv0:05) determined the temporal

average of the response functions to be significantly positive.

The 89 neuron-to-glia connections identified from 288 neuron-

to-glia pairs, on the other hand, were found to be non-local

(Fig. 5B). When we actually applied a statistical test similar to that

above to the identified neuron-to-glia connections, the p-value was

Figure 4. Identification of glia-to-neuron connections. (A) Connections from glial cells 1, 2, 3, 4, 5, and 6 to the 48 neurons, all of which were
identified using the t-statistics, tN/G

ij , are shown in the top left, top right, middle left, middle right, bottom right and bottom left panels, respectively.
Each ROI labeled by an orange numeral indicates the neuron that gave the better cross-validated likelihood if the network structure included the
corresponding glia-to-neuron connection. (B) Visualization of projection range of each glial cell. (Left) Projection ranges of the six glial cells are
visualized. The color of each ellipse corresponds to that of the ‘‘sender’’ glial cell. (Right) Projection ranges of four glial cells out of the six to enable
better visibility.
doi:10.1371/journal.pcbi.1003949.g004

Identification of Neuron-Glia Interactions
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0.385 (also see Fig. S6). The average response function of the

identified neuron-to-glia connections suggests small and inhibitory

effects of neuronal activities on glial activities. The t-test (pv0:05)

determined the temporal average of the response functions to be

significantly negative.

Discussion

Identified connectivity and response functions
Our results suggested the existence of functional connectivity

from glial cells to neighboring neurons within a 20 mm*50 mm

Figure 5. Identification of neuron-to-glia connections. (A) Connections from the 48 neurons to glial cells 1, 2, 3, 4, 5, and 6, all of which were
identified using the t-statistics, tG/N

ij , are shown in the top left, top right, middle left, middle right, bottom right and bottom left panels, respectively.
Each ROI labeled by a green numeral indicates a glial cell for which the model’s cross-validated likelihood deteriorated when the corresponding
neuron-to-glia connection was removed. (B) Visualization of projection range to each of the six glial cells. The color of each ellipse corresponds to that
of the ‘‘receiver’’ glial cell.
doi:10.1371/journal.pcbi.1003949.g005

Identification of Neuron-Glia Interactions
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perimeter. The identified functional connectivity also exhibited a

distinctive local tiling pattern with few overlaps (Fig. 4). Further,

these connections had positive response functions on the time scale

of 500 ms. These results are in good agreement with experimental

findings [6,44,46]. For example, the activation of hippocampal

CA1 astrocytes has induced an inward current to neurons for a

duration of *500 ms (e.g., [6]), which is mediated by glutamate

released from astrocytes [19]; this phenomenon synchronizes the

activities of CA1 neurons in the same range of v100 mm [47].

Anatomical studies have also found that astrocytes in the

hippocampus occupy non-overlapping domains [44,46]. The

identified response functions correspond to the inward current to

neurons, and the identified local connectivity corresponds to the

mostly non-overlapping domain of astrocytes. This would also

suggest that glial activities could affect neuronal information

processing in spontaneously active situations, in concert with inter-

neuronal and inter-glial interactions, like those in our in vitro
experiment.

The estimated glia-to-neuron response functions had a time

scale of several hundred milliseconds with a peak latency of

500 ms. This relatively long duration might include the time for

the activations of neuronal AMPAR and NMDAR in response to

gliotransmitter release. Because the deactivation kinetics of

AMAPR is known to be very rapid (,5 ms), one may think that

AMPAR activation should not appear in the response functions

derived from the sampling interval of 10 ms. However, response

functions not only depend on receptor kinetics, but also on the

entire processes of AMPAR-mediated transmission (i.e., from glial

vesicle release to neuronal Ca2+ signals). These entire processes

are known to require at least several hundred milliseconds [48].

Thus, the effects of AMPA- and NMDAR-mediated transmission

were most likely reflected in our response functions.

Our analysis indicated the possible presence of many neuron-to-

glia connections. We also found that, even if these connections really

existed, the intensities of these connections were weak and they were

spatially unlocalized. Indeed, neuron-to-glia interactions has been

discovered in previous studies [8,9,49]. Although this has been

observed in the bursting state of neuronal activities, such neuron-to-

glia interactions may have been too small to observe in our

spontaneously active situation. Thus, the identified weak neuron-to-

glia connections were insignificant with a short observation time of

10 min. In contrast, if there were in fact no neuron-to-glia

connections, those misidentified neuron-to-glia connections may

have been due to spurious correlations between neuronal and glial

activities. Such correlated activities may have been mediated by

dentate gyrus (DG) neurons. DG neurons are known to relay signals

to both CA3 astrocytes and CA3 neurons [50,51]. Thus, CA3

astrocytes and CA3 neurons could have simultaneously responded

to DG neurons, which might have resulted in correlated activities for

the misidentified functional connections. In either case, the

significantly longer and simultaneous observation of both CA3

and DG regions is necessary to address the origin of the identified

weak and spatially unlocalized neuron-to-glia connections.

Ca2+ signal has been recognized to be one of the most powerful

indicators of glial activities. For example, the transmission of

gliotransmitter, glutamate, is known to depend on the glial Ca2+
concentration [52]. When a glial cell uptakes glutamate spilled out

from synaptic clefts, the intracellular Ca2+ concentration of the

glial cell is known to increase [8,49,53]. Although Ca2+ imaging is

no doubt a powerful experimental methodology, our statistical

method has potential applications to other types of imaging

experiments. For example, we may apply our statistical technique

to the dataset from intracellular pH imaging. Intracellular pH is

known to reflect gliotransmitter release, which is a type of glial

activity [54,55].

When our method is applied to electrophysiological or imaging

experiments from different hippocampal areas such as CA1, CA3,

and the entorhinal cortex, it should be modified by, for example,

changing the tuning parameters in the estimation (see ‘Tuning

parameters’ section in Methods). Indeed, we should consider the

possibility that the neuron–glia interactions are characterized by

different biophysics in different brain regions [19,56] and hence are

represented by different tuning parameter values in our method.

Fig. 3B shows that about half the inter-neuronal and inter-glial

interactions were positive and half were negative (i.e., the

excitatory and inhibitory effects were balanced). The balanced

excitatory and inhibitory effects in inter-neuronal interactions are

known to lead to high levels of variability in neuronal spiking and

this high variability can enable neuronal networks to embed rich

information into their activity patterns [57,58]. Our results suggest

that this balance was not only achieved in inter-neuronal

interactions but also in inter-glial interactions. Balanced inputs

from the glial cells might similarly provide high levels of variability

to glial activities and promote efficient information processing.

Figure 6. Response functions from neurons to glial cells and from glial cells to neurons. (Left) The estimated response functions of the
identified connections from glial cells to neurons; the average and the 95% confidence intervals of the response functions, bij(s), are plotted by the
red curve and blue intervals, respectively. (Right) The estimated response functions of the identified connections from neurons to glia; the average
and the 95% confidence intervals of the response functions, cij(s), are plotted by the red curve and blue intervals, respectively.
doi:10.1371/journal.pcbi.1003949.g006

Identification of Neuron-Glia Interactions

PLOS Computational Biology | www.ploscompbiol.org 8 November 2014 | Volume 10 | Issue 11 | e1003949



Comparison with other approaches
Our method of identifying the functional connectivity between

neurons and glial cells is an extension of existing methods based on

Granger causality. Granger et al. [59] presented a model-based

statistical approach to explore the causality between two variables

by examining whether the prediction of a time series of one

variable could be improved by incorporating information on the

past values of the other [60]. Kim et al. [41] applied Granger

causality to functional connectivity analysis of spike sequences;

they performed a statistical test based on the log-likelihood of the

autoregressive model of spike sequences. Our method presented in

the current study can be seen as an extension of Kim et al.’s

method that utilized the cross-validated likelihood for model

selection. By use of the cross-validated likelihood, we could allow

the actual underlying process to be different from the process

hypothesized by GLM, while the original Granger causality-based

method assumed that they were exactly the same.

Schleiber et al. presented another kind of model-free approach

[36] to identify the causality between multiple variables. They

utilized transfer entropy, which was used to measure improve-

ments in the prediction of one time series by knowing the past

values of another. No distribution of variables needs to be assumed

because of the model-free computation of entropy in this

approach. One possible drawback in the method of transfer

entropy is that it can be difficult to incorporate effects in multiple

variables and non-stationarity in the underlying stochastic process

due to the lack of direct modeling. In contrast, we can apply our

method to non-stationary activities of neurons and glial cells by

introducing a time-varying spontaneous firing rate to the

likelihood model (Eqs. (1) and (2)).

Our GLM is novel particularly in that it combines a Bernoulli

point process model to represent binary neuronal spikes [28,61]

and a vector autoregressive model [62] to represent graded glial

activities. The vector autoregressive model has been widely

accepted in the field of statistical time-series analysis [63].

Although both these models are known, there have never been

any studies in neuroscience that have employed a hybrid stochastic

model that could simultaneously deal with both discrete and

continuous time-series like those in neuron-glia systems.

High-throughput of proposed method
The most important advantage of functional connectivity-based

approaches is their high throughput. The functional connectivity-

based approach enabled us to extract essential structures of the

neuron–glia system even from a relatively small amount of data

that consisted of 10-min time series of Ca2+ imaging in

comparison with their pure anatomical connectivity-based coun-

terparts, like those by electron microscopes [64]. The reasonable

performance of our method in artificial networks (85% accuracy

from activity time series of 1280 s; Fig. S8; see ‘Validation using

artificial data’ section of Text S1) suggests that our identified

functional connectivities are biologically and statistically plausible.

The functional connections estimated with our method are

expected to approach true ones in the network (Fig. S8) as the

amount of data increases. If there are many unobservable neurons

or glial cells, on the other hand, the meaning of functional

connectivity may become ambiguous. However, the advantages of

functional connectivity-based approaches will increasingly grow in

various neuroscientific scenarios with rapid advances in in vitro
and in vivo imaging techniques and increased access to more

widespread and longer measurements. A possible future direction

is to explore the fusion of functional connectivity-based methods

and anatomical methods. Moreover, the response functions

estimated with our method have a meaning on their own; they

represent the entirety of synaptic connections that not only include

ionic factors but also metabotropic factors.

Limitations of proposed method
Our functional connectivity analysis was based on an assumption

that the Ca2+ activities of cells were independent conditional on

their history (see ‘Generative model and MAP estimation’ in

Methods). This assumption was equivalent to ignoring neuron–glia

interactions whose durations were shorter than the sampling

interval (10 ms) in this study. Nevertheless, interactions with such

a short time scale can play important roles in neuron–glia networks.

An existing study that has proposed the max entropy model, for

example, has discussed this possibility [65,66]. For the following two

reasons, however, we believe that our assumption will not negatively

affect the reliability of our identification of the interactions with

relatively long time scales (between 100 and 500 ms), which is the

main target of our functional connectivity analysis.

First, we found that the intensity of our response functions were

likely to shrink to 0 as the delay time approached 0 ms (Fig. 6 (left)).

This, in particular, means that high frequency responses did not take

place around 0 ms. This ruled out the possibility for major

interactions on shorter time scales because such interactions most

likely triggered high frequency fluctuations in the response functions.

Second, our functional connectivity analysis was based on the

difference in cross-validated likelihoods. It would have been

unlikely that our abandonment of short term interactions would

have severely deformed our computation of cross-validated

likelihoods. Even if it had introduced some bias into their

evaluations, the bias could be ‘‘cancelled out’’ as we took their

differences into account. As such, our method was quite robust

against bias that might have resulted from ignoring interactions on

smaller time scales. It should be noted that the probability of

multiple spikes in 10-ms bins was quite small because the spike

frequency (below 1 Hz) in our observation time series was low.

We conducted 10-fold cross-validation (K~10) in the time-

series analysis. Since we uniformly segmented the whole time

series to subseries with a length of 60 s in the cross-validation

procedure, interactions with time scales longer than 60 s were

simply ignored.

Bulk numbers of connections in surrogate method
Since the optimal network structure was searched by iterative

applications of local searches and hence did not necessarily assess

the whole set of identified connections, the bulk number of

identified connections was statistically evaluated by means of the

surrogate method in which null hypothesis assumed there were in

fact no connections in the network (see ‘Surrogate method’section

in Methods) [67]. According to the surrogate method, we

artificially created time series for neurons and glial cells separately

by applying cyclical rotation to the original neuronal time series

and phase randomization in the frequency domain to the original

glial time series found in the observation dataset. The temporal

relationships with other elements in the network were destroyed in

the surrogate time series, while preserving important statistical

features of its own like those in the distribution and autocorrela-

tion. We then compared the number of connections identified by

our method from the actual data against that with the surrogate

time series, which led to a statistical evaluation of the bulk number

of identified connections.

Insignificant neuron-to-glia connections
Our functional connectivity analysis was based on iterative

applications of local searches for the network structure with the

largest cross-validated likelihood. Since multiple hypothesis testing
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underlies this algorithm, some connections might have been

detected by chance even if there had in fact been no connections

between neurons and glia. To examine the false positive detection,

we used the surrogate method to determine whether the number

of identified connections was larger than that found by chance (see

‘Surrogate method’ section in Methods) [67].

We found that the number of identified glia-to-neuron connec-

tions was significantly large through surrogate analysis, while that of

the neuron-to-glia connections was not. Further, the small and

inhibitory neuron-to-glia interactions were inconsistent with the

excitatory interactions reported by preceding experimental studies

[8,49]. This inconsistency may be reconciled if we consider the

dependence of neuron-glia interactions on the frequency of neuronal

firing. Such a frequency-dependent regulation has been discussed

within the context of glia-to-neuron connections [19,43], and a

similar regulation might also be realized in neuron-to-glia connec-

tions. Note that clear excitatory neuron-to-glia interactions were

found through experiments that induced high frequency bursting

activities in neurons [8,49]. On the other hand, the frequency of

neuronal activities in our imaging experiment was low (0.03 Hz–

1 Hz). Thus, the excitatory neuron-to-glia interactions might have

been too weak to have been detected in this low-frequency situation.

It is also possible that the Ca2+ active region within the astrocyte’s

cell body and the sites of neuron-to-glia interactions were so far apart

in our imaging experiment, which mostly measured the cell body,

that it could not provide us with sufficient information to identify the

actual neuron-to-glia connections.

Neuron-to-glia connections with positivity constraints
Although existing studies have shown that neural spikes cause

an increase in glial Ca2+ activity [3], our functional connectivity

analysis did not take this known fact into account. The results may

change when we assume that all the neuron-to-glia interactions are

excitatory. This assumption is equivalent to forcing the response

functions, cij(s), from neurons to glial cells to be positive (see

‘Positivity constraints to response functions from neuron to glia’

section in Methods). We identified nine neuron-to-glia connections

out of 288 pairs with the positivity constraints; we found functional

connections from neurons to glial cells 2, 4, and 5, but no

connections to other glial cells (Fig. S9). When we validated the set

of identified connections with the surrogate method, the p-value of

the number of connections was too large to accept any neuron-to-

glia connections. This suggests that, even under the new

constraint, neurons do not directly affect glial cells when neurons

and glial cells are spontaneously behaving. We compared the

cross-validated likelihood between our original model (without the

positivity constraints) and the modified model with the positivity

constraints on the basis of the distribution of tG/N
ij . We only

considered the set of (i,j)’s corresponding to the pair of cells for

which our method detected a functional connection. The standard

error of the mean (SEM) of these tG/N
ij was 2:66+0:06 for the

original model, and 2:44+0:09 for the modified model. These

results indicate that the original model was better than the

modified model support our speculation that the model with

the positivity constraints did not necessarily capture the nature of

the spontaneous in vitro activities of neurons and glial cells in the

hippocampal CA3 circuit.

Methods

In vitro Ca2+ imaging
We prepared the hippocampal slice cultures from postnanal,

day 7 Wistar/ST rats (SLC). We applied refrigeration anesthesia

to the rat pups prior to extracting their brains. We sliced the brains

into 300 mm thick slices in aerated, ice cold Gay’s balanced salt

solution supplemented with 25 mM of glucose. Entorhino-

hippocampal stumps including the CA3 region were excised and

cultivated on Omnipore membrane filters (JHWP02500, Milli-

pore) placed on plastic O-ring disks. The cultures were fed with

1 ml of 50% minimal essential medium, 25% Hanks’ balanced salt

solution, 25% horse serum, and antibiotics in a humidified

incubator at 37oC in 5% CO2. They were used for the

experiments on days 7 to 14 in vitro, and the medium was

changed every 3.5 days. We washed the slices three times on the

day of the experiment with oxygenated artificial cerebrospinal

fluid (aCSF) consisting of (mM) 127 NaCl, 26 NaHCO3, 3.3 KCl,

1.24 KH2PO4, 1.2 MgSO4, 1.2 CaCl2, and 10 glucose and

bubbled them with 95% O2 and 5% CO2. The slices were

transferred to a 35-mm dish filled with 2 ml of dye solution and

incubated for 40 min in a humidified incubator at 37oC in 5%

CO2 with 0.0005% Oregon Green 488 BAPTA-1AM (Invitro-

gen), 0.01% Pluronic F-127 (Invitrogen), and 0.005% Cremophor

EL (Sigma-Aldrich). The slices were then recovered in aCSF for .

30 min, mounted in a recording chamber at 32oC, and perfused

with aCSF at a rate of 1.5–2.0 ml/min for .15 min. The

hippocampal CA3 pyramidal cell layer was imaged at 100 Hz

using a Nipkow-disk confocal microscope (CSU-X1, Yokogawa

Electric) equipped with a cooled CCD camera (iXonEM+DV897,

Andor Technology), and an upright microscope with a water-

immersion objective lens (16|, 0.8 numerical aperture, Nikon)

[40]. The area we observed is depicted in Fig. 1A. Fluorophores

were excited at 488 nm with a laser diode and visualized with a

507-nm long-pass emission filter. We did not see any photodam-

age during the period of observation; however, we did observe

weak photo-bleaching (Figs. 1D and G. Also see [68,69]). We

removed the effect of photo-bleaching by preprocessing the data as

described below.

Pre-processing
We performed the Ca2+ imaging (Fig. 1B) for 10 min (600 s)

according to the experimental procedure above. Our imaging

yielded a time-lapse image dataset that consisted of 60,000 image

frames. The visual field of single image frames was 184 mm|94 mm
(184|94 pixels). We extracted regions of interest (ROIs) in the first

step of image preprocessing, as follows. We applied a spatial

smoothing filter (2D Gaussian filter with s = 1 mm) to each image in

the time lapse. We calculated the average and standard deviation

(SD) of fluorescence signals over the observation period for each

pixel along this filtered image series. We then specified the

neighborhood (a ball with a radius of 3 mm) of each local maximum

of the average fluorescence intensity as an ROI. We identified a

total of 170 ROIs (Fig. 1C). We computed the average signal

intensity over the pixels in each of the 170 ROIs, and arranged the

average signal intensity along the 60,000 frames that constituted the

signal time series of the ROIs (Fig. 1D). We then decomposed

the signal time series into a baseline series and activity series on all

the ROIs by iteratively applying the following procedure until the

baseline series converged. Beginning with the initial baseline series

set as flat at the average, we detected all the timepoints inside one

SD of the baseline series as inliners, and replaced the baseline series

with the new one connecting the inliners. We re-calculated the SD

based on the new baseline series in the next application of this

procedure. We then dissociated another baseline series. This

baseline detection was in essence a detrending procedure; it

removed the trends due to possible photo-bleaching. We defined

spiking events as peaks of time series with substantially larger

intensities than the baseline (with a fixed difference) for each ROI.
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We detected 48 ROIs out of the 170 ROIs, which indicated

sufficient numbers of spiking events (0.03–1 Hz, Fig. 1E). We

confirmed these 48 ROIs corresponded to neuronal soma by

visually inspecting them. The peaks of the neuronal Ca2+ spikes

were found to have similar intensities, and we observed no buildup

activities (Fig. 1D). We therefore deemed it safe to interpret each

Ca2+ spike with a width of 10 ms to be a single spike. As such, the

activity over each of the 48 ROIs was recorded as a binary time

series.

We selected six ROIs, other than the 48 neuronal ROIs, as

regions representing glial cells, based on their morphologies (by

visual inspection) and fluorescence levels. We particularly selected

small cells with high fluorescence levels because such cells were

likely to be astrocytes [34]. The radius of each ROI was re-set

individually to a smaller value than that of the neurons because we

only found six glial ROIs. We used the signal average over each

glial ROI as the measure of glial activity (Fig. 1G) and arranging it

over 60,000 frames constituted the activity time series. We applied

individual linear detrending to each glial time series to remove

slow trends possibly induced by photo-bleaching. We then applied

a temporal Gaussian filter (s~500ms) to remove high frequency

noise and shot noise. The glial time series thus obtained is depicted

in Fig. 1H. We assumed that the activity of astrocytes had a linear

relationship in the analysis that followed with the signal intensity

measured by Ca2+ imaging.

Generative model and MAP estimation
Generative modeling was adopted to statistically describe the

Ca2+ signals of neurons and glial cells. We introduced a prior

distribution to avoid overfitting due to the finite/small size of

collected data in the experiments. The model parameters were

estimated with the MAP method.

Let t index the image sampling time over the observation,

t~1, . . . ,T ; in our particular case, T~60,000. We have activity

series of neurons fNi(t)Di~1, . . . ,ng and glial cells fGj(t)Dj~
1, . . . ,mg after preprocessing, where n(~48) and m(~6) corre-

spond to the numbers of neuronal and glial ROIs. As glial activity

is continuous, Gj(t) is a series of discrete values sampled from a

continuous function of time. Ni(t) can be seen as a unit point

process; Ni(t)~1 when the i-th neuron emits a spike at time t, or

Ni(t)~0 otherwise. Our sampling interval was 10 ms within

which every neuron was well assumed to have produced at most

one spike in our imaging experiment (see ‘Pre-processing’ section).

We normalized the activity time series of the j-th glial cell Gi(t)
individually, so that its average was zero and variance was one.

This normalization was performed because glial cells exhibited

different initial fluorescence levels due to variations in light

absorption. For simplicity, let Y (t) denote the activities of all the

elements, Y (t):(N1(t), . . . ,Nn(t),G1(t), . . . ,Gm(t))T , where T is a

transpose. The vector, Y:(Y (1), . . . ,Y (T))T , will be called the

observation time series after this. We assumed that Y would obey a

stationary and conditionally independent Markov chain of order h,

which included an autoregressive process of order h as a special

case. When we use the term Markov, our models of interest may

include those in which the dependence of the current state on past

states is non-linear.

Below, we provide the likelihood of Y, p(YDh) based on our

generative model, where h is the parameter vector. Let p(h) be its

prior distribution. Bayes’ theorem tells us that the posterior

distribution of the parameter vector is given by p(hDY)!
p(YDh)p(h). Given an observation time series, Y, the parameter-

vector estimate, ĥh(Y), is the h that maximizes the posterior

distribution (i.e., the MAP estimation). Our generative model is

based on a Markov chain model where the neuronal and glial

activities at present are assumed to be mutually independent but

dependent on their past activities. More precisely, p(YDh)~PT
t~1

Pn
i~1 p(Ni(t)DHY

t ,hN
i )

� �
Pm

j~1 p(Gj(t)DHY
t ,hG

j )
� �

, where HY
t :

(Y (t{1), . . . ,Y (t{h)) is the history of activities of all the

components with a maximum time lag, hw0. We allowed all

neurons to have their own parameters hN
i and all glial cells to have

their own parameters hG
j . That is, h:(hN

1 , . . . ,hN
n ,hG

1 , . . . ,hG
m).

Moreover, the maximum time lag, h, could be differently set for

individual types of interactions (see below).

A spike production by the i-th neuron with a fixed time interval

was assumed to obey a Bernoulli process with logistic regression

[32,70]

p(Ni(t)DHY
t ,hN

i )~pi(t)
Ni (t)(1{pi(t))

1{Ni (t), ð1aÞ

log
pi(t)

1{pi(t)
~riz

Xn

j~1

Xha

s~1

aij(s)Nj(t{s)z

Xm

j~1

Xhb

s~1

bij(s)Gj(t{s),

ð1bÞ

where ha denotes the maximum time lag (history window sizes)

from neurons and hb denotes the maximum time lag from glial cells

(Fig. 2A). The generative model above is an instance of GLMs, in

which the parameter vector of neuron i is given by hN
i :fai:(aij(s)),

bi:(bij(s’)),ri Dj~1, . . . ,n,s~1, . . . ,ha,s’~1, . . . ,hbg, where ri rep-

resents the spontaneous firing rate of neuron i, and aij(s) and bij(s)

denote the response functions from neuron j to neuron i and from

glial cell j to neuron i, which are defined over the history window

sizes ha and hb, respectively.

The activity of glial cell i is given by a vector autoregressive

(VAR) model disturbed by white Gaussian observation noise,

which is another instance of GLMs. More precisely,

p(Gi(t)DHY
t ,hG

i )~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
i

q exp
(Gi(t){mi(t))

2

2s2
i

( )
, ð2aÞ

mi(t)~uiz
Xn

j~1

Xhc

s~1

cij(s)Nj(t{s)z
Xm

j~1

Xhd

s~1

dij(s)Gj(t{s), ð2bÞ

where hc denotes the maximum time lags (history window sizes)

from neurons and hd denotes the maximum time lags from glial

cells. The parameter vector of glial cell i in this VAR model is

given by hG
i :fci~(cij(s)), di~(dij(s’)),ui,si Dj~1, . . . ,n,s~1,

. . . ,hc,s’~1, . . . ,hdg, where ui is the bias of glial cell i and si is

its variance. Also, cij(s) and dij(s) denote the response functions

from neuron j to glial cell i and from glial cell j to glial cell i, which

are defined over the history window sizes hc and hd , respectively.

We have used the notations, a:faign
i~1, b:fbign

i~1, c~fcjgm
j~1

and d~fdjgm
j~1, in this paper to represent the sets of response

functions between neurons, from glial cells to neurons, from

neurons to glial cells, and between glial cells, respectively. The

whole GLM for the neuron-glia system above is a state-space

model with internal deterministic processes based on a combina-

tion of logistic regression and VAR models. The model reduces to
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a couple of independent GLMs if there are no interactions

between the neuronal and glia networks, i.e., b~c~0.

Prior distribution
Here, we explain our prior setting of the model parameters in

our GLM. We introduced a prior distribution to the parameters

representing the response functions, a,b,c and d, to make the

response functions sparse, which is preferred in avoiding over-

fitting to relatively small datasets, in addition to smoothing with

respect to the lag time. Such a prior distribution is given by

psm(fij(:))! exp {
Xhf

s~1

lf fij(s)
�� ��2zlsm

f fij(s){fij(s{1)
�� ��2

8<
:

9=
;,

f ~a,b,c or d,

ð3Þ

where tuning constant lf controls the L2-sparseness of the

response functions and lsm
f controls their smoothness. We granted

independent, noninformative priors p(ri)~p(ui)~const: and

p(si)~1=si to parameters ri,ui and si (Eqs. (1) and (2)). In

summary, we put p(h)~Pn
i~1 p(hN

i ) Pm
j~1 p(hG

j ), p(hN
i )~

p(ri)P
n
j~1 p(aij)P

m
j~1 p(bij), and p(hG

i )~p(ui)p(si)P
n
j~1 p(cij)

Pm
j~1 p(dij). These parameters and their prior distribution are

summarized in Table S3.

The prior based on L2-sparseness would be preferable for

increasing the cross-validated likelihood of the model [71] by

effectively reducing the sensitivity of the model to noise inevitably

involved in a relatively small dataset. The smoothness prior would

reduce the effective space in which the response functions exist and

hence would be beneficial to improve the cross-validated

likelihood. Although the time scales of neuron-glia interactions

may span a wide range, fluctuating from several tens of

milliseconds to several hours [6,12,14], our current study focused

on specific types of interactions that lasted for several hundreds of

milliseconds. Our prior setting that preferred smooth response

functions was also considered to work in removing neuron-glia

interactions with shorter time scales.

Efficient estimation of parameters
By applying Bayes’ theorem to the likelihood and the prior

distribution above, we have the following log posterior

log p(hjY)!
Xn

i~1

log P
T

t~1
p(Ni(t)jHY

t ,hN
i )p(hN

i )

� 	
z

Xm

j~1

log P
T

t~1
p(Gj(t)jHY

t ,hG
j )p(hG

j )

� 	
:

ð4Þ

We obtained the parameter vector, h, that maximized the log

posterior above; the expression above suggests that this MAP

estimation can be individually performed for each hN
i (i~1, . . . ,n)

and for each hG
j (j~1, . . . ,m). This individuality also suggests the

ability to apply parallel computation to the estimation of

parameters.

Fortunately, our set of MAP estimates is unique because our

generative model is an instance of GLM [72] and a strictly convex

prior distribution also makes the posterior distribution convex.

This allows us to use efficient optimization algorithms. When

maximizing the first term in Eq. (4) with respect to hN
i , we used a

limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method [73], which is a variation of a quasi-Newton method, to

conserve the memory necessary for optimization. The second term

in Eq. (4) is a convex quadratic function. We can therefore use a

simple linear algebra to estimate hG
j .

Functional connectivity analysis
Our functional connectivity analysis between neurons and glial

cells was based on a comparison of the cross-validated likelihood,

i.e., the model’s reproducibility for the activities in a validation

dataset, between two different network structures. If there were

two different network structures, one with a certain neuron-glia

connection and another without the connection, and the latter

demonstrated a larger cross-validated likelihood than the former,

then, the connection was not considered to be included in our

neuron-glia system. According to the K-fold cross-validation with

K being 10, we partitioned the time series Y into 10 subseries; we

used nine of these subseries to train the model (‘‘training dataset’’),

and calculated the model-likelihood of the one remaining subseries

(‘‘test dataset’’) as the cross-validated likelihood of the model. The

neuron-wise, test-dataset-wise cross-validated likelihood of the

activity of the i-th neuron, evaluated on the k-th test dataset for a

network structure, q, was given by lN
i,k(Y,q)~ logPt p(Ni(t)D

HY
t ,ĥhN

i ,q), where t indexes the re-arranged sampling time (sample

number) in the k-th test dataset, and the parameter vector ĥhN
i was

determined by using the training dataset other than the k-th test

dataset under network structure q. By taking the average of the

neuron-wise, test-dataset-wise cross-validated likelihood over the

10 test datasets, we have the neuron-wise cross-validated likelihood

of the i-th neuron, lN
i (Y,q). Then, taking the average over all the

neurons, we have the cross-validated likelihood of network

structure q as lN (Y,q).

Similarly, we defined lG
i,k(Y,q) as the glia-wise, test-dataset-wise

cross-validated likelihood of the activity of the i-th glial cell

evaluated on the k-th test dataset for network structure q. We also

defined the i-th glia-wise cross-validated likelihood, lG
i (Y,q), and

likewise the cross-validated likelihood of network structure q as

lG(Y,q).

When evaluating the connections from the j-th glial cell to

neurons, we compared the cross-validated likelihood between two

different network structures, qN and qN/Gj
, to which different

constraints were introduced. The constraint given to qN was b~0,

i.e., there were no connections from any glial cell to any neuron.

The constraint given to qN/Gj
was bik(s)~0,k=j for all

i~1, . . . ,n, i.e., there were no connections from glial cells to

neurons other than from the j-th glial cell. We evaluated the

neuron-wise cross-validated likelihood, lN
i (Y,q), q[fqN ,qN/Gj

g,
for each of the two network structures after we had estimated their

individual model parameters. Observe that bij(s)~0,s~1, . . . ,T

yields E½lN
i (Y,qN/Gj

){lN
i (Y,qN )�~0, where the expectation is

with respect to the GLM (Eq. (1)) with the true parameter vector

plugged in. This observation suggests that we can use the

difference in the cross-validated likelihood, dN/G
ij (Y)~

1

10

X10

k~1
flN

i,k(Y,qN/Gj
){lN

i,k(Y,qN )g, to evaluate the effect from

a specific functional connectivity from glial cell j to neuron i,
which is represented by the response function, bij(s).

As it is difficult to obtain the analytical form of the distribution

for the stochastic variable, dN/G
ij (Y), there is no theoretical way to

perform a statistical test based on it. To construct a statistical test

in a practical manner, therefore, we assumed that the difference in
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the neuron-wise, test-dataset-wise cross-validated likelihood,

½lN
i,k(Y,pN/Gj

){lN
i,k(Y,pN )�, would obey a normal distribution

with a zero mean and variance sdN/G
ij

, and designed a t-statistic:

tN/G
ij :

ffiffiffiffiffi
10
p

dN/G
ij =s

dN/G
ij

, ð5Þ

where (sN/G
dij

)2 is the unbiased variance of the difference in the

cross-validated likelihood, dN/G
ij , calculated in the cross-validation

process. By simply assuming the normality of the stochastic

variable, dN/G
ij (Y), we can make tN/G

ij to follow a t-distribution.

We can then rely on the standard t-test, when evaluating each

connection from glial cell j to neuron i. Indeed, this t-statistic

assumption is not very accurate because the cross-validation

samples are not independent of one another and the stochastic

variable does not obey a normal distribution. However, the

advantages of the t-statistic assumption on tN/G
ij outweigh the

disadvantages; we can evaluate the stochastic uncertainty of

dN/G
ij (Y) up to the second order moment by using this token.

We took the opposite approach when evaluating connections

from neurons to a particular single glial cell, i. We compared two

different network structures in a similar way to that above with a

fixed glial cell of interest, i.e., the i-th glial cell: the network with no

neuronal connections to the glial cell (i.e., cij(s)~0,j~1, . . . ,n),

and the network consisting of all possible connections. We defined

the mean of differences in the glia-wise, test-dataset-wise cross-

validated likelihood of the i-th glial cell by dG/N
ij (Y)~

1

10

X10

k~1
flG

i,k(Y,qG/N ){lG
i,k(Y,qG/N{j

)g.
A t-statistic of the difference in the glia-wise cross-validated

likelihood was similarly defined as

tG/N
ij ~

ffiffiffiffiffi
10
p

dG/N
ij =s

dG/N
ij

: ð6Þ

We treated the connections from glia to neurons differently

from those from neurons to glia in this study. The main principle

of our search for the optimal network structure was to begin the

search from a network structure with the highest cross-validated

likelihood possible (see ‘Methods Overview’ section in Results.

Some details are also given in Text S1). While the network

structure with no neuron-to-glia connections exhibited a higher

glia-wise cross-validated likelihood than the network structure with

full neuron-to-glia connections (full network), the neuron-wise

cross-validated likelihood of the full network was lower than that of

the structure with no glia-to-neuron connections (Fig. S1). Also, we

resorted to an incremental search algorithm by considering the

intractability of a full search over the whole space of all possible

network structures. The search algorithm we adopted converges to

an optimal network structure if we begin the search from a

heuristically chosen structure with a high cross-validated likeli-

hood. The cross-validated likelihood of the network structure

monotonically increases and necessarily converges in this search

algorithm because we only adopt a new structure when the cross-

validated likelihood increases whereas the number of possible

network structures is huge but still finite.

Surrogate method
We explored a statistical test based on the surrogate method to

statistically examine the number of detected connections under the

null hypothesis of no causal connectivity. We need to construct

surrogate neuronal or glial activities that might have been

observed under the null hypothesis, only from the observation

time series.

In order to evaluate the number of detected connections from

the i-th glial cell to neurons, we generated the surrogate glial

activity (Ca2+ signals) of the i-th glial cell (called the original glial

cell below) 1000 times based on the Iterated Amplitude Adjusted

Fourier Transform (IAAFT) method (for details, see Text S1) [74].

This surrogate glial cell was assumed to have no connections to

any neurons in the neuron-glia system, but all other parts of the

system remained untouched. Surrogate glial activity in the IAAFT

method was generated based on the randomization of phases in

the activity time series of the original glial cell. Application of

IAAFT to glial activity destroyed the mutual correlation between

the original glial cell and all the other network components while

preserving the amplitude distribution and the autocorrelation of

the activity of the original glial cell (see Fig. S2). We obtained 1000

surrogate datasets by replacing the activity time series of the

original glial cell with each of the 1000 surrogate glial activities.

We then applied functional connectivity analysis to each of the

1000 surrogate datasets and computed the number of detected

connections from the surrogate glial cell to neurons. The empirical

distribution constructed from the 1000 surrogate datasets could

serve as a null distribution built on the hypothesis that there were

no functional connectivities from the original glial cell to neurons.

We compared the number of actually detected connections based

on the original glial cell’s activity against the empirical distribution

to compute the p-value of the original glial cell’s activity.

In the construction of each surrogate neuronal activity, on the

other hand, we applied a circular shift to the original neuronal

spike time series. This type of implementation is preferable [75]

because it can perturb the temporal relationship between neurons,

whose activities are surrogated, and other components of the

network while preserving its own statistics, such as the distribution

of inter-spike intervals, autocorrelation, and self-dependence of the

original neuronal activity.

Tuning parameters
We determined the tuning parameters (tuning constants),

f(hf ,lf ,lsm
f ); f ~a,b,c,dg to optimize the cross-validated likeli-

hood by applying heuristic constraints to reduce the space to

search for their optimal combination. The parameters to be tuned

were maximum time lags (history window sizes) (ha,hb,hc,hd )
under the heuristic constraints, ha~hb and hc~hd , shrinkage

parameters of the response functions (la,lb,lc,ld ) under the

heuristic constraints, la~lb and lc~ld , and smoothness param-

eters of the response functions (lsm
a ,lsm

b ,lsm
c ,lsm

d ) under the

heuristic constraints, lsm
a ~lsm

b and lsm
c ~lsm

d . More concretely,

we searched discretized candidates f5,10,20,40, and 80g for the

best values for both ha~hb and hc~hd , f0,1,1,10, and 100g for

both la~lb and lc~ld , and f0:1,1,10, and 100g for both

lsm
a ~lsm

b and lsm
c ~lsm

d , to maximize the cross-validated likeli-

hoods, lN (Y,qN/G) and lG(Y,qG/N ). Consequently, we found the

optimal values for the tuning parameters were (la~lb,lc~

ld )~(0:1,0:1), (lsm
a ~lsm

b ,lsm
c ,~lsm

d )~(1,0:1), and (ha~hb,hc~

hd )~(40,5).

Here, we applied the heuristic constraints to mainly reduce the

search space of the tuning parameters. Such application of

constraints is equivalent to having assumed that similar mecha-

nisms govern all receptors on neuronal and glial cells. However,

some studies have indicated the possibility that glial receptors

might respond differently to neurons and glia [15]. Therefore, we

recomputed lc and ld independently (with no constraints) to
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validate our heuristic constraint lc~ld , while clumping all the

other tuning parameters, and we found that the recomputed

parameter values were equal to that with the constraint lc~ld .

When we carried out the same validation for the constraint,

hc~hd , the optimal values without the constraint also yielded the

same value as that with the constraint. Further, the overall

characteristics of the response functions were found to be fairly

robust against the large diversion in the smoothing parameter

from its optimal value (Fig. S7).

Positivity constraints to response functions from neurons
to glia

We attempted to introduce a specific constraint, cij(s)w0 for

any s, to our GLM, i.e., the connection from neuron i to glial cell j
is required to be strictly positive. The parameter optimization (the

MAP estimation) of the log posterior with our likelihood and prior

distribution is equivalent to the minimization of a specific

quadratic cost function. The parameter estimation under the

additional constraint, cij(s)w0 for any s, can then be performed by

quadratic programming [76], so as to minimize the cost function

under the constraint. Based on the ĥh thus computed, we can

compute the neuron-wise cross-validated likelihood, lN
i (Y,q) as

well as t-statistic tN
ij (Y,q) for any network structure q. We

explained how the introduction of the positivity constraint above

affected the results of functional connectivity analysis at the end of

the Discussion section.

Supporting Information

Figure S1 Model comparison based on cross-validated
likelihood. We compared the models with different assumptions

on the network structure, q (summarized in Tables S1 and S2), in

terms of the cross-validated likelihood of the glial activities,

lG(Y,q) (left panel), and that of the neuronal spikes, lN (Y,q) (right

panel). Asterisks indicate the presence of statistically significant

differences (pv0:05, paired Student t-test).

(EPS)

Figure S2 Iterative amplitude adjusted Fourier trans-
form (IAAFT) method. (A) The activity of a single glial cell

(glia 2, left panel) and the activity surrogated from the original

activity of the same cell by the IAAFT method (right panel). (B)

Amplitude distribution and autocorrelation of the original and

surrogate glial activities. Note that the amplitude distribution is

the same between the original and the surrogate ones (left panels).

The autocorrelations are also similar (right panels). (C) The cross

correlation between a neuronal activity and a glial activity was

destroyed by the IAAFT method. The left (middle) panel shows

the phase diagram of the cross correlation between neuron 6 and

glial cell 2 (surrogate glial cell 2), in which the abscissa and

ordinate denote the activity of glial cell 2 and the spike frequency

of neuron 6, respectively. We used bins of 5 s to calculate the

spike frequency from the neuronal activity time series. The

rightmost panel shows a histogram of the cross correlation

coefficient, r, between all pairs of neurons and the surrogate glial

cells (the latter are independent of other network components).

Note that the histogram spans the range of ½{1,1� and has a

mean of approximately 0. This indicates that the correlation is

sufficiently randomized.

(EPS)

Figure S3 Detection of glia-to-neuron connections.

Recall that dN/G
ij is the gain in the cross-validated likelihood

achieved by the addition of the connection from the j-th glial cell

to the i-th neuron, and tN/G
ij is the t-statistics derived from dN/G

ij :

The six panels depict tN/G
ij for all pairs of i and j. Each panel

corresponds to a single glial cell (different index of j) out of the six.

We considered a connection from the j-th glial cell to the i-th
neuron significant if the p-value of tN/G

ij was smaller than 0.05

(marked with an asterisk).

(EPS)

Figure S4 Correlation between pairs of neurons and
glial cells between which our method identified connec-
tions. (A) Our method detected a connection from neuron 6 to

glial cell 1. Their activities actually exhibited a high correlation

(r~0:80, left panel). On the other hand, our method detected no

connection from neuron 6 to glial cell 2. Their activities exhibited

a lower correlation (r~0:53, right panel). (B) The histogram of the

cross correlation coefficient, r, indicates that the magnitude of the

cross correlation between the activity pair of a glial cell and a

neuron tends to be higher when there is an identified connection

from the glial cell to the neuron. This claim could be statistically

verified with the Wilcoxon rank sum test (pv0:01). (C) The

histogram of the cross correlation coefficient was not significantly

different between connected neuron ? glia pairs and non-

connected neuron ? glia pairs (p~0:10, Wilcoxon rank sum test).

(EPS)

Figure S5 Detection of neuron-to-glia connections.

Recall that dG/N
ij is the loss in the cross-validated likelihood

caused by the removal of the connection from the i-th neuron to

the j-th glial cell, and tG/N
ij is the t-statistics derived from dG/N

ij :

The six panels summarize tG/N
ij for all pairs of i and j. Each panel

corresponds to a single glial cell (different index of j) out of the six.

We considered a connection from the i-th neuron to the j-th glial

cell significant if the p-value of tG/N
ij was smaller than 0.05.

(EPS)

Figure S6 Length of identified neuron-to-glia and glia-
to-neuron connections. Boxplots of the length of identified

connections. The first, second, third, and fourth columns

correspond to the sets of identified connections from glial cells to

neurons (fN/Gg), identified connections from neurons to glial

cells (fG/Ng), identified connections from neurons to glial cells

by applying positivity constraints to the response functions

(fG/Ngz), and those in all neuron-glia pairs in the dataset

({Full}). The asterisk indicates that the median length of the

identified glia-neuron connections was significantly shorter than

those of the bootstrap samples (see Results in the main text)

sampled from all the pairs {Full} (pv0:05).

(EPS)

Figure S7 Robustness against perturbation of smooth-
ing parameters. The panel on the left indicates the average

response functions from glial cells to neurons bij(s) with different

smoothing parameter values (red, blue, magenta, and green lines

for lsm~0:1,1,10, and 100, respectively). The panel on the right

indicates the average response functions from neurons to glial cells

cij(s) with different smoothing parameter values (red, blue,

magenta, and green lines for lsm~0:1,1,10, and 100, respectively).

(EPS)

Figure S8 Correct rate (accuracy) in reconstruction of
glia-to-neuron connections from artificial data. The error

bars indicate the 95% confidence intervals of accuracy (50 trials).

(EPS)

Figure S9 Detection of neuron-to-glia connections by
introducing positivity constraints to their response
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functions. We implemented a modified version of our method

with positivity constraints on the response functions from neurons

to glia. Likewise in the original method, we used the t-statistic,

tG/N
ij , to identify the connections. The modified method identified

connections from some neurons to glia 2, 4, and 5 (marked in red).

Under this new constraint, we could not detect any connection

from neurons to glia 1, 3, and 6. The neurons indexed in green

numerals in each panel indicate those with the identified

connections to the glial cells marked red, whose removal degraded

the cross-validated likelihood of the activity of the red-marked glial

cells. The bottom right panel indicates the average for the

estimated response functions of the identified neuron-to-glia

connections, along with the 95% confidence interval at each

delay time.

(EPS)

Table S1 Constraints on network structure for identi-
fication of neuron-to-glia connections (Eq. (1)).
(PDF)

Table S2 Constraints on network structure for identi-
fication of glia-to-neuron connections (Eq. (2)).
(PDF)

Table S3 Prior setting of model parameters.

(PDF)

Table S4 Tuning parameters and their constraints.

(PDF)

Text S1 Supplementary text. This text file describes the

‘Iterative amplitude adjusted Fourier transform method’, ‘Valida-

tion of the proposed method using artificial data’, and ‘Compar-

ison of network structures’.

(PDF)
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dependent short-term assembly dynamics in the medial prefrontal cortex. Nat

Neurosci 11: 823–833.

39. Friston KJ (2011) Functional and effective connectivity: a review. Brain

connectivity 1: 13–36.

40. Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y (2007) Watching

neuronal circuit dynamics through functional multineuron calcium imaging

(fMCI). Neurosci Res 58: 219–225.

Identification of Neuron-Glia Interactions

PLOS Computational Biology | www.ploscompbiol.org 15 November 2014 | Volume 10 | Issue 11 | e1003949



41. Kim S, Putrino D, Ghosh S, Brown EN (2011) A Granger causality measure for

point process models of ensemble neural spiking activity. PLoS Comput Biol 7:
e1001110.

42. Ikegaya Y, Sasaki T, Ishikawa D, Honma N, Tao K, et al. (2013) Interpyramid

spike transmission stabilizes the sparseness of recurrent network activity. Cereb
Cortex 23: 293–304.

43. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, et al. (2012)
Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling

route. ASN neuro 4: AN20110061.

44. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic
astrocytes in CA1 stratum radiatum occupy separate anatomical domains.

J Neurosci 22: 183–192.
45. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic

islands defined by the territory of a single astrocyte. J Neurosci 27: 6473–6477.
46. Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, et al. (2006)

Redefining the concept of reactive astrocytes as cells that remain within their

unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103: 17513–
17518.

47. Angulo MC, Kozlov AS, Charpak S, Audinat E (2004) Glutamate released from
glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24:

6920–6927.

48. Sasaki T, Kuga N, Namiki S, Matsuki N, Ikegaya Y (2011) Locally synchronized
astrocytes. Cereb Cortex 21: 1889–1900.

49. Newman EA (2005) Calcium increases in retinal glial cells evoked by light-
induced neuronal activity. J Neurosci 25: 5502–5510.

50. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium
waves in hippocampal astrocyte networks. Neuron 8: 429–440.

51. Haustein MD, Kracun S, Lu XH, Shih T, Jackson-Weaver O, et al. (2014)

Conditions and constraints for astrocyte calcium signaling in the hippocampal
mossy fiber pathway. Neuron 82: 413–429.

52. Zhang Q, Haydon P (2005) Roles for gliotransmission in the nervous system.
J Neural Transm 112: 121–125.

53. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86: 342–

367.
54. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev

83: 1183–1221.
55. Cengiz P, Kintner DB, Chanana V, Yuan H, Akture E, et al. (2014) Sustained

Na+/H+ exchanger activation promotes gliotransmitter release from reactive
hippocampal astrocytes following oxygen-glucose deprivation. PLoS One 9:

e84294.

56. Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and
physiology. Brain Res Brain Res Rev 63: 2–10.

57. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical
organization. Curr Opin Neurobiol 4: 569–579.

58. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons:

implications for connectivity, computation, and information coding. J Neurosci
18: 3870–3896.

59. Granger CW (1969) Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 85: 424–438.
60. Lungarella M, Ishiguro K, Kuniyoshi Y, Otsu N (2007) Methods for quantifying

the causal structure of bivariate time series. Int J Bifurcat Chaos 17: 903–921.
61. Mishchenko Y, Vogelstein JT, Paninski L (2011) A Bayesian approach for

inferring neuronal connectivity from calcium fluorescent imaging data. Ann

Appl Stat 5: 1229–1261.
62. Geweke JF (1984) Measures of conditional linear dependence and feedback

between time series. J Am Stat Assoc 79: 907–915.
63. Hamilton JD (1994) Time series analysis, volume 2. Princeton university press

Princeton.
64. Chklovskii DB, Vitaladevuni S, Scheffer LK (2010) Semi-automated recon-

struction of neural circuits using electron microscopy. Curr Opin Neurobiol 20:

667–675.
65. Tang A, Jackson D, Hobbs J, Chen W, Smith JL, et al. (2008) A maximum

entropy model applied to spatial and temporal correlations from cortical
networks in vitro. J Neurosci 28: 505–518.

66. Shimazaki H, Amari Si, Brown EN, Grün S (2012) State-space analysis of time-

varying higher-order spike correlation for multiple neural spike train data. PLoS
Comput Biol 8: e1002385.

67. Grün S (2009) Data-driven significance estimation for precise spike correlation.
J Neurophysiol 101: 1126–1140.

68. Sasaki T, Matsuki N, Ikegaya Y (2007) Metastability of active CA3 networks.
J Neurosci 27: 517–528.

69. Takahashi N, Oba S, Yukinawa N, Ujita S, Mizunuma M, et al. (2011) High-

speed multineuron calcium imaging using Nipkow-type confocal microscopy.
Curr Protoc Neurosci 2: 1–10.

70. Zhao M, Batista A, Cunningham JP, Chestek C, Rivera-Alvidrez Z, et al. (2012)
An L 1-regularized logistic model for detecting short-term neuronal interactions.

J Comput Neurosci 32: 479–497.

71. Wahba G (1990) Spline models for observational data. Society for Industrial
Mathematics.

72. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning,
volume 1. Springer New York.

73. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound
constrained optimization. SIAM J Sci Comput 16: 1190–1208.

74. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85: 461.

75. Louis S, Gerstein GL, Grün S, Diesmann M (2010) Surrogate spike train
generation through dithering in operational time. Front Comput Neurosci 4.

76. Wright S, Nocedal J (1999) Numerical optimization, volume 2. Springer New
York.

Identification of Neuron-Glia Interactions

PLOS Computational Biology | www.ploscompbiol.org 16 November 2014 | Volume 10 | Issue 11 | e1003949


