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Abstract

Carbon nanotubes have attracted increasing attention attributable to their widespread appli-

cation. To evaluate the joint toxicity of multi-walled carbon nanotubes (MWCNTs) and nonyl-

phenol (NP), we investigated the toxicological effects of NP, pristine MWCNTs, and

MWCNTs combined with NP in male mice. After exposing male mice by gavage for 5 days,

intracellular superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, as

well as malondialdehyde (MDA) and glutathione (GSH) levels in tissues were determined to

evaluate in vivo oxidative stress. In addition, genotoxicity was assessed by examining DNA

damage in mouse liver and sperm via the comet assay, and transmission electron micros-

copy (TEM) was used for direct visual observations of mitochondrial damage in the liver.

Results from the oxidative damage and DNA damage experiments indicate that after

adsorbing NP, MWCNTs at a high dose induce oxidative lesions in the liver and cause DNA

damage in mouse sperm; these data offer new insights regarding the toxicological assess-

ment of MWCNTs.

Introduction

There has been a rapid growth in the application of nanoscale materials, attributable to the

development of nanotechnologies [1]. Carbon nanotubes (CNTs), which were discovered in

1991 [2], have attracted a great deal of attention owing to their unique structural, electrical,

and mechanical properties, which make them potentially useful in extremely small-scale bio-

logical, electrical, and mechanical applications. Evidence suggests that CNTs adsorb organic

pollutants effectively. For instance, CNTs adsorb environmental endocrine disruptors (EEDs),

neutral dissolved organic matter, and trihalomethanes more extensively than activated carbon

materials do [3–5]. Therefore, CNTs are potential adsorbents of these organic pollutants.

Nonylphenol (NP) is a xenobiotic compound used globally to manufacture nonylphenol

ethoxylate surfactants and is widely known as a type of EED [6]. Because of its low solubility

and high hydrophobicity, NP accumulates under certain environmental conditions, such as in
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wastewater treatment plants, river water, sediments, and soils. For example, NP can be

detected in the surface water of the Daliao river estuary of China, with concentrations ranging

from 83.6 to 777 ng/L [7]. It has also been reported that NP exists in pork, chicken, and beef,

with concentrations ranging from 0.50 to 0.67 mg/kg [8, 9]. Previous studies have confirmed

that NP may interfere with animals and various types of cells more than other EEDs via several

mechanisms, including increased proliferation of mammary gland cells [10], production of

telemetric associations and chromosomal aberrations [11], irreversibly influencing the recep-

tion of fear-provoking stimuli in male rats at a low dosage of 0.1 mg/kg/day [12], inhibiting

the growth and differentiation of murine neural stem cells and inducing apoptosis [13], and

inducing oxidative stress [14] and reproductive toxicity in Muridae animals [15]. In particular,

much attention was paid to NP-induced disruption of male reproductive toxicity, such as

reduced testis and epididymis weights as well as decreased sperm count and motility [15, 16].

Although studies have shown that electrochemical-assisted adsorption on multi-walled

CNTs (MWCNTs) removes 4-nonylphenol (4-NP) efficiently [17], there is growing concern

regarding the safety of CNTs [18–21]. Intense investigations of the adverse health effects have

focused on CNT toxicity both in vivo and in vitro. To date, several in vivo studies have shown

that CNTs may induce various toxicities, including an increase in the inflammatory response,

oxidative stress, granuloma formation, and fibrosis [22–25]. In vitro investigations have con-

firmed these physiological and biochemical responses and provide further support to explain

the increased incidence of oxidative stress in cells after exposure to CNTs [26–30]. In addition,

NP adsorption on MWCNTs facilitates its bioavailability in the earthworm (Eisenia fetida) and

increases ecological risks [31]. A recent study indicates that MWCNTs cause toxicity to the

invertebrate, Daphnia magna, in water [32]. However, to date little is known about the envi-

ronmental health risks resulting from NP adsorption on MWCNTs.

In this study, CD-1 (ICR) mice were exposed to 4-NP, MWCNTs, or 4-NP adsorbed on

MWCNTs (MWCNTs+NP) by gavage; in vivo oxidative effects and genotoxic responses to

stress, including intracellular superoxide dismutase (SOD) and glutathione peroxidase

(GSH-Px) activity, as well as malondialdehyde (MDA) and glutathione (GSH) levels were eval-

uated. We assessed the genotoxic response by measuring DNA damage in mouse liver and

sperm via the comet assay. Further, transmission electron microscopy (TEM) was used for

direct visual evidence of mitochondrial damage in liver cells. The objective of this study was to

evaluate oxidative and genotoxic effects of NP adsorbed on MWCNTs in mice, along with

potential mechanisms.

Materials and methods

Materials

MWCNTs made via chemical vaporization deposition (CVD) were obtained from Shenzhen

Nanotech Port Co. Ltd. (Shenzhen, China). Morphology and specific surface area of the

MWCNTs were determined via TEM (H-7500, Hitachi, Japan) and multipoint Brunauer-

Emmett-Teller (BET) analysis, respectively. 4-NP was purchased from Acros Organics Co.

Ltd. (New Jersey, USA), and purity was greater than 99%.

Animals and exposure procedure

CD-1 (ICR) male mice (18 ± 2 g, 4 weeks) were purchased from Beijing Vitalriver Experimen-

tal Animal Technology Co. Ltd. (Beijing, China). The animals were housed and maintained on

a commercial pellet diet, given distilled water ad libitum, and kept in plastic cages in a venti-

lated animal room. Room temperature was controlled at 22 ± 1˚C and relative humidity was

maintained at 60 ± 10%, with a 12 h light/dark cycle. The mice were acclimated to this
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environment for 1 week. All experimental animal procedures were approved by the Ethics

Committee of Nanjing University of Information Science and Technology. Animal manage-

ment was performed strictly in accordance with the standards of the Animal Ethics Committee

of Nanjing University of Information Science and Technology. All sections of this report

adhere to the ARRIVE Guidelines for reporting animal research [33]. A completed ARRIVE

Guidelines Checklist is included in S1 Checklist.

The animals were randomly divided into five groups of five animals each as follows: (1) nor-

mal saline control group (CK group), (2) dimethyl sulfoxide (DMSO) vehicle control group

(DMSO group), (3) 4-NP treatment group administered 5 mg/kg body weight (NP group), (4)

MWCNTs treatment group administered 100 mg/kg body weight (MWCNTs group), and (5)

100 mg/kg MWCNTs+NP treatment group administered 5 mg/kg (MWCNTs+NP group). In

addition, 100 μmol/L hydrogen peroxide (H2O2) was used as a positive control to ensure that

the comet assay was functioning properly. For the NP group, 50 mg 4-NP was dissolved in 100

ml DMSO. Since DMSO has been reported to have low toxicity in mice [34], it is necessary to

set a DMSO vehicle control group. Materials in the MWCNTs+NP group were pretreated as

previously described, with some modifications [31]. Briefly, 20 mg 4-NP was dissolved in 100

ml DMSO; 200 mg MWCNTs was then added to the solution. The mixture was placed into a

water-bathing constant temperature vibrator (THZ-82, Changzhou, China) and vibrated at

150 rpm for 24 h. After standing for 24 h, the mixture was centrifuged at 21000 × g for 10 min

and the concentration of 4-NP was measured in the supernatant using high performance liq-

uid chromatography (HPLC, Alliance 2695, Waters, USA) [35]. Results indicate that 50 mg/g

4-NP adsorbed on the MWCNTs. The MWCNTs+NP were collected (100 mg), dried, and

administered to the MWCNTs+NP group. Prior to animal treatment, the MWCNTs and

MWCNTs+NP were suspended in normal saline and dispersed by ultrasonic vibration for 15

min. Suspensions were subjected to dynamic light scattering (DLS) spectroscopy (ZEN 3600,

Malvern, UK) for the characterization of size and dispersity. Particle size distributions were

determined on the basis of number, volume, and scattering intensity [36]. All animals were

treated by gavage of a 0.2 ml suspension once per day for 5 days.

After 5 days, no adverse event was found in any of the experimental groups. The mice were

sacrificed and the liver, kidneys, heart, spleen, and lungs from each group were collected to

evaluate intracellular oxidative damage. The liver and sperm were also collected to assess the

genotoxic response.

Analytical procedure

SOD and GSH-Px activity, as well as MDA and GSH levels were measured in each group to

determine oxidative damage to the liver, kidneys, heart, spleen, and lungs. Before experimental

analysis, each tissue (5 per group) was cut into pieces and mixed with ice-cold 0.86% NaCl to

form 10% tissue homogenate. The mixture was then homogenized with an ultrasonic proces-

sor (JY-250, Zhejiang, China) and centrifuged at 600 × g (4˚C) for 15 min. The supernatants

were used in the enzymatic assays. The activities of SOD, GSH, GSH-Px and the levels of

MDA were determined using commercial assay kits purchased from Nanjing Jiancheng Bioen-

gineering Institute (Catalog number: A001-1, A006-1, A005, A003-1, China). SOD activity was

determined using a xanthine-xanthine oxidase and nitro blue tetrazolium (NBT) system. The

endpoint of SOD activity was detected based on the presence of red substances in the reaction

system by absorbance at 550 nm after 40 min of reaction time at 37˚C. One unit of SOD was

defined as the amount of protein that inhibited NBT reduction by 50% [37]. MDA levels were

assessed using the thiobarbituric acid (TBA) assay [38]. The absorbance of red TBA-MDA

complex was determined at 532 nm. GSH reacts with 5, 5’ -dithiobis (2-nitrobenzoic acid)
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(DTNB) to produce stable yellow substances and the absorbance was detected at 420 nm. The

GSH-Px activities were also measured using the assay kit based on the principle that oxidation

of GSH and H2O2 could be catalyzed by GSH-Px to produce oxidized glutathione (GSSG) and

H2O. The decrease in GSH at 412 nm during the 5 min of reaction time at 37˚C indicates

GSH-Px activity in tissues. The MDA and GSH content as well as the GSH-Px activity were

calculated per the detailed instructions on the assay kits. All the enzymes and MDA contents

were detected using a spectrophotometer (UV1102Ⅱ, Techcomp, Shanghai, China).

The comet assay was performed according to the method described by Singh et al., with

some modifications [39]. After the mice were sacrificed, the livers and testicles were obtained

in 35-mm glass plates and washed twice with phosphate-buffered saline (PBS). These two tis-

sues were transformed into a 10-ml beaker and cut into small pieces; then, the liver and sperm

cells were collected through a 150-μm mesh. Cell suspensions were centrifuged at 860 × g for 3

min and cells were re-suspended in PBS. Prior to the comet assay, a trypan blue dye-exclusion

staining assay was used to ensure that cell viability was greater than 95%. Electrophoresis was

conducted at 4˚C for 20 min at 25 V and 100 mA in the dark. Slides were then stained with

ethidium bromide (EB) and scored using a fluorescent microscope (BX41, Olympus, Japan).

Fifty images were randomly selected for each group and analyzed with CASP software per the

method described by Collins et al. [40].

Liver samples were fixed in 2.5% glutaraldehyde and embedded as sections following rou-

tine techniques for TEM observations (H-7650, Hitachi, Japan) [41].

Statistics

The data are presented as means ± SD (standard deviation). Statistically significant differences

among treatment groups were determined using one-way analysis of variance (ANOVA), fol-

lowed by Tukey’s honest significant difference (HSD) post hoc test (equal variances) or Dun-

nett’s T3 post hoc test (unequal variances). All the above tests were performed using SPSS 16.0

software. Differences were considered statistically significant when the p-value was less than

0.05.

Results

Characteristics of MWCNTs

The MWCNTs were 10 μm (Fig 1) in length, with a 10–20 nm outer diameter and purity

greater than 99%. The special surface area of the MWCNTs was 500 m2/g according to BET

analysis.

Characterization of MWCNTs and MWCNTs+NP in dispersion

DLS measurements of MWCNTs and MWCNTs+NP suspensions showed that their size dis-

tribution ranged from 37 nm to 550 nm, with an average hydrodynamic size of 125 nm and

137 nm, respectively (S1 Fig).

Oxidative damage in the liver, kidneys, lungs, heart, and spleen of male

mice

To investigate the intracellular response to MWCNTs+NP, several anti-oxidative enzymes and

antioxidants were evaluated. SOD and GSH-Px activity, as well as GSH and MDA content in

the liver, kidneys, lungs, heart, and spleen of mice are shown in Figs 2–5. No significant differ-

ences were observed in antioxidative enzyme activity or antioxidant levels in the five organs

among the treated and control groups, except for that in the liver. SOD activity in the liver
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significantly decreased (p< 0.05) after administration of MWCNTs; however, this effect was

attenuated in the MWCNTs+NP group (p< 0.01) (Fig 2).

GSH-Px enzymes can protect organs from oxidative damage by consuming H2O2 in vivo
and can be used as an indicator of intracellular oxidative stress. Liver GSH-Px activity in the

MWCNTs+NP group was lower (p< 0.05) than that in the CK group (Fig 3). In addition,

GSH depletion in the liver was significantly different (p< 0.01) from the CK group after expo-

sure to MWCNTs+NP (Fig 4).

We measured MDA content in the organs to determine the extent of lipid peroxidation.

MDA content was higher in the livers from the MWCNTs group (p< 0.05) than that in the liv-

ers from the CK group and relatively higher (p< 0.01) than that in the livers from the

MWCNTs+NP group (Fig 5).

DNA damage in mouse liver and sperm

To evaluate DNA damage in the liver and sperm, tail DNA and olive tail moment (OTM) were

determined via the comet assay; the results are shown in Figs 6 and 7. DNA damage in mouse

liver after exposure to MWCNTs and MWCNTs+NP was significantly different from that in

mouse liver from the CK group (Fig 6, p< 0.05), while DNA damage in mouse sperm was

higher after exposure to MWCNTs and MWCNTs+NP (Fig 7, p< 0.01, p< 0.001,

Fig 1. Transmission electron microscopy (TEM) micrograph of multi-walled carbon nanotubes (MWCNTs).

https://doi.org/10.1371/journal.pone.0200238.g001
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respectively). No significant difference in DNA damage in the liver and sperm was observed in

the DMSO and NP groups.

Liver mitochondrial damage in mice

We used TEM to investigate the comparative effects of MWCNTs and MWCNTs+NP treat-

ment on cellular structures and organelles in mouse livers. Five days after exposure, 100 mito-

chondria were randomly selected to check the morphology in each animal and the results

showed that mitochondrial abnormalities, including reduction, disorganization, and fractures

(Fig 8B and 8C), were significantly greater in the MWCNTs and MWCNTs+NP groups than

in the CK group (Fig 8A).

Discussion

In this study, we compared the anti-oxidative damages of NP, pristine MWCNTs, and

MWCNTs+NP in mice. In addition, we evaluated genotoxic effects using the comet assay

Fig 2. Superoxide dismutase (SOD) activity in the organs of mice. Results are expressed as the means ± SD (n = 5). Significant differences from the control (CK)

group are denoted by � p< 0.05 and �� p< 0.01.

https://doi.org/10.1371/journal.pone.0200238.g002
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during acute toxicity tests. Although no differences in body weight and organ coefficients were

observed in all five groups (data not shown), the enzyme and genotoxic results indicate that

MWCNTs+NP exposure for 5 days in male mice results in greater toxicity than exposure to

NP or MWCNTs alone. As a common mechanism for intracellular damage, oxidative stress

has been clearly implicated in the induction of inflammation in many studies examining

CNTs both in vivo and in vitro [1, 27, 42]. CNTs stimulate the generation of reactive oxygen

species (ROS), which can damage lipids, carbohydrates, proteins, and DNA [43, 44]. ROS-

mediated toxicity has also been observed in vitro for single-walled CNTs with a diameter of 8

nm and length of< 5 μm [30]. Normally, antioxidant enzymes such as SOD and GSH-Px

reduce H2O2 and superoxide radicals, protecting polyunsaturated fatty acids from lipid peroxi-

dation and further preserving the structure of the cell membrane. However, excess ROS pro-

duction destroys the natural antioxidant defense system and leads to several sub-cellular

injuries, including protein denaturation, membrane damage, and DNA damage [1]. In the

present study, we investigated changes in SOD and GSH-Px activity, as well as GSH levels to

compare the toxicity of NP, MWCNTs, and MWCNTs+NP. Our results suggest that

MWCNTs+NP induce significant changes in GSH-Px activity and deplete GSH in the liver,

Fig 3. Glutathione peroxidase (GSH-Px) activity in the organs of mice. Results are expressed as the means ± SD (n = 5). Significant differences from the

control (CK) group are denoted by � p< 0.05.

https://doi.org/10.1371/journal.pone.0200238.g003
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although evidence suggests that pristine CNTs are not toxic or little toxic to animals when

administered by gavage (50 mg/kg) or by the intraperitoneal route (250 mg/kg) [45, 46]. In

this study, decreased SOD levels in the liver were observed in both the MWCNTs and

MWCNTs+NP groups. This is likely attributable to the high concentration of MWCNTs (100

mg/kg) used in this study. It has been reported that the oral no-observed-adverse-effect-level

value of NP seems to range from approximately 50 to 100 mg/kg [47]. In this study, we set a

high concentration of MWCNTs (100 mg/kg) and a relatively low dose of NP (5 mg/kg). This

is mainly due to the limitation of adsorbing capacity of NP on MWCNTs in our pilot study,

which indicated that the largest extent of NP adsorption on MWCNTs was approximately 58

mg/g. In the meanwhile, although previous study showed animals were successfully adminis-

tered via the intraperitoneal route by using an extremely high dose (250 mg/kg) [46], in this

study we still chose the oral route for the sake of safety. The oxidative damage appeared to be

higher in the 100 mg/kg MWCNTs+ 5 mg/kg NP group than in the other treatment groups.

The adsorptive properties of MWCNTs may explain this phenomenon. The addition of NP to

the MWCNTs may have exacerbated the induction of intracellular ROS generation by simulta-

neously exerting adverse effects on the antioxidant defense system. Although studies have sug-

gested that NP is an environmental contaminant that results in adverse environmental health

effects attributable to oxidative stress both in vivo and in vitro [14, 48–50], in our study, there

Fig 4. Glutathione (GSH) levels in the organs of mice. Results are expressed as the means ± SD (n = 5). Significant differences from the control (CK)

group are denoted by �� p< 0.01.

https://doi.org/10.1371/journal.pone.0200238.g004
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were no significant differences in toxicity between the NP and CK groups. We inferred from

these data that the NP exposure dose and time used in this study were not sufficient to stimu-

late ROS generation and induce oxidative damage; however, when NP adsorbs to MWCNTs, it

remains in the tissues for a longer duration.

MDA is a major peroxidation product that is formed under conditions of oxidative stress

and can be used as an indicator of lipid peroxidation [51]. Instability of the plasma membrane

results from active oxygen atoms generated by peroxide. It has been reported that most

MWCNTs are excreted in the feces when administered to mice by gavage [52], and an in vitro
study suggested that MWCNTs are not taken up by enterocytes [53]; however, in this experi-

ment, significant increases in liver MDA levels in the MWCNTs and MWCNTs+NP groups

were observed. In addition, MDA content in the MWCNTs+NP group was higher than that in

the MWCNTs group. In combination with the observed changes in antioxidant enzyme activ-

ity, the MDA results suggest that most of the oxidative stress occurred in the liver of

MWCNTs+NP-treated mice. We inferred from these data that some MWCNTs enter the cir-

culatory system via the gastrointestinal tract, resulting in liver damage.

The comet assay is a useful tool for studying the genotoxic effects of CNTs [29, 54]. Cur-

rently, the genotoxic potential of CNTs is not clear, attributable to differences in experimental

Fig 5. Malondialdehyde (MDA) content in the organs of mice. Results are expressed as the means ± SD (n = 5). Significant differences from the control (CK) group

are denoted as � p< 0.05 and �� p< 0.01.

https://doi.org/10.1371/journal.pone.0200238.g005
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design among studies, including the various models used, exposure routes, type of CNTs

examined, administered concentrations, and assessed endpoints. Genotoxic responses may

transpire via direct mechanical injury or as a secondary result of CNT-mediated ROS genera-

tion and oxidative stress [55]. The results of the comet assay in the present study clearly show

DNA damage were observed in the liver and sperm from mice administered MWCNTs. It was

reported that repeated intravenous injections of water-soluble MWCNTs to male mice (5 mg/

Fig 6. Tail DNA (A) and olive tail moment (OTM) (B) from the comet assay in mouse liver after exposure to saline only (CK control), dimethyl sulfoxide (DMSO),

4-nonylphenol (NP), multi-walled carbon nanotubes (MWCNTs), and MWCNTs+NP. The values are means ± SD (n = 5). Significant differences from the CK group

are denoted by � p< 0.05.

https://doi.org/10.1371/journal.pone.0200238.g006

Fig 7. Tail DNA (A) and olive tail moment (OTM) (B) from the comet assay in mouse sperm after exposure to saline only (CK control), dimethyl sulfoxide (DMSO),

4-nonylphenol (NP), multi-walled carbon nanotubes (MWCNTs), and MWCNTs+NP. The values are means ± SD (n = 5). Significant differences from the CK group

are denoted by �� p< 0.01 and ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0200238.g007
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kg) can cause reversible testis damage without affecting fertility [56]. Further, DNA damage

were highest in the liver and sperm of mice administered MWCNTs+NP. Although the inves-

tigation revealed that adsorption of another endocrine disruptor, bisphenol A (BPA), to a

CNT (with the highest dose of 2.4 mg/kg BPA and 65 mg/kg carboxylated MWCNTs) reduced

its endocrine disrupting effect in mice male offspring [57], we consider that the properties of

MWCNTs+NP may differ from that of MWCNTs+BPA after adsorption. Another possible

explanation is that MWCNTs+NP accumulate in mouse liver and sperm mitochondria [58].

Previous studies have already demonstrated that NP could lead to reproductive toxicity in

Muridae animals such as rats [59] and mice [15, 60], and cause abnormal conditions including

decreased testis weights and sperm motility, reduced SOD and GSH levels as well as increased

MDA contents in the reproductive organs. As there was no significant difference in the DNA

damage between the NP group and the CK group, we inferred that it is due to a short exposure

time and low dose (5 mg/kg) used in this study. On the contrary, MWCNTs act as a carrier for

NP, which then persists in the liver and sperm, causing additional DNA damage.

It was reported that NP placed in direct contact with the liver could lead to more gene acti-

vation than that caused by estradiol, indicating that tissue-specific effects should also be con-

sidered [61]. Since the liver suffered more oxidative damage from MWCNTs+NP and

MWCNTs than other organs, TEM was used to directly observe mitochondrial damage in the

liver. Disorganization and fractures in mitochondria with broken cristae and membrane were

observed in the liver tissues treated with MWCNTs (Fig 8B), while these lesions were more

severe in the liver tissues treated with MWCNTs+NP (Fig 8C), indicating that both exposure

induce hepatic mitochondrial damage. This result provides direct evidence that mitochondria

are candidate organelles for studying the toxicity of MWCNTs and MWCNTs+NP adminis-

tered at high doses.

Conclusions

To investigate the toxicological effects induced by NP, MWCNTs, and MWCNTs+NP in mice,

several anti-oxidative defense system parameters were examined, with the comet assay used

specifically to study genotoxicity. No obvious acute toxicity was observed 5 days after exposure

to NP at a dose of 5 mg/kg in mice. In addition, high doses of MWCNTs+NP induced more

Fig 8. Transmission electron microscopy (TEM) images of mouse liver cells after exposure to saline (CK control) (A), multi-walled carbon nanotubes

(MWCNTs) (B), and MWCNTs+NP (C). M represents the mitochondria.

https://doi.org/10.1371/journal.pone.0200238.g008
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oxidative lesions in the liver and caused more DNA damage in the sperm than pristine

MWCNTs, as shown by measuring changes in markers of oxidative damage and via the comet

assay.
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