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Nucleoside homeostasis, which is mediated by transporters
and channels, is essential for all life on Earth. In Escherichia
coli, NupG mediates the transport of nucleosides and was
deemed to be the prototype of the nucleoside proton symporter
(NHS) family and the major facilitator superfamily. To date,
the substrate recognition and transport mechanisms of NHS
transporters are still elusive. Here, we report two crystal
structures of NupG (WT and D323A NupG) resolved at 3.0 Å.
Both structures reveal an identical inward-open conformation.
Together with molecular docking and molecular dynamics
simulations and in vitro uridine-binding assays, we found that
the uridine binding site, which locates in the central cavity
between N and C domains of NupG, is constituted by R136,
T140, F143, Q225, N228, Q261, E264, Y318, and F322. More-
over, we found that D323 is very important for substrate
binding via in vitro uridine-binding assays using D323 muta-
tions, although it does not have a direct contact with uridine.
Our structural and biochemical data therefore provide an
important framework for the mechanistic understanding of
nucleoside transporters of the NHS family.

Nucleosides play important roles in all organisms on Earth.
In addition to being the basic components of nucleic acids,
they are also neurotransmitters for signaling translocation (1,
2). In addition, nucleoside analogs have been suggested to be
antiviral and anticancer drugs and compounds with great
antibiotic activity (3).

Nucleoside homeostasis, which is mediated by nucleoside
uptake and export via transporters, is essential for cell division
and growth (4). To date, two kinds of nucleoside transporters
have been found in mammals: concentrative nucleoside
transporters (CNTs) and equilibrative nucleoside transporters
(5). Interestingly, the nucleoside-specific outer membrane
transporter Tsx and the nucleoside proton symporter (NHS)
NupG are restricted in bacteria (6–8). The NHS NupG belongs
to the NHS family in the major facilitate superfamily (MFS)
‡ These authors contributed equally to this work.
* For correspondence: Jianping Hu, hjpcdu@163.com; Bo Sun, sunb@sari.ac.

cn; Dong Deng, dengd@scu.edu.cn.

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and has been recognized as one of the prototype MFS trans-
porters (9).

The major facilitator superfamily (MFS) is the largest pro-
tein family of transporters, which facilitate the uptake and
export of various molecules across the plasma membrane (10).
According to their various coupling patterns, MFS trans-
porters can be divided into three kinds of transporters: facili-
tators, symporters, and antiporters (11). In recent decades,
breakthroughs in structural investigations have heavily pro-
moted the elucidation of alternating access and substrate
recognition of MFS transporters; these structural studies
include the series of works of the classical lactose proton
symporter LacY (12–14) and investigations of glucose trans-
porters with different conformations (15–22).

In Escherichia coli, nucleosides are mainly delivered via
NupC and NupG (23). NupC, a homolog of CNTs, was found to
transport pyrimidine nucleosides, adenosine, and the antibiotic
showdomycin but not guanosine or inosine (24). NupG has the
capacity to transport both pyrimidine and purine nucleosides
efficiently but not showdomycin (24, 25). Recently, structural
investigations of CNTs have helped elucidate the transport and
specific nucleoside recognition mechanisms of CNTs (26–29).

Here, we report two crystal structures of the NHS trans-
porter NupG (both at a resolution of 3.0 Å). Together with
the in vitro binding assay, molecular docking, and molecular
dynamics (MD) simulations, we identified the substrate-
binding site of NupG. Moreover, we found that a nega-
tively charged residue (D323), which indirectly coordinates
with uridine, is also very important for substrate binding.
This study provides an important framework for the mech-
anistic understanding of nucleoside recognition of NHS
nucleoside transporters.

Results

Characterization of recombinant NupG

We overexpressed and purified recombinant NupG with
monodisperse peaks in different detergent micelles (Fig. S1).
To validate the function of NupG, isothermal titration calo-
rimetry (ITC) was carried out to measure the binding between
NupG and nucleosides (Fig. 1). As shown in the results, NupG
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Figure 1. Binding affinity between nucleosides and NupG measured by ITC. A, binding affinity of adenosine and NupG. Kd = 99.67 ± 14.57 μM. B,
binding affinity of guanosine and NupG. Kd = 46.67 ± 6.66 μM. C, binding affinity of xanthosine and NupG. D, binding affinity of cytidine and NupG. Kd =
143.67 ± 19.66 μM. E, binding affinity of thymidine and NupG. Kd = 162.5 ± 19.16 μM. F, binding affinity of uridine and NupG. Kd = 199.67 ± 15.01 μM. ITC,
isothermal titration calorimetry.

Crystal structures of nucleoside transporter NupG
binds to adenosine with a Kd of 99.67 ± 14.57 μM. NupG also
binds to guanosine, thymidine, cytidine, and uridine with Kd

values of 46.67 ± 6.66 μM, 162.5 ± 19.16 μM, 143.67 ±
19.66 μM, and 199.67 ± 15.01 μM, respectively. Nevertheless,
NupG could not bind to xanthosine (Fig. 1, Table S1), and this
was also observed in a previous biochemical study (30).

We further detected the binding affinity between NupG and
uridine in different buffers at various pH values. NupG binds
uridine with a binding affinity of approximately 200 μM in
sodium citrate at pH 5.0 and 2-(N-Morpholino) ethanesulfonic
acid (MES) at pH 6.0, whereas the binding affinity dramatically
reduced to approximately 3 mM in a buffer containing 25-mM
Tris at pH 8.0 (Fig. S2, Table S1).
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A previous study reported that NupG has the capacity to
transport various nucleosides (25). Our results indicate that
NupG has broad substrate selectivity and are consistent with
results from a reported transport assay.

Overall structure of NupG

We used X-ray crystallography to explore the substrate
recognition mechanism of NupG. Extensive crystallization
trials of NupG were carried out. Finally, we crystallized WT
NupG and solved the structure of NupG in the apo state at a
resolution of 3.0 Å (Fig. 2, Table S2). We used the molecular
replacement method using the predicted structure as the
search model to determine the structure of NupG (Fig. S3C).
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Briefly, we crystallized NupG in two different space groups and
collected diffraction data sets at 3.8 Å for P21 and 3.0 Å for P1.
We succeeded in solving the structure of NupG with the P21
space group using molecular replacement as there was only
one molecule in one asymmetric unit. In the P1 crystal,
however, there are two molecules of NupG with reversed
orientations in one asymmetric unit (Fig. S3A), and both
molecules have an almost identical conformation with an
RMSD of 0.21 Å over 387 Cα atoms (Fig. S3B). Therefore, we
selected molecule A for further analyses.

Consistent with the topology prediction (25, 31), NupG has
the typical MFS fold with 12 transmembrane helices (TM1-
12). The N domain (TM1-6) and C domain (TM7-12) are
linked by a flexible loop (Fig. 2A). The cavity between the N
and C domains faces the cytoplasm (Fig. 2B). By comparing the
NupG structure with well-characterized MFS transporters that
have an inward-open conformation, XylE (17) and LacY (12),
we found that NupG also has an inward-open conformation in
the crystal structure (Fig. 2B).

Identification of potential residues involved in substrate
binding

After extensive trials, we still failed to obtain a crystal of
NupG in complex with a nucleoside. Fortunately, polar
substrate-binding pockets were identified in previous studies
of the MFS transporters XylE and LacY (12, 13, 17). The ribose
moieties of nucleosides are polar carbohydrates that are
structurally similar to the natural substrates of XylE (xylose)
and LacY (lactose). We speculated that all three transporters
partly share a similar substrate recognition pattern. Several
polar or charged residues in the cavity should directly contact
the polar carbohydrate. Therefore, the polar and charged
residues in the cavity may also be important for nucleoside
recognition by NupG.
Figure 2. Overall structure of NupG. A, the ribbon representation (left) and
surface representation (right) of NupG. B, superposition of LacY (blue), XylE
(gray), and NupG (green).
To identify the residues involved in substrate binding, we
first investigated several polar residues (Q225, N228, E264, and
D323) in the cavity of NupG (Fig. 3A). Mutants were gener-
ated, and the uridine binding of these constructs was detected
via ITC. As shown in the results, Q225A had a similar binding
affinity for uridine (Kd at 227.67 ± 88.34 μM) as WT NupG,
whereas N228A and E264A dramatically reduced the uridine-
binding ability, suggesting that N228 and E264 are essential for
nucleoside binding. Surprisingly, NupGD323A bound to uridine
with a Kd of 9.67 ± 2.87 μM, which is a 20-fold increase in the
binding affinity compared with that of NupGWT (Fig. 3B,
Table S1). Considering the increased uridine-binding capacity
of NupGD323A, we crystallized NupGD323A under nucleoside-
containing conditions and solved the structure of NupGD323A

at a resolution of 3.0 Å (Table S2). The superposition of the
NupGD323A and NupGWT structures showed that they had
identical conformations, with an RMSD of 0.3 Å over 384 Cα
atoms (Fig. S3D). Unfortunately, no visible electron density of
uridine was observed in the central cavity (Fig. S3E).
Putative substrate-binding site

We continued to explore the nucleoside-binding site of
NupG via molecular docking (Fig. 4). Considering the higher
binding affinity between NupGD323A and uridine, we first
generated a uridine docking model based on the NupGD323A

structure using Discovery Studio 3.5 software (Fig. 4A). Then,
we confirmed the stability of the system by analyzing a series of
conventional structural convergence parameters based on the
MD simulation trajectory (Fig. 4B). As shown in Figure 4B, the
potential energy reaches equilibrium soon after removing the
constraints, and its mean value and SD are −8.93 × 105 and
0.07 × 105 kcal mol−1, respectively; the uridine-bound system
tends to be stable after 10 ns with an RMSD of 0.19 ± 0.08 nm;
according to the change in the gyration radius over the
simulation time, the system tends to equilibrate after 30 ns,
with a small fluctuation in the amplitude (approximately
0.01 nm), which indicates that the system experienced a slight
expansion and contraction during this period; regarding the
distribution of the RMSF on different amino acid residue Cα

atoms, the overall RMSF value is low and the atomic motion
range is not large. All the above simulation results suggest that
uridine-bound NupG is relatively stable.

In the uridine-bound model, the uridine molecule was
docked into the central cavity, which has direct contact with
the side chains of residues from the N and C domains
(Fig. 4A). Nucleosides are comprised of two basic components,
namely, the ribose and base. In the docking model, R136 and
T140 from the N domain and E264 from the C domain form
hydrogen bonds with the ribose moiety of uridine. Interest-
ingly, these three residues are identical in three members of
the NHS family (NupG, XapB, and YegT). These three trans-
porters have different nucleoside selectivity, but this is un-
derstandable for the recognition of invariable ribose by
identical residues in the cavity of NHS transporters. The
further ConSurf evolutionary analysis using 150 homologs of
NupG also reveals that R136, T140, and E264 are highly
J. Biol. Chem. (2021) 296 100479 3



Figure 3. Identification of potential residues involving in substrates binding. A, the side view of NupG. The overall structure is represented as ribbons,
and potential residues involved in substrates binding are represented as spheres. B, the cytoplasmic view of NupG. The overall structure is represented by
ribbons, and potential residues involved in substrates binding are represented as spheres. C, uridine binding affinity of NupG variants measured by ITC.
Kd = 227.67 ± 88.34 μM for Q225A. Kd = 9.67 ± 2.87 μM for D323A. ITC, isothermal titration calorimetry.
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conserved (Fig. S6). Furthermore, Q225, N228, Q261, and
Y318 from the C domain form hydrogen bonds with the base
of uridine. Unlike the contact with ribose, the residues
involving base recognition are relatively variable. With the
exception of Q261, the Q225, N228, and Y318 residues of
NupG are A226, Y310, and H315 in YegT (Fig. S5).The con-
servation scores of Q225 and N228 are 6 and 7, respectively, as
shown by the ConSurf evolutionary analysis (Fig. S6). This
observation indicates that these residues determine the spec-
ifications of nucleoside recognition. In addition, there are two
conserved aromatic residues around uridine (Fig. 4A, Fig. S6).

To further verify the docking results, in vitro binding assays
were carried out. We constructed a series of single point
mutations of NupG: R136A, T140A, F143A, Q225A, N228A,
Q261A, E264A, Y318A, and F322A. As the ITC results
showed, all mutant versions of NupG, except NupGQ225A,
abolished the binding affinity between NupG and uridine
(Fig. 5, Table S1). This result indicated that the hydrogen-
bound interactions between these residues and uridine are
essential for substrate recognition. Interestingly, F143A and
F322A also eliminated the binding affinity between NupG and
uridine, indicating that F143 and F322 are also essential for
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substrate binding. The surrounding aromatic residues involved
in substrate recognition of nucleoside transporters, such as
F366 of vcCNT (27) and F564 of hCNT3 (29), are a common
feature. F143 and F322 might form π–π interactions with
uridine and restrict the specific orientation of the nucleosides.

Discussion

In a previous study, N114 was predicted to be important in
the recognition of nucleoside transport by NupG (31, 32).
However, in our study, N114 is far away from uridine. In
addition, N114A also did not influence the binding affinity
between NupG and uridine (Fig. S4B). In the structure of
NupG, N114 is in TM4 and corresponds to E126 in LacY,
which is indispensable for substrate binding and might form a
charge pair with R144 of LacY (12, 33).

Interestingly, there are three NHS transporters, NupG (8),
XapB (34), and YegT (9), that are found in E. coli. XapB shares
58% sequence identity and 76% sequence similarity with NupG
(Fig. S5) and was identified as a xanthosine-specific transporter
(30); however, the natural substrate of YegT should be further
investigated, although YegT shares 27% sequence identity and
50% sequence similarity with NupG (Fig. S5). The residues



Figure 4. Putative substrate-binding site of NupG. A, the docking model of the NupGD323A–uridine complex. Left, the overall structure is represented as
ribbons, and uridine is represented as spheres. Right, detailed interaction between putative substrate binding sites (yellow sticks) and uridine (white stick). B,
MD simulations of the docking model. MD, molecular dynamics.
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involved in the uridine binding pocket of NupG are identical to
those of XapB. A previous biochemical study suggested that
the preferred substrate of XapB is xanthosine, whereas NupG
could not bind or transport xanthosine (Fig. 1). Therefore,
other residues surrounding the pocket also contribute to
substrate recognition.
J. Biol. Chem. (2021) 296 100479 5



Figure 5. Uridine binding affinity of NupG variants measured by ITC. Details can be found in Experimental procedures. Each mutation of NupG is
labeled above the corresponding experimental result. ITC, isothermal titration calorimetry.
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During this study, we found that the D323A mutant en-
hances the binding affinity between NupG and uridine
(Fig. 2B). This result indicated that D323 is an important
residue for nucleoside transport, although D323 does not
directly contact the substrate-binding site. Further in-
vestigations showed that the D323A mutant maintained a
similar uridine-binding affinity in different buffers with various
pH values, while NupGWT decreased its binding affinity at a
basic pH (Fig. S2) (Fig. S4). This property is similar to that of
the mutated lactose proton symporter LacY E325A (35, 36). In
the case of LacY, E325 and K319 were identified as protonation
sites, and the uncharged side chains of E325 and K319 retain a
high affinity with lactose, even at an alkaline pH (35, 36).
Therefore, we speculated that D323 may be the proton-
escaping site of NupG during the proton-coupling proced-
ure. Interestingly, NupGD323N, which mimics the protonation
state at position 323, bound to uridine with a reducing Kd of
1109 ± 192.21 μM (Fig. S4B, Table S1). Therefore, more
structural and biochemical investigations should be carried out
to elucidate how D323 couples substrate binding and
protonation.

In this study, we solved the first structure of an NHS
transporter NupG. Together with the MD simulations and
biochemical assays, we identified the nucleoside binding site of
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NupG. Our study provides a framework for understanding the
transport and substrate recognition mechanisms of NHS
transporters.
Experimental procedures

Protein purification

Full-length nupG was cloned from E. coli K12 and subcl-
oned into pET21b. Overexpression of NupG was induced in
E. coli C43(DE3) cells by 0.2-mM IPTG when the cell density
reached an absorbance at 600 nm of 1.0. After incubation for
15 h at 18 �C, the cells were harvested and homogenized in the
buffer containing 25-mM MES (pH 6.0) and 150- mM NaCl.
The membranes were collected and incubated for 2 h with 2%
(w/v) dodecyl-β-D-maltopyranoside (DDM, Anatrace) at 4 �C.
After centrifugation at 17,000 rpm for 30 min, the supernatant
was collected and loaded onto Ni-NTA affinity resin (Qiagen)
and rinsed with the buffer containing 25-mM MES (pH 6.0),
150-mM NaCl, 20-mM imidazole, and 0.02% DDM. The
protein was eluted with a buffer containing 25-mM MES (pH
6.0), 150-mM NaCl, 250-mM imidazole and 0.4% NG. The
protein was concentrated to approximately 20 mg/ml before
further purification by gel filtration (Superdex200 10/300 in-
crease column; GE Healthcare) in the buffer containing
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25-mM MES (pH 6.0), 150-mM NaCl, and 0.4% NG. The peak
fractions were collected and concentrated to approximately
30 mg/ml for further crystallization. For the binding assay,
NupG was purified in the buffer containing 0.02% DDM in all
steps. All mutations were generated by standard two-step PCR
and purified using the same protocol.

Crystallization

Both WT and D323A NupG were crystallized by the meso-
phase method (37, 38). A total of 30 mg/ml protein was mixed
with monoolein (M-239, Nu-Chek) at a 1:1.5 protein to lipid
ratio (w/w) using a syringe lipid mixer. Briefly, the 60 nl of the
meso phase was covered with 600 nl of crystallization buffer
for each condition and sealed in glass sandwich plates
(Shanghai FAstal BioTech). Crystals grew at 1 week in 0.1 M
sodium citrate (pH 5.0) and 28% PEG300 for WT NupG P21
structure, in 0.1 M NaCl, 0.1 M MgCl2, 0.1 M sodium citrate
(pH 5.0), and 30% PEG600 for WT NupG P1 structure, and in
0.1 M NaCl, 0.1 M MgCl2, 0.1 M MES (pH 6.0), and 30%
PEG550 MME for NupGD323A. Crystals were harvested and
frozen in liquid nitrogen.

Structure determination

The diffraction data were collected at the beamline BL18U1
of SSRF and processed with XDS (39). The data were scaled by
using Aimless in the CCP4 program suite (40). The WT NupG
structure was solved by molecular replacement using the
predicted structure of NupG as the search model. First, the
predicted structure of NupG was generated using the Robetta
server (http://robetta.bakerlab.org) (41). The primary pre-
dicted model was further modified as polyalanine and divided
into the N domain (TM1-6) and C domain (TM7-12) before
molecular replacement by phenix.phaser (42, 43). A good
initial solution was obtained by using the P121 crystal form
data (diffracting to 3.8 Å) (Table S1) with one molecule in the
asymmetric unit. After multiple rounds of manual building
and refining, the initial model was good enough to generate a
molecular replacement solution for data of the P1 crystal form
(3 Å) with two NupG molecules in the asymmetric unit. The
complete structure of NupG was obtained by using iterative
manual building in coot (44) and refinement in phenix.refine
(Table S2).

ITC

The nucleoside binding of NupG was measured with a
MicroCal iTC200 at 25 �C. The purified NupG proteins were
concentrated to 40 to 60 μM for ITC. The titration data were
analyzed using the one-site binding model, and the first in-
jection was removed. The titration of nucleosides into the
buffer was deducted. All the experiments were repeated three
times. A representative result was selected to present, and the
means ± SD of Kd are calculated and summarized in Table S1.

Molecular docking

In general, molecular docking has been widely used to
describe the “best-fit” orientation of a ligand binding to a
particular protein and to predict the complex structure (45).
Here, the uridine molecule was constructed with the Chem-
Bio3D Ultra 12.0 package, and then its energy was minimized
under the MM2 force field with an RMS less than
0.0001 kcal mol−1 Å−1. After the optimization of the molecular
mechanics, Gaussian 09 (46) was adopted to refine the struc-
ture again at a higher level of quantum mechanics. Energy
optimization and molecular docking of the target protein (i.e.,
NupGD323A) were carried out with the Prepare Protein and
CDOCKER modules in Discovery Studio 3.5 software,
respectively. In addition, the docking center (x: −18.314,
y: −15.508, z: 5.605) and search radius (1.2 nm) were both
preset.

MD simulation

MD simulation at 300 K was performed for NupGD323A with
AMBER 18 software (47) and the ff16SB force field (48). A
total of 9599 water molecules and one sodium molecule were
added to the system using the TIP3P water model (49) with a
box boundary of 8.0 Å. Before the MD simulation, the
following two-stage energy optimization method was carried
out for NupGD323A: (1) the solute was constrained with a force
constant of 500 kcal mol−1 Å−2 containing 3000 steps in the
steepest descent and 5000 steps in the conjugate gradient
minimization; (2) after removing the geometry constraints, the
second optimization was also composed of 3000 steps in the
steepest descent and 5000 steps in the conjugate gradient
minimization.

After energy minimization, the MD simulation was star-
ted and was divided into the following two procedures: (1) a
5-ns constrained MD was performed with a constraint force
constant of 10 kcal mol−1 Å−2, and the temperature grad-
ually increased from 0 to 300 K; (2) a 50-ns unconstrained
productive MD simulation was performed, adopting the
SHAKE algorithm (50) to constrain the hydrogen atoms. In
addition, the nonbonded interaction radius was set as 8 Å,
the integration step was set to 2 fs, and the conformational
snapshot was collected every 10 ps. Thus, a total of 5500
conformations were selected for the following structural
analyses.

Data availability

The atomic coordinates have been deposited in the Protein
Data Bank (PDB accession code: 7DL9 for NupGWT and 7DLA
for NupGD323A). All other data are contained within the article.
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