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Numerically small breeds have often been upgraded with mainstream breeds. This historic
introgression predisposes the breeds for joint genomic evaluations with mainstream
breeds. The linkage disequilibrium structure differs between breeds. The marker effects
of a haplotype segment may, therefore, depend on the breed from which the haplotype
segment originates. An appropriate method for genomic evaluation would account for this
dependency. This study proposes a method for the computation of genomic breeding
values for small admixed breeds that incorporate phenotypic and genomic information
from large introgressed breeds by considering the breed origin of alleles (BOA) in the
evaluation. The proposed BOA model classifies haplotype segments according to their
origins and assumes different but correlated SNP effects for the different origins. The BOA
model was compared in a simulation study to conventional within-breed genomic best
linear unbiased prediction (GBLUP) and conventional multi-breed GBLUP models. The
BOA model outperformed within-breed GBLUP as well as multi-breed GBLUP in
most cases.

Keywords: admixed population, multi-breed genomic prediction, BOA model, cattle, allele origin

INTRODUCTION

The efficiency of breeding programs for local breeds is often compromised by the limited number of
individuals and has resulted in a decreasing competitiveness with high yielding breeds, especially
with the advent of genomic selection (GS). In GS, large reference populations are required to
accurately predict breeding values of the individuals (Goddard and Hayes 2009) and are therefore
difficult to establish in small local breeds. In order to improve the performance of local breeds, sires of
closely related high-yielding breeds were frequently used in the past and genetic gain has been
generated by introgression. Such strategies increase the genetic relatedness between breeds because a
certain number of alleles of the high yielding breed segregate within the target breed after
introgression.

Several studies were conducted using different approaches to enable GS in numerically small
breeds using the reference population of a second breed (across-breed prediction) or extending the
own reference population by adding the reference population of the second breed (multi-breed
prediction) as reviewed by Lund et al. (2014, 2016). The major findings were that across-breed
prediction is often not suitable to improve the accuracy of prediction and that the benefit of multi-
breed reference populations strongly depends on the relatedness between the breeds and density of
the SNP panels. A substantial increase in accuracy can only be expected when the breeds are closely
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related and the number of SNPs is high to capture across-
breed linkage disequilibrium (LD) between markers and
QTLs. However, variation of LD as well as differences of
allelic effects across populations limit the application of
such approaches. Different models were proposed
accounting for breed-specific effects (e.g., Makgahlela et al.,
2012; Thomasen et al., 2013; Hamidi and Rekaya., 2015; van
den Berg et al., 2020) and differences in LD (Rahimi et al.,
2020) in the field of multi-breed dairy cattle evaluation. One
way is to assign the breed origin of alleles (BOA) (Wellmann
2019; Vandenplas et al., 2016) that allows for models assuming
SNP effects to be different but correlated across breeds. Such
models were applied to simulated and real datasets of
crossbred or admixed populations in cattle (Karaman et al.,
2021) as well as other livestock (e.g., Duenk et al., 2019) or
plant species (Rio et al., 2020) and are reviewed in Stock et al.
(2020) and Duenk et al. (2021). The studies have shown that
considering BOA has the potential to increase the accuracy of
multi-breed GS.

In many numerical small dairy cattle breeds sires from a large
and high yielding breed were used in order to speed up genetic
gain in the small breed. This resulted in some cases in a
substantial amount of introgressed genes and in a mosaic-like
haplotype pattern with a mix of native and introgressed
haplotypes. For example, in the German Angler breed located
in the northern part of Germany, admixture plays a substantial
role in the population structure and the proportion of migrant
alleles from other breeds is remarkable (Addo et al., 2019, Wang
et al., 2017a,b, Schmidtmann et al., 2021). A very close
relationship to the Holstein Friesian breed, especially the Red
Holstein breed, was observed (Wang et al., 2017b). A similar level
of admixture was observed for the German Vorderwald breed,
where the genetic progress was mostly driven by the introgressed
genes (Hartwig et al., 2014; Hartwig et al., 2015). For these kinds
of breeds, a genomic model that considers the mosaic pattern of
the haplotype structure would be beneficial in multi-breed
genomic evaluations.

This study proposes a method for the computation of genomic
breeding values for small admixed breeds that incorporates
phenotypic and genomic information from large introgressed
breeds. The start and the end of the introgression events are
considered to be in the past, which is applicable to many small
local admixed breeds. A multi-breed BOA model is derived for
multi-breed genomic selection that is suitable for application
when the individuals have fragmented genomes. It classifies
haplotype segments according to their origins and assumes
different SNP effects for the different origins.

For validation, it was compared with models that did not
consider the breed-origin of QTL alleles. All models were applied
to simulated datasets. In the simulation, the genotypes of the
small admixed breed were derived from German Angler cattle,
while the genotypes of the introgressed breed were derived from
German Holstein cattle. Different scenarios were investigated in
which the number of genotyped animals of the target breed,
i.e., the numerically small Angler breed, varied, while the number
of genotyped animals of the large introgressed breed, i.e., the
German Holstein, remained constant.

MATERIALS AND METHODS

Simulation
The data basis for the simulation study were 50k SNP-chip
(Illumina BovineSNP50 BeadChip, Illumina Inc., San Diego,
CA) genotypes of Angler (AN) (Wang et al., 2017a) and
Holstein (HF) (Streit et al., 2013) individuals from the
German population. Starting with the base generation, one
further generation was simulated for each breed according to
the simulation protocol of Stock et al. (2021) with R-package
x-breed (Esfandyari and Sørensen 2017). The resulting simulated
HF dataset (simHF) consisted of 6,000 individuals and the
simulated Angler data set contained 3,000 individuals.

Several subsets of the total Angler data set were sampled to
mimic different population sizes for the small breed. Subset
simAN1 consisted of 750 individuals, simAN2 consisted of
1,500 individuals and simAN3 contained all 3,000 simulated
Angler individuals. The different simAN populations are
referred to as breed size scenarios. The sample sizes represent
12.5, 25 and 50% of the number of simHF individuals. In each of
the subsets, all sires had the same number of offspring.

From the 23,448 SNPs that segregated in both breeds, 1,000
SNPs were randomly selected as QTLs, while the remaining SNPs
were used as markers for genomic prediction.

The QTL effects for the simAN datasets and the simHF dataset
were correlated. The additive effects aHF

q , aANq of QTL q were
correlated and normally distributed with

( aHF
q

aANq
) ~ N2(( 0

0
), σ2

A( 1 0.95
0.95 1

))
Hence, the correlation ofQTL effects between the two simulated

breeds was 0.95. Dominance was not modelled. The additive effects
were scaled to represent a trait with an additive variance of
VA ≈ 0.3 in each of the pure breeds. The additive genetic
variance was calculated using standard formulas (Falconer and
Mackay 1996). The phenotypes were obtained by adding normally
distributed errors to the true genotypic values. The error variance
was chosen to obtain a phenotypic variance of VP � 1. The entire
simulation was independently repeated ten times.

True Breeding Values
The true breeding values (TBV) were calculated as

TGVik � ∑
q∈Q

∑
k∈{AN,HF}

Zk
Aiqa

k
q

where akq is the additive effect of QTL q when the haplotype
segment containing the QTL originated from breed
k ∈ {AN, HF}. The allele content Zk

Aiq ∈ {0, 1, 2} equals the
number of copies of the alternative allele in individual i that
originate from breed k. The R-package optiSel (Wellmann 2019)
was used to assign the QTL alleles from the simAN data set to
either the Angler or the Holstein breed in a segment-based
approach. Considered segments consisted of minimum 20
consecutive markers and had a length of ≥1.5 Mb. No Angler
cattle were introgressed into Holstein cattle, so the summand
corresponding to k � AN equals zero in the simHF data set.
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Genomic Prediction
The BOA model was compared with two conventional methods
for the prediction of genomic breeding values, which are within-
breed prediction with GBLUP for the simulated Angler cattle, and
a multi-breed prediction with GBLUP.

The Breed Origin of Alleles model
It is assumed that genotypes and phenotypes from several breeds
or crosses are available, which includes the target breed. The
number of SNP is denoted as M, and the total number of
individuals as N. The genotypes are phased, so each individual
i has a maternal haplotype h\i and a paternal haplotype h_i . The
binary coded alleles of individual i at SNP m are denoted as
h\im, h

_
im ∈ {0, 1}. The origins o_im, o\im ∈ {1, ..., K} of all positions

m in all haplotypes h\i , h
_
i are determined, wherebyK denotes the

number of possible origins. Each origin can be considered as a
genetic group, whereby the first genetic group is the target breed.
The indicators for genetic group k are denoted as

δ_kim � { 1 if o_im � k
0 otherwise

and

δ\kim � { 1 if o\im � k
0 otherwise

.

The model equation for the phenotypic value of individual i is

yi � ∑K
k�1

cikβk + ∑K
k�1

∑M
m�1

(h_imδ_kim + h\imδ
\
kim)akm + ei

where cik ∈ [0, 1] is the genetic contribution, individual i has
from genetic group k, βk is the fixed effect of genetic group k, a

k
m is

the normally distributed additive effect of marker m in genetic
group k, and ei is the residual. The model equation in matrix
form is

y � Xβ +∑K
k�1

Zk
Aak + e

where β � (β1, ..., βK)T is the vector of fixed effects with N ×K
design matrix X, where Xik � cik. The M-vector ak of random
SNP effects for genetic group k has design matrix Zk

A, where
Zk
Aim � h_im δ_kim + h\imδ

\
kim is the number of copies of the

alternative allele that originate from genetic group k. The
vector e with residuals has covariance matrix R � σ2eI. The
covariance matrix of the KM-vector a � (aT1 , ..., aTK)T is

D � Cov(a) � ⎛⎜⎜⎜⎜⎜⎜⎜⎝
σ2A1I / σAK1I

..

.
1 ..

.

σAK1I / σ2
AKI

⎞⎟⎟⎟⎟⎟⎟⎟⎠ � Σ ⊗ I

with

∑ � ⎛⎜⎜⎜⎜⎜⎜⎜⎝
σ2A1 / σAK1

..

.
1 ..

.

σAK1 / σ2
AK

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Alternative representations of the model and the mixed model
equations are given in the Supplementary Appendix.

The BOA model requires the breed origins o_im and o\im of the
haplotypes as input parameters. The R-package optiSel
(Wellmann 2019) was used to assign all marker haplotype
segments from the simAN data set to either the Angler or the
Holstein breed. Considered segments consisted of minimum 20
consecutive markers and had a length of ≥1.5 Mb.

The covariance matrix Σ of the marker effects of the two pure
breeds was needed as an input parameter. The correlation was
determined by a grid search for each replicate and breed size. A 5-
fold cross-validation was conducted for each candidate value, and
the correlation was chosen for further analyses that maximized
the accuracy of the predictions with the BOA model. As the
resulting correlation values were similar across all replicates and
breed size scenarios and the mean value was approximately 0.75,
this value (r � 0.75) was chosen as input parameter for all
subsequent evaluations. It was expected that such an approach
would avoid an overfitting of the model. The correlation matrix
for the marker effects was multiplied by the estimated variance of
the allele substitution effects to obtain the covariance matrix of
the marker effects.

Alternative models
For within-breed genomic prediction we used the model

y � β1 + ZAa + e,

where the M-vector a of random SNP effects has covariance
matrix D � σ2aI and design matrix ZA, where ZAim is the number
of copies of the alternative allele at marker m in individual i. The
vector e with residuals has covariance matrix R � σ2eI. For
multi-breed genomic prediction, the same model was used.
We did not include a breed effect because no breed effect was
simulated.

The SNP markers for genomic prediction were chosen as
follows. From the 22,448 SNPs that were not chosen as QTLs, all
SNPs that segregated with a minor allele frequency (MAF) <0.03
within one of the simulated breeds and SNPs that did not
segregate in both breeds were omitted. Across all replicates, on
average 21,670 SNPs remained and were used for genomic
prediction.

Cross Validation
The genomic predictions were done separately for each breed-size
scenario and each replicate. The accuracies of prediction were
assessed by a 5-fold cross validation. The individuals of the
respective simAN dataset were assigned to five different classes
such that individuals from different classes had no sires in common.
Hence, each class included the offspring of 10 sires. In each cross-
validation cycle, one class was used as the validation set, and the four
remaining classes were used as the reference population.

For multi-breed GBLUP and for the BOA model, the
respective simAN reference set was joined with the simHF
individuals. Consequently, the number of individuals from the
simAN population in the reference population varied, while the
number of simHF individuals was constant.
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An overview on the sample sizes is given in Table 1. The
reference populations for within-breed prediction consisted of 600,
1,200, and 2,400 simAN individuals, respectively. The reference
populations for multi-breed prediction were enlarged by the 6,000
simHF individuals. The proportions of simAN individuals in the
multi-breed reference population were thus 9, 17 and 29% for the
simAN1, simAN2 and simAN3 scenario, respectively.

The marker effects were estimated with all three models for
each cross-validation cycle.

Estimated Breeding Values
The genomic breeding values of the individuals in the validation
set were computed for the BOA model as

GEBVi � ∑
m∈M

∑
k∈{AN,HF}

Zk
Aimâ

k
m,

whereM is the set of SNPmarkers, âkm is the estimated SNP effect
of markerm that is used for haplotype segments originating from
genetic group k, and the allele content Zk

Aim ∈ {0, 1, 2} equals the
number of copies of the alternative allele in individual i that
originate from genetic group k. For the other models, the genomic
breeding values were estimated as

GEBVi � ∑
m∈M

ZAimâm,

where âm is the estimated SNP effect of marker m, and the allele
content ZAim ∈ {0, 1, 2} equals the number of copies of the
alternative allele in individual i at marker m.

Prediction Accuracies
For each method, the prediction accuracy was calculated as the
correlation between the GEBVs and the TBVs of the validation
individuals. The accuracies presented in the results are the
averages, taken over all cross-validation cycles and replicates.

RESULTS

The mean proportion of SNPs with Holstein origin across all
replicates was 0.157 ± 0.007. Table 2 shows the results of the
model comparison for all investigated breed-size scenarios. In
general, the prediction accuracies increased with increasing size
of the reference population. The BOAmodel provided the highest
accuracies for simAN1 and simAN2, whereas it showed the same
mean accuracy as within-breed GBLUP for simAN3. Multi-breed
GBLUP was inferior to the other models in simAN1 and simAN3.

Within-breed GBLUP resulted in the lowest accuracies in the
medium-sized reference population scenario simAN2. The
standard deviations (SD) of the accuracies were highest using
the small reference set, while it showed the smallest SD values in
the medium-sized reference set. The standard errors of the
accuracies were relatively small (0.011–0.017).

DISCUSSION

It was shown in this study that a multi-breed genomic prediction
with the proposed BOA model can increase the accuracies of the
GEBVs for numerically small admixed populations over multi-
breed and within-breed genomic predictions with GBLUP under
certain conditions. The model considers the breed origin of each
haplotype in individuals with admixed genomes consisting of
native and introgressed haplotype segments. This makes it
especially interesting for numerical small breeds with historic
introgression from high yielding breeds, as it was observed e.g., in
the German Angler or Vorderwald breed (Addo et al., 2019;
Wang et al., 2017a; Wang et al., 2017b; Schmidtmann et al., 2021;
Hartwig et al., 2014, 2015).

The simulated QTL positions were the same in both breeds.
Recent mutations that could have created new QTLs were ignored.
The QTL effects of both genetic groups were assumed to be highly
correlated with a correlation of 0.95. The QTL positions were
chosen from the 50k chip, so the simulated QTLs are common
variants whereas a large fraction of the additive variance is expected
to come from rare QTL variants (e.g., Kemper and Goddard 2012;
Visscher et al., 2017). This can compromise a direct transition of
the simulation results to real data.

The LD structures in the simulation are expected to be similar
to those investigated in real populations (Qanbari et al., 2010;
Addo et al., 2019; Schmidtmann et al., 2021) because only one
generation was simulated, so recombination could occur only
within one meiotic division. Although the QTL effects were
highly correlated, the correlation of the marker effects was
only 0.75. The reason for the relatively low correlation of
marker effects is that the QTLs were excluded from the
marker set. Therefore, the effect of a single QTL is captured
by several markers and the LD between markers and QTLs is
different in both genetic groups. The shorter ranges of LD in
admixed populations like the German Angler compared with
other breeds (Addo et al., 2019; Schmidtmann et al., 2021)
contributes to the observed low correlation. A higher
correlation between marker effects might be observed when

TABLE 1 | Numbers of genotyped animals in reference and validation sets for the three investigated scenarios.

Scenario n Validation set Reference set 1
(within-breed)

Reference set 2
(multi-breed)

simAN %
(multi-breed)

simAN1 750 150 600 6,600 9.09
simAN2 1,500 300 1,200 7,200 16.67
simAN3 3,000 600 2,400 8,400 28.57

The size of the simulated Angler data set (n), the number of simulated Angler individuals in each validation set (Validation Set), the number of simulated Angler individuals in each reference
set for within-breed prediction (Reference Set 1), the number of simulated Angler and simulated Holstein Friesian individuals in the reference set for multi-breed prediction (Reference Set 2),
and the proportion of simulated Angler individuals in the multi-breed reference set (simAN %).
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more dense marker panels would be used and a heavy-tailed
distribution of marker effects would be assumed.

This paper focused onmethods to improveGS in small admixed
populations. It compared the prediction accuracies of various
methods in a simulated population that had a similar LD
structure as the target breeds. A detailed quantification of the
impact of influencing factors (e.g., LD and its consistency across
populations, or the relatedness and genetic correlation between the
populations) on the accuracies was beyond the scope of the study.
The study explicitly focused on admixed populations where the
events of introgression were in the past and breeding programs aim
at reducing migrant contributions from other (high yielding)
breeds or at least keep the amount of migrant contributions
constant (e.g., Wang et al., 2017b). Therefore, the impact of the
approach on crossbred individuals was not determined. But still,
models that include BOA information have been shown to be
beneficial for crosses (e.g., Duenk et al., 2019).

In this study, the multi-breed BOA model was compared with
conventional multi-breed GBLUP and within-breed GBLUP. The
multi-breed BOA approach led to an increase in the accuracy of the
genomic breeding values when the number of genotyped AN
individuals was small and medium, and showed similar results as
the within-breed GBLUP method for the large reference sets. The
difference between the prediction accuracies of the models, however,
tend to decrease with an increasing number of genotyped AN
individuals. The multi-breed prediction with GBLUP was not
superior to within-breed prediction when the number of
genotyped AN individuals was large. The reason is possibly that
themulti-breedGBLUPmodel assumes a perfect correlation between
the marker effects of both breeds. This assumption was certainly
violated in the simulation. The BOA model, which accounts for the
correlation betweenmarker effects, could improve upon single-breed
evaluations and outperformed multi-breed GBLUP in all cases.

For the prediction of genomic breeding values of Angler in
practice, to date, a joint reference population of several
Scandinavian red dairy breeds (i.e., Danish Red, Norwegian
Red, Swedish Red, and Finnish Ayrshire) is used. To increase
the accuracies of the GEBVs for Angler, about 170 genotyped and
progeny-tested German Angler bulls have been included to this
reference set as well (private communication RSHeG, 2021).
Hence, the findings of the study in scenario simAN1 might be
most relevant for the current Angler cattle breeding program.

In the past decades, the Angler breed has been upgraded with
other breeds, such as Red Holstein and Holstein Friesian to
increase its economic value. This has led to relatively high
kinships between them (Wang et al., 2017b). However, in this

study only Holstein Friesian genotypes were available and
considered, and thus the total amount of introgression was
probably not detected completely. In addition, the available
Holstein Friesian genotypes originated from the current
population, which might have also biased the categorization of
the native parts of the genome. The use of the most closely related
introgressed breed is expected to bear the greatest potential in
multi-breed predictions in the target breed when applying BOA
models and should therefore preferably be used if applicable. This
was not shown here as such datasets were not available. At an
animal level, the proposed BOA model considers the genetic
connectedness of individuals from both breeds. The closer
individuals of the high yielding breed are related with the
individuals of the target breed, the more informative they are
for multi-breed prediction and thus contribute more to the
accuracy of breeding value estimation. Generally, multi-breed
prediction is increasingly beneficial when applied to high density
marker information or whole-genome sequence data (Lund et al.,
2014), however, such datasets are mostly not available in cost-
efficient breeding programs of small local cattle populations.

CONCLUSION

A multi-breed genomic prediction with the proposed BOA model
increased the accuracies of the estimated genomic breeding values for
numerically small admixed populations overmulti-breed andwithin-
breed genomic predictions with GBLUP. The BOA model assumes
that the additive effect of an allele depends on the genetic group from
which the respective haplotype segment originates. It is of special
interest for multi-breed genomic predictions for numerically small
breeds with past introgression from high yielding breeds.
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