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Abstract

Influenza A viruses (IAVs) remain a significant global health burden. Activation of the innate

immune response is important for controlling early virus replication and spread. It is unclear

how early IAV replication events contribute to immune detection. Additionally, while many

cell types in the lung can be infected, it is not known if all cell types contribute equally to

establish the antiviral state in the host. Here, we use single-cycle influenza A viruses

(scIAVs) to characterize the early immune response to IAV in vitro and in vivo. We found

that the magnitude of virus replication contributes to antiviral gene expression within infected

cells prior to the induction of a global response. We also developed a scIAV that is only

capable of undergoing primary transcription, the earliest stage of virus replication. Using this

tool, we uncovered replication stage-specific responses in vitro and in vivo. Using several

innate immune receptor knockout cell lines, we identify RIG-I as the predominant antiviral

detector of primary virus transcription and amplified replication in vitro. Through a Cre-induc-

ible reporter mouse, we used scIAVs expressing Cre-recombinase to characterize cell type-

specific responses in vivo. Individual cell types upregulate unique sets of antiviral genes in

response to both primary virus transcription and amplified replication. We also identified

antiviral genes that are only upregulated in response to direct infection. Altogether, these

data offer insight into the early mechanisms of antiviral gene activation during influenza A

infection.

Author summary

Influenza A virus (IAV) is a respiratory virus that can infect multiple cell types in the

lung. It is not known how individual cell types contribute to the innate immune response.

Additionally, it is not known how distinct stages of early IAV replication are detected by

infected cells. To address these questions, we use a combination of viruses that can
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replicate but not spread and viruses that can only undergo the very first steps of replica-

tion. These tools allow us to identify and analyze infected cells during the earliest stages of

virus replication. We uncover distinct responses to different stages of IAV replication in
vitro and in vivo. Additionally, we identify universal and cell type-specific antiviral

responses in vivo. Altogether, our data suggest that both replication stage and the cell type

infected contribute to antiviral gene activation during IAV infection.

Introduction

Influenza A virus (IAV) is a seasonal pathogen that causes significant global morbidity and

mortality annually. Respiratory epithelial cells are the primary targets of IAV. Infected epithe-

lial cells play a critical role in detecting IAV and activating the interferon (IFN) response. Fail-

ure of infected cells to control IAV replication can lead to cell death and spread of the virus to

neighboring cells, resulting in significant damage to the lung epithelium and severe disease

symptoms. The primary innate immune receptor responsible for detection of IAV infection in

epithelial cells is retinoic acid inducible gene-I (RIG-I). Detection through another RIG-I-like

receptor (RLR), melanoma differentiation-associated protein 5 (MDA5), has also been shown

to contribute in vivo but not in ex vivo studies [1, 2]. While many epithelial cell types can be

infected throughout the course of infection, it is unknown if all infected cell types contribute

equally to establish the antiviral state in the host.

IAV has a segmented, negative-sense RNA genome. Each of the eight gene segments is

packaged into virions in complex with the heterotrimeric viral RNA-dependent RNA poly-

merase (RdRp). Upon infection, these viral ribonucleoprotein (vRNP) complexes traffic to the

nucleus where the RdRp both transcribes the viral RNA (vRNA) to generate messenger RNA

(mRNA) and replicates the vRNA through a positive sense complementary RNA (cRNA)

intermediate [3]. While the exact mechanism for how the virus balances between transcription

and replication for each gene segment is unknown, replication requires de novo polymerase

complexes to stabilize the cRNA intermediate [4–7], suggesting that transcription occurs prior

to replication. Additionally, amplification of vRNA has been shown to be required for induc-

tion of type I IFN, suggesting early IAV infection is poorly detected by the innate immune sys-

tem [6, 8]. Several groups have described aberrant vRNA products, including defective

interfering genomes and mini viral RNAs, as the predominant inducers of innate immune

activation through RIG-I [9–11]. When these RNAs are produced during the course of an

infection has not been well defined.

Previous methods to assess distinct stages of early virus replication within a cell have used

drugs such as actinomycin D or cycloheximide to inhibit transcription or translation [11–13].

These drugs also inhibit host cell processes, limiting the ability to analyze the host response.

We therefore used a series of viruses genetically restricted in progressing through different

stages of replication. Single-cycle influenza viruses (scIAVs) lacking hemagglutinin protein

and unable to spread were used to elucidate mechanisms of innate immune activation during

the early stages of IAV infection in mice. We identified unique responses to the magnitude of

replication during direct infection in vivo, prior to the establishment of tissue-wide antiviral

responses. Additionally, we generated a genetically restricted scIAV such that only primary

transcription can occur. Entry and primary transcription alone are detected by RIG-I and

drive an antiviral response in vitro. Using this tool, we uncovered epithelial cell type-specific

responses to primary virus transcription and amplified virus replication in vivo. Altogether,
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these data demonstrate that the antiviral response to IAV is sensitive to the stage of replication

and varies across cell types.

Results

Heterogeneous antiviral response to early influenza infection in vivo
We have previously used a single-cycle influenza A virus (scIAV) expressing mCherry in place

of the coding sequence for the hemagglutinin (HA) segment (ΔHA-mCherry) to uncover rep-

lication heterogeneity during the early stages of IAV infection in mice [14]. Other groups have

found similar heterogeneity at early timepoints in vitro [15–18], as well as heterogeneity in the

ability to induce IFN production in infected cells [18–21]. Our previous analyses were unable

to distinguish genes induced directly by virus infection from those driven by IFN and inflam-

mation. To address this, we assessed an earlier time point, 12 hours post-infection (hpi), where

distinct populations of mCherry high and low epithelial cells were still observed in vivo (Fig

1A). To determine if mCherry high and low cells display distinct antiviral signatures, we

infected mice with ΔHA-mCherry and sorted mCherry high, low, and negative epithelial cells

at 12 hpi for mRNA-seq analysis. Similar to 24 hpi, at 12 hpi reads mapping to the IAV genome

were higher in the mCherry high cells than in mCherry low cells, validating the use of mCherry

fluorescence as an indicator of scIAV replication at 12 hpi (Fig 1B). Multidimensional scaling

(MDS) of host mRNAs revealed significant differences between the mCherry high and low

populations (Fig 1C). However, there is no difference between the mCherry negative and

naïve populations, suggesting that alterations in host gene expression in mCherry+ cells at 12

hpi are driven directly by virus replication, rather than a global inflammatory response. More-

over, mCherry high and low cells display distinct antiviral gene signatures (Fig 1D). While the

genes analyzed in this study are designated as interferon-simulated genes (ISGs), IFN-inde-

pendent upregulation by virus replication of some of these genes has been described [22–24]

and we do not distinguish between virus induced and interferon induced. The putative protec-

tive ISGs found in the mCherry low cells at 12 hpi overlap with the genes identified using both

ΔHA-mCherry and ΔHA-destabilized GFP at 24 hpi identified previously [14] (Fig 1E, top, S1

Table). Among these are genes such as Eif2ak2 (PKR) which has well-described antiviral activ-

ity during IAV infection [25], as well as genes that have not been described to have anti-IAV

activity, such asHelz2. We also found overlap in the genes upregulated in cells with high levels

of virus replication (Fig 1E, bottom, S2 Table), including the chemokine Ccl5. Gene ontology

(GO) analysis of genes significantly upregulated over naïve in mCherry high and low cells

revealed that only high levels of virus replication induce apoptosis pathways at 12 hpi (Fig 1F).

Induction of these ISGs may require high levels of replication as a way to tightly regulate a

pro-inflammatory and pro-apoptotic response. These data further suggest that pathologic

responses may be driven from only a small subset of infected cells. Altogether, these data sug-

gest antiviral gene expression is tuned to the level of IAV replication, and this heterogeneity is

established prior to the induction of a global immune response.

Genetic restriction of IAV to primary transcription

We hypothesized that the heterogeneous scIAV replication is due to differential ability of cells

to detect and respond to the very early stages of virus replication. We therefore developed a

scIAV that is unable to progress from primary transcription to replication. We replaced the

coding sequence for polymerase basic 1 (PB1) with the coding sequence for mCherry

(ΔPB1-mCherry). This virus is grown in a cell line that expresses PB1 protein. The resulting

viruses package complete RdRps but cannot generate new polymerase complexes in infected

cells. Therefore, any de novo RNA generated in infected cells is being produced only by
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incoming virus RdRps. We first quantified levels of (+)-sense (m/cRNA) and (-)-sense (vRNA)

RNA generated by ΔHA-mCherry and ΔPB1-mCherry at 0, 3, 6, 9, and 12 hpi in A549 cells.

We found that while both viruses can produce (+)-sense RNA, scIAV-ΔPB1-mCherry cannot

amplify (-)-sense vRNA (Fig 2A), validating ΔPB1-mCherry as a tool to assess the immune

response to primary IAV transcription.

We hypothesized that, due to the different RNA species generated, ΔHA and ΔPB1 viruses

would induce distinct immune responses. Importantly, ΔHA-mCherry and ΔPB1-mCherry

virus stocks contain similar amounts of defective interfering (DI) genomes (Fig 2B), which

have been shown to induce RIG-I activation independent of viral protein synthesis [11]. Addi-

tionally, ΔHA and ΔPB1 viruses package equivalent PB1 protein (Fig 2C). Therefore, any dif-

ferences in immune activation are due to differences in the de novo RNA generated by the two

viruses rather than differences in incoming defective genomes or polymerase complexes.

Primary transcription is detected by RIG-I in vitro
RIG-I, and not MDA5, has been reported to recognize IAV infection in primary mouse fibro-

blasts [2], but the processes of the viral infection and replication cycle that contribute to this

recognition are not known. To understand how ΔPB1-mCherry is being detected by infected

cells, we infected RIG-I-/-, MDA5-/-, MAVS-/-, and non-targeted control (NTC) A549 cells [26]

with ΔPB1-mCherry or ΔHA-mCherry and harvested cells for mRNA-seq analysis at 12 hpi.

Importantly, naïve knockout cells do not display significant differences in overall gene expres-

sion compared to naïve NTC cells (S1 Fig). Compared to naïve cells, both viruses robustly

induce antiviral gene expression in NTC cells (Fig 3A). The highest upregulated genes

(logFC�5, logCPM�5) in NTC and MDA5-/- cells are identical in ΔHA and ΔPB1 infections.

Additionally, the only gene upregulated in NTC cells that is not upregulated in MDA5-/- cells

is IFIH1 (MDA5). No genes are upregulated to this degree in RIG-I-/- or MAVS-/- during either

infection (S3 Table). This suggests that RIG-I is required to detect IAV infection. In both NTC

and MDA5-/- cells, ΔHA infection upregulates IFNB and IFNL3 (Fig 3B). ΔPB1 infection also

significantly upregulates these IFNs (logFC�2 over naïve, FDR�0.05), albeit to a much lower

degree. However, only a small percentage of infected cells produce IFN at early timepoints in
vitro and in vivo [18, 19], suggesting that only a few IFN-producing cells are needed to estab-

lish the antiviral state. Our data indicate the modest upregulation of IFN in ΔPB1-infected

NTC and MDA5-/- cells is sufficient to induce upregulation of ISGs and that the early stages of

IAV infection—entry through primary transcription—are sufficient for detection through

RIG-I.

Detection of cells supporting primary transcription in vivo
While we were able to detect virus mRNA by RNA-seq, we were unable to detect mCherry

fluorescence in A549 cells infected with ΔPB1-mCherry (S2A Fig). The mCherry gene segment

is appropriately packaged, as co-infection with wt IAV to trans-complement PB1 results in

Fig 1. Heterogeneous antiviral response to scIAV infection at 12 hpi. B6 mice were infected with 105 PFU of scIAV-ΔHA-mCherry or 103 PFU PR8. (A)

CD45-CD31- cells were analyzed for mCherry expression at 12 hpi. Data representative of six independent experiments with n = 3–4 mice per group.

mCherry negative, low, and high CD45-CD31-cells were sorted at 12 hpi for RNA-seq analysis. (B) IAV CPM (C) MDS of naïve and mCherry negative, low,

and high cells. (D) Heatmap of 207 ISGs differentially expressed in the indicated populations. Cutoff of false discovery rate (FDR) is� 0.05. (E) Overlapping

low ISGs (mCherry 24h cluster 2, GFP cluster 1, and mCherry 12h clusters 1 and 5) and high ISGs (mCherry 24h cluster 4, GFP cluster 4b, and mCherry 12h

cluster 8). Only genes induced to�10 CPM in at least one sample are shown. (F) Gene ontology analysis (DAVID, biological processes) was performed for

genes upregulated in mCherry high, low, and negative cells over naïve (logFC� 1.5, FDR� 0.05). Unique pathways identified in mCherry low (top)

mCherry high (bottom) are shown (FDR� 0.05). (B-F) representative of one experiment with n = 3 mice per group.

https://doi.org/10.1371/journal.ppat.1008760.g001
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mCherry fluorescence. Due to the limited ability to detect ΔPB1-mCherry in vitro, we devel-

oped additional scIAVs for in vivo analysis. These viruses express Cre recombinase (Cre) in

place of either HA or PB1 (ΔHA-Cre and ΔPB1-Cre, respectively). Cre-inducible reporter

mice have previously been used to identify cells infected with IAV expressing Cre [27–30].

This system allows for the tracking of infected cells via a Cre-inducible host-endogenous fluor-

ophore, tdTomato. Therefore, detection of infected cells is not dependent on high levels of

active virus replication. tdTomato+ lung epithelial cells can be detected at 24 hpi with either

ΔHA-Cre or ΔPB1-Cre (Fig 4A). However, the geometric mean fluorescence intensity (gMFI)

of tdTomato is higher in ΔPB1-Cre infected mice (Fig 4B). As tdTomato is a host-endogenous

fluorophore, this gMFI difference could reflect differences in the ability of ΔHA and ΔPB1

viruses to induce shut-off of host transcription/translation. Using cell type-specific markers,

we identified infected ciliated cells (CD24hi podoplanin-), type I alveolar cells (ATI; CD24-

podoplanin+), and type II alveolar cells (ATII; CD24- podoplanin- MHCII+ EpCAM+) (S2B

Fig for gating strategy). There are overall fewer tdTomato+ cells following ΔHA-Cre infection,

likely due to more robust cell death from full replication compared to ΔPB1-Cre infection (Fig

4C). However, the proportion of each epithelial cell type within the tdTomato+ population was

the same in the two infections (Figs 4D, S2C), suggesting these cell types are equally susceptible

to infection-induced cell death. All ΔHA-Cre infected cell types show lower tdTomato gMFI

compared to ΔPB1-Cre infected cells. Intriguingly, ΔHA-Cre infected ciliated cells show

reduced gMFI compared to total ΔHA-Cre tdTomato+ cells. Similarly, ΔPB1-Cre infected ATI

and ciliated cells show reduced tdTomato gMFI compared to total tdTomato+ cells (S2D Fig),

suggesting that there are cell type-specific responses to primary scIAV transcription and

replication.
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https://doi.org/10.1371/journal.ppat.1008760.g002

PLOS PATHOGENS Influenza virus responses are tuned to replication stage and cell type

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008760 August 13, 2020 6 / 21

https://doi.org/10.1371/journal.ppat.1008760.g002
https://doi.org/10.1371/journal.ppat.1008760


Transcriptional response to viral replication and primary transcription in

epithelial cell subsets in vivo
We sorted tdTomato+ and tdTomato- ATI, ATII, and ciliated cells from ΔHA-Cre and

ΔPB1-Cre infected Cre-inducible reporter mice for mRNA sequencing to characterize cell

type- and stage-specific responses to scIAV infection. Cells from naïve mice were used as base-

line controls. We and others have previously used CD24 as a marker of ciliated cells [14, 31],

and we further validated its use by quantifying co-expression of CD24 with the ciliated cell

marker acetylated alpha-tubulin (aat) (S3A and S3B Fig). We also validated our gating strategy

by quantifying cell type-specific gene expression; we identified cell type-specific expression of

both transcription factors and cell surface proteins associated with each cell type (S3C Fig)

[32–34]. Expression of innate immune signaling genes in naïve cells could contribute to any

differences in the response between cell types. We therefore quantified expression of such

genes in each cell type in naïve animals. ATI cells express higher basal Ddx58 (RIG-I) and Ifih1
(MDA5) than ATII cells or ciliated cells; other signaling genes—Irf3, Irf7, andMavs—are not

Fig 3. Primary transcription is detected by RIG-I in vitro. Indicated A549 cells were infected with ΔHA-mCherry or ΔPB1-mCherry at MOI = 1 and

RNA extracted at 12 hpi for mRNA-seq analysis. (A) Total (black) and ISGs (red) differentially expressed genes are shown. The number of genes

significantly upregulated (logFC�2, FDR�0.05, log CPM�1.5) over naïve is shown in upper right of plot. The highest upregulated genes (logFC�5,

logCPM�5) are listed in each plot. (B) Normalized expression level (read CPM) for IFNB1 and IFNL3 in naïve and ΔHA-mCherry or ΔPB1-mCherry

infected A549 cells. Data representative of one experiment with n = 3 replicate samples per group.

https://doi.org/10.1371/journal.ppat.1008760.g003
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Number and percentage of CD45-CD31- epithelial cells that are tdTomato+. (D) The percentage of infected (tdTomato+) ATI, ATII, and ATII cells was

quantified. (A-D) representative of 3 independent experiments with n = 3–4 mice.

https://doi.org/10.1371/journal.ppat.1008760.g004
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different between the cell types (S3D Fig). Overall, these data confirm enrichment of the indi-

cated epithelial cell types to analyze innate immune responses to scIAVs.

To assess cell type-specific responses to infection, we first looked at global changes in host

transcripts. ATI cells respond robustly to direct infection, with similar responses to primary

transcription and amplified replication (Fig 5A, left). In contrast, ATII cells have a tiered

response to direct infection, and uninfected ATII cells from ΔHA-Cre infected mice also have

a large response to global inflammation (Fig 5A, middle). Ciliated cells respond to direct infec-

tion, and this response is tiered to different stages of virus replication (Fig 5A, right). Quantifi-

cation of IAV gene expression—excluding HA and PB1 reads—in each cell type revealed no

differences between ΔHA-Cre-infected cells, while ΔPB1-Cre-infected ciliated cells have

higher IAV reads than ΔPB1 infected ATI or ATII cells (S4A Fig). ATI, ATII, and ciliated cells

all upregulate Ifnb in response to ΔHA-Cre infection (S4B Fig). In contrast to the in vitro data

(Fig 3), ΔPB1-Cre is unable to induce detectable Ifnb in the analyzed cell types in vivo, which

may be due to lower relative MOI. Importantly, these cell types also do not upregulate detect-

able levels of the IFN-dependent ISGMx1 in response to ΔPB1-Cre infection, indicating that

interferon is likely not secreted by any cell type (S4C Fig). Both infected and uninfected cells

upregulateMx1 in response to ΔHA-Cre, suggesting that amplified virus replication is

required to induce IFN production in vivo and any genes upregulated in ΔPB1-Cre infected

cells, including genes designated as ISGs, are likely due to direct infection.

We also performed GO analysis on genes significantly upregulated in each condition over

naïve (Fig 5B). As anticipated, antiviral immune pathways were the most significantly upregu-

lated in infected and uninfected cells from ΔHA-infected mice. Compared to other infected

cell types, ΔHA+ ciliated cells upregulate a more diverse range of genes. Conversely, ΔPB1

infected mice did not have the same degree of immune pathway activation. ΔPB1 infected ATI

cells activated expression of pathways involved in metabolism not seen in any other cell type

or condition. Altogether, these data suggest different cell types have distinct responses to infec-

tion and is impacted by the stage of replication.

Cell type-specific responses to stages of replication in vivo
To further characterize the immune response induced in different epithelial cell types, we ana-

lyzed the ISGs upregulated by primary transcription or amplified replication. We identified

ISGs that were specific to ΔHA-Cre or ΔPB1-Cre infection, as well as genes upregulated by

both infections (Fig 6A, S4 Table). The previously identified putative protective ISGs (Fig 1E)

are all upregulated exclusively by ΔHA-Cre infection. This could indicate that induction of a

strongly antiviral response is dependent on de novo vRNA production and/or upregulation of

IFN. We also identified genes that are only significantly upregulated in ΔPB1-infected cells.

These genes may be upregulated in response to virus entry, early trafficking of vRNPs, or some

other early stage of virus infection. Following detection of virus RNAs, the genes upregulated

in response to RLR signaling may dominate the transcriptome, which is why we do not see sig-

nificant upregulation of these ΔPB1-specific genes in ΔHA infected mice.

We compared ISGs upregulated in ΔHA-Cre infected IAV+ cells between cell types to iden-

tify cell type-specific responses to infection (Fig 6B, S5 Table). All cell types upregulate genes

involved in antigen processing and presentation (Herc6, Psmb8, Rnf213, Tap1). Ciliated cells

were the only cells to upregulate several genes involved in endocytosis and vesicle transport

(Amph,Msr1). ATI and ATII cells specifically upregulated RNA metabolism-associated genes

(Cnp, Isg20, Pnpt1), which may be employed as a way to target and degrade virus RNAs,

although this has not been tested. In response to ΔHA-Cre infection, all cell types were able to

upregulate the putative protective ISGHelz2 (Fig 1E, S1 Table). However, only ATII cells
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Fig 5. Transcriptional response to viral replication and primary transcription in epithelial cell subsets in vivo. Cre reporter mice were infected with 105 pfu

ΔHA-Cre or ΔPB1-Cre and tdTomato+ and tdTomato- ATI, ATII, and ciliated cells were sorted at 24 hpi for RNAseq analysis. (A) MDS plots of the indicated cell type.

ΔHA+: infected, ΔHA-: uninfected, ΔPB1+: infected, ΔPB1-: uninfected. (B) GO analysis (DAVID, biological processes) of significantly upregulated genes (logFC�1.5,

FDR�0.01, CPM�10 in at least one sample) for the indicated population of each cell type. Significantly enriched pathways (FDR�0.05) are shown.

https://doi.org/10.1371/journal.ppat.1008760.g005
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upregulated Adar, Eif2ak2, and Pml, which all have known anti IAV activity [25, 35, 36]. While

all cell types upregulate Stat2 and the positive RLR regulator Ddx60, only ATII and ciliated cells

upregulate Ddx58 (RIG-I), Ifih1 (MDA5), and Stat1. Intriguingly, while ATI cells express higher

basal levels ofDdx58 and Ifih1 compared to ATII and ciliated cells, ATI cells induce fewer ISGs

than other cell types, suggesting response robustness is at least partially independent of RLR

expression levels. Overall, these data suggest that different cell types may employ unique strate-

gies that are compatible with the cell function to make the cell inhospitable to virus replication.

We were also able to compare ISGs upregulated in IAV+ or IAV- cells over naïve cells as a

way to identify infection-specific ISGs (Fig 6C, S6 Table). Many innate signaling genes are
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(C) Infection-specific ISGs were identified by comparing genes in tdTomato+ (ΔHA/ΔPB1+) and tdTomato- (ΔHA/PB1-) cells. Select genes in each

population listed. Data representative of one independent experiment with n = 2–6 mice per group.

https://doi.org/10.1371/journal.ppat.1008760.g006
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upregulated in both infected and uninfected cells from ΔHA-Cre infected mice (RLRs, Irf7,
Tlr3). Among the infection-specific ISGs upregulated during ΔHA-Cre infection are genes

associated with apoptosis (Ripk2, Casp1, Ifi27, Pmaip1) and E3 ubiquitin ligases and protea-

some genes, some of which are known to be involved in MHC-I antigen processing (Neurl3,
Rnf19b, Psmb9). While many known ISGs with anti-IAV activity are upregulated in both IAV+

and IAV- cells, Eif2ak2 is infection-specific. Repair of virus-induced DNA damage is critical

for cell survival from IAV infection [37], and several DNA damage response-associated genes

(Bub1, Ddit4, Pml) were found to be infection-specific. Overall, the cell type infected, the stage

of IAV replication, and direct infection all contribute to the antiviral response of a cell in vivo.

Discussion

The early innate response in infected cells is critical for controlling IAV pathogenesis in vivo.
Following import into the nucleus, the IAV RdRp first transcribes vRNA to generate mRNA

and protein. After de novo polymerase complexes are generated, the vRNA is replicated. These

two distinct stages of early virus replication are of critical importance in innate immune signal-

ing, as de novo vRNA is necessary for induction of IFN-β during IAV infection. IFN-β produc-

tion within the first hour of IAV infection has been documented in both human and mouse

cells [38]. Additionally, entry of vRNPs alone can induce IFN expression [39]. RIG-I is known

to detect short (10-300bp) cytosolic RNAs with 5’ triphosphate ends [40]. While aberrant

(-)-sense IAV RNA products—DI genomes and mini viral RNAs—are detected by RIG-I, the

contribution of (+)-sense IAV RNAs to innate immune detection is unclear. Triphosphate-

independent recognition of lariat structures derived from vRNA and cRNA has been

described, and both potently upregulate IFN-I [41]. ΔPB1 viruses are able to generate

(+)-sense RNA, therefore cRNA-derived structures could be driving the response to ΔPB1

infection.

IFN-independent, IRF-dependent upregulation of some ISGs has been described [22–24].

In these studies, detection of viral RNA products is still required for virus-induced gene

expression. We are unable to detect IFN expression following ΔPB1 infection in vivo, and the

observed induction of antiviral genes could therefore be driven directly through RLR signaling.

Membrane perturbations—such as those that occur during virus binding and entry into the

host cell—have been shown to be sufficient to induce IRF3-mediated gene activation in vitro
[42], and this response is independent of RLR signaling [43]. The upregulation of ISGs we see

during ΔPB1 infection could therefore be due to entry-associated membrane perturbations

rather than detection of RNA species, and these responses would be revealed in RLR signaling

deficient cells. As RIG-I knockout and MAVS knockout cells do not significantly upregulate

any genes following ΔPB1-mCherry infection, virus entry induces little response in vitro. The

RIG-I-dependent response to ΔPB1 infection could be through incoming vRNP complexes,

independent of polymerase activity. An additional facet of the early innate immune response

to viruses is the upregulation of endogenous transposable elements [44] and endogenous retro-

viruses [45]. As primary transcription is sufficient for induction of antiviral genes, transpos-

able elements and endogenous retroviruses are likely also upregulated and contributing to the

cellular response.

Various techniques have been employed to assess distinct stages of IAV infection within a

cell. These studies use inhibitors to prevent protein synthesis or transcription, which effectively

halt virus replication but also target cellular processes [11–13]. This limits the ability to analyze

the immune response, as expression of host genes is compromised. Specific inhibition of virus

replication could be achieved by using drugs that target the IAV polymerase specifically, either

by targeted drug design or by engineering IAVs to be susceptible to drug control, as described
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through the use of the small molecule assisted shutoff tag. Addition of this tag to an IAV poly-

merase gene resulted in an IAV whose replication was susceptible to hepatitis C virus protease

inhibitors [46], allowing for specific inhibition of IAV replication. In addition to inhibition of

replication, recent studies using single-cell RNA sequencing technologies have uncovered cel-

lular responses to IAVs lacking one or more gene segments, including viruses lacking poly-

merase segments. Similar to our results using ΔPB1 scIAVs, cells infected with viruses lacking

vRNP genes produce less virus mRNA and induce little to no IFN [15]. However, a virus lack-

ing both PB1 and NS1 potently induced IFN [18]. While our data suggest that primary tran-

scription can induce antiviral gene expression in an IFN-independent manner, in the absence

of immune antagonism, primary IAV transcription may be sufficient to drive IFN expression.

Unfortunately, we do not know the percentage of infected cells that will fail to progress beyond

primary transcription during wt IAV infection. While the early detection we observe here is

likely critical to rapidly induce IFN, sensing of full replication may drown out other primary

transcription-specific responses later in infection.

We and others have identified cell type-specific responses to IAV infection in vivo [14, 31].

Unlike previous studies, we are able to compare three different epithelial cell types, the stage of

replication (primary virus transcription vs amplified replication), and assess the response of

bystander cells. Some of these cell type differences may be explained by an incompatibility

with certain ISGs and the function of a given cell type (e.g. expression of Eif2ak2may be

incompatible with critical ciliated cell function). The only ISG upregulated by all cell types in

during both full replication and primary transcription is Steap4. STEAP4—also known as

STAMP2—is a metalloreductase that has antiviral activity during hepatitis B virus (HBV)

infection. STEAP4 prevents HBV-induced metabolic dysregulation and can antagonize HBV

gene expression, thereby protecting cells from HBV [47]. Expression of Steap4 in scIAV-

infected cells could serve a similar function.

Basal levels of signaling genes may contribute to the observed differential antiviral

responses between cell types. Surprisingly, while ATI cells express higher levels of Ddx58 and

Ifih1 (S3D Fig), ciliated cells upregulate the most ISGs, even in uninfected bystander cells.

These data suggest that the expression level of innate immune receptors alone does not dictate

the robustness of the response. In addition to upregulating more ISGs than other epithelial cell

types, the highest upregulated ISG in ΔPB1-Cre-infected ciliated cells is Ifitm3. IFITM3 is

known to inhibit entry/uncoating of IAV [48, 49]; the potent upregulation of Ifitm3 during

early stages of infection and/or the rapid upregulation of ISGs could explain our previously

described protection of ciliated cells during virus spread [14]. The epigenetic landscape of dif-

ferent cell types prior to and during early infection could also contribute to differences in gene

expression, as epigenetic differences affect functional outcomes during virus infections [50].

Overall, we have described the use of a genetically restricted scIAV to assess cell type- and

virus replication stage-specific host responses to infection. We determined that both primary

virus transcription and amplified replication are detected through RIG-I. Additionally, we

found that the magnitude of early replication, the stage of replication, and the cell type infected

all contribute to the antiviral response in vivo. Altogether, these data offer insight into the

mechanisms of innate immune activation during influenza infection.

Methods

Tissue culture

Human embryonic kidney 293T (293T, ATCC) cells, human lung adenocarcinoma A549 cells,

Madin-Darby canine kidney (MDCK) cells, and MDCK cells expressing IAV-WSN HA

(WSN-HA MDCK, kind gift from Dr. Adolfo Garcı́a-Sastre, Mount Sinai) were maintained in
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Dulbecco’s modified Eagle’s medium (DMEM) with 1% fetal bovine serum (FBS) and 1% pen-

icillin-streptomycin. MDCK cells expressing IAV-PR8 HA (PR8-HA MDCK, kind gift from

Dr. Luis Martinez-Sobrido, University of Rochester) were supplemented with 125 μg/mL of

hygromycin B.

Generation of PR8-PB1 MDCK cells

The PR8-PB1 coding sequence was cloned into the NotI-digested pLEX-MCS lentivirus packag-

ing vector (kind gift from Dr. Wade Bresnahan, University of Minnesota) using In-Fusion clon-

ing (Takara). The lentivirus packaging vector and the pMDG and pΔNRF helper plasmids were

transfected into 293T cells using the Lipofectamine 3000 transfection reagents (Invitrogen). At

24 and 48 hours post-transfection, supernatant was harvested and filtered through a 0.45 μm

PES filter. A GFP lentivirus (GFP-lenti) was generated as a control to determine the approxi-

mate titer of the PB1-lenti stock. MDCK cells were transduced with 10-fold serial dilutions of

GFP-lenti to determine titer. MDCK cells were transduced with PB1-lenti at an MOI = 0.5.

After 48 hours, the cells were diluted to obtain single-cell clones. Positive clones were selected

for and maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 1% fetal bovine

serum (FBS), 1% penicillin-streptomycin, and 5 μg/mL puromycin. Integration of the lentivirus

transgene was verified by western blot (rabbit anti-PB1, PA5-34914, ThermoFisher Scientific)

and PCR using genomic DNA and the following primers for PB1: 5’-ACCCATAACGATAGA

AAAAACTTGTG-3’ and 5’-CCAGTTGGAGGCAATGAGAAGAAAGC-3’.

Virus rescue

Viruses were rescued in 293T cells using the IAV-PR8 plasmid-based transfection system in

the pDZ vector. scIAV-ΔHA viruses were generated as previously described [14]. To generate

scIAV-ΔPB1 viruses, mCherry or Cre recombinase (Cre) was inserted between the 5’ and 3’

packaging signals of PR8 PB1 (100 and 200 bp, respectively). Plasmids were transfected at

500ng/reaction onto 293T cells in Opti-MEM using Lipofectamine 2000 (Invitrogen) and

incubated at 37˚C. pCAGGs-WSN-PB1 or -WSN-HA were supplemented into each reaction.

After 24 hours, PR8-PB1 MDCK or WSN-HA MDCK cells were added to transfected wells in

Opti-MEM containing 0.5μg/mL TPCK-trypsin. Reactions were supplemented at 24 and 48

hours after cell overlay with 500μL of Opti-MEM containing 1–2μg/mL TPCK trypsin. Sev-

enty-two hours after cell overlay, the supernatant was harvested, centrifuged to remove cellular

debris, and stored at -80˚C. Viruses were plaque purified and amplified on either PR8-PB1 or

PR8-HA MDCK cells. Viral sequences were confirmed using Sanger sequencing. Virus stocks

were tittered via plaque assay. Infections were performed in infection media (PBS with 10%

Ca/Mg, 1% pen/strep, 5% BSA) at 37˚C on either PR8-PB1 or WSN-HA MDCK cells. After

1hr, infection media was replaced with an agar overlay (2xMEM, 1μg/mL TPCK-trypsin, 1%

DEAE-dextran, 5% NaCO3, 2% oxoid agar) and cultured for 40-42hrs at 37˚C. Plaques were

fixed with 4% formaldehyde for 30 minutes prior to removal of the overlay. Blocking and

immunostaining were performed at room temperature for 1 hour in 5% milk in PBS. The fol-

lowing antibodies were used in staining: polyclonal anti-IAV PR8/34, 1:5000 (V301-511-552),

Peroxidase Rabbit Anti-Chicken IgG, 1:5000 (303-035-003, Jackson Immuno Research). Virus

plaques were detected using TruBlue Peroxidase Substrate (50-547-28, Kirkegard & Perry

Laboratories).

Stranded sequencing analysis to identify (+)- and (-)-sense scIAV RNA

Infections were performed in A549 cells in infection media at an MOI of 1. Infections were

synchronized at 4˚C for 30 minutes then transferred and incubated at 37˚C. The zero hour
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time point was harvested after 30 minutes at 37˚C and additional time points were harvested

at 3, 6, 9, 12 hours post infection. RNA was extracted using TRIzol. The cDNA libraries were

prepared using the Stranded Total RNA v2 PicoMammalian kit (Takara). Samples were

sequenced as 150 base pair paired-end reads using NovaSeq (Illumina). The customized influ-

enza A/PR/8/34/(H1N1) mRNA sequence and annotation were used for mapping (available

upon request). The forward and reverse virus reads counts were obtained by using Feature-

Counts -s parameter. The strand specific reads of individual viral genes were summed as either

negative or positive strand reads sample by sample, respectively. To normalize the strand spe-

cific viral reads, we first generated the forward or reverse strand reads ratio by using total viral

reads as denominator. The ratio of forward or reverse strand reads were then normalized

against total mapped reads (relative library size), which were subsequently transformed into

counts per million (CPM). All RNA sequencing files are available from the NCBI GEO data-

base (accession number GSE147832).

Western blot analysis

Viral stocks were lysed and separated by SDS-PAGE (2–15% gel). Protein was transferred to a

nitrocellulose membrane at 4˚C for 2 hours and blocked with 5% milk in PBS. The membrane

was incubated with primary antibodies rabbit anti-PB1 (1:1000, PA5-34914, ThermoFisher

Scientific) followed by goat anti-rabbit IgG horseradish peroxidase-conjugated secondary anti-

body (1:1000, ThermoFisher Scientific). Images were obtained using a Li-Cor Odyssey Fc

imaging system.

Detection of Defective Interfering Particles in scIAV stocks

RNA was extracted from viral stocks, including an A/Puerto Rico/8/34 stock grown in MDCK

cells. RNA was extracted using the NucleoSpin Virus Kit (Macheray-Nagel). RNA was reverse

transcribed to cDNA using the SuperScript III One-Step RT-PCR with Platinum Taq (Invitro-

gen). PB2 and NA gene segments were amplified from each sample as well from a pDZ-PR8-

PB2 or NP plasmid control using previously described primers: PB2 5’- GTAGATGCAGCG

AAAGCAGGTCAATTAT-3’ and 5’-GTAGCAGCAGTAGAAACAAGGTCGTTTT-3’, NA

5’-GTAGATGCAGCGAAAGCAGGGGTTTAAA-3’ and 5’-GTAGCAGCAGTAGAAACA

AGGAGTTTTT-3’. The samples were loaded and run on a 1% agarose gel with 0.012% ethid-

ium bromide in Tris-acetate-EDTA buffer. Images were obtained using a GelDoc EZ Imager

(BioRad).

Next-generation mRNA sequencing of A549 KO cells

NTC and knockout A549 cells (kind gift from Michael Gale, Jr., University of Washington)

were infected with ΔHA-mCherry or ΔPB1-mCherry at MOI = 1. Cells were harvested at 12

hpi and RNA extracted using the RNeasy PLUS Micro kit (Qiagen). cDNA libraries were pre-

pared using the TakaraBio PicoMammalian kit and sequenced as 150 base pair paired-end

reads using NovaSeq (Illumina). The raw sequencing reads were mapped to human genome

(GRCh38) using Bowtie aligner (bowtie2 version 2.3.4.1) with local mode, -L 22 and -N 1

parameters[51]. The mapped reads were then assigned to Ensembl gene model (Homo_sa-

piens.GRCh38.87.gtf) with featureCounts of the Subread software package (version 1.5.1) [52].

The raw reads count tables were merged to generate data matrix and used for subsequent sta-

tistical analysis. To obtain significant differentially expressed genes, the experimental groups

by design were compared to control group (naïve) and the edgeR (version 3.24.3) of biocon-

ductor package was used for statistical analysis [53, 54]. Raw reads were normalized by using

default method in the package prior to generating stats.
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Mice and virus infection

Wild-type C57BL/6J and B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J mice were purchased

from The Jackson Laboratory. Mice were infected intranasally (i.n.) with 105 pfu of scIAV

unless otherwise indicated. All experiments involving mice were performed as dictated by the

University of Minnesota Institutional Animal Care and Use Committee.

Flow cytometry

Mice were euthanized and lungs were inflated with 2 mL dispase (Corning) and 0.5 mL 1%

low melt agarose (Lonza) and allowed to sit covered with an ice pack for two minutes. Lungs

were then removed from mouse and transferred to 1 mL dispase and incubated at room tem-

perature for 45 minutes. Next, lungs were incubated in DMEM with DNase I (Sigma-Aldrich)

at 95 U/mL and shaken for 10 minutes at room temperature. Lungs were homogenized in

GentleMACS dissociator and red blood cells were lysed with ACK buffer. Cells were filtered to

obtain a single cell suspension prior to staining. Cells were stained with Ghost Dye Red 780

(Tonbo), followed by the following antibodies against surface markers: CD45 (30-F11), podo-

planin (clone 8.1.1), CD24 (M1/69), EpCAM (CD324, clone G8.8), MHCII (I-A/I-E, clone

M5/114.15.2) (Biolegend), and CD31 (clone 390, BD Bioscience). Cell counts were obtained

using AccuCheck counting beads (Thermofisher Scientific). Data were acquired on a BD

LSRFortessa (Becton Dickinson, San Jose, CA).

Next-generation mRNA sequencing of sorted mouse lung epithelial cells

C57BL/6J mice were infected with ΔHA-mCherry and CD45-CD31- mCherry high, low, and

negative epithelial cells were FACS sorted at 12 hpi. B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)
Hze/J mice were infected with either ΔHA-Cre or ΔPB1-Cre and the following CD45-CD31-

populations were FACS sorted at 24 hpi: tdTomato+ ciliated cells (CD24hi podoplanin-), type I

alveolar cells (CD24- podoplanin+), and type II alveolar cells (CD24- podoplanin- MHCII+

EpCAM+), and tdTomato- ciliated cells and type I and II alveolar cells. RNA was isolated from

samples using the RNeasy Plus Micro kit (Qiagen). cDNA libraries were prepared using the

TakaraBio PicoMammalian kit and were sequenced as 50 base pair paired-end reads using

NovaSeq (Illumina). The raw sequencing reads were mapped to mouse genome (GRCm38)

using Bowtie aligner (bowtie2 version 2.3.4.1) with local mode, -L 22 and -N 1 parameters[51].

The mapped reads were then assigned to Ensembl gene model (Mus_musculus.GRCm38.87.

gtf) accordingly with featureCounts of the Subread software package (version 1.5.1) [52]. For

flu reads mapping and assignment, the customized influenza A/PR/8/34/(H1N1) mRNA

sequence and annotation were used. The raw reads count tables were merged to generate data

matrix and used for subsequent statistical analysis. To obtain significant differentially

expressed genes, the experimental groups by design were compared to control group (naïve)

and the edgeR (version 3.24.3) of bioconductor package was used for statistical analysis [53,

54]. Raw reads were normalized to counts per million for each sample by using default method

in the package prior to generating stats.

Statistical analysis

Statistical analyses were completed using GraphPad Prism 7 software. Comparisons between

two groups were executed using a two-tailed Student t test. Comparisons between more than

two groups were completed using a one-way ANOVA. Additional tests were performed where

indicated. Error bars were calculated using SEM.
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Supporting information

S1 Fig. Basal gene expression between knockout cell lines. Individual gene expression values

(CPM) for naïve NTC A549 cells were plotted against naïve RIG-I-/- (left), MDA5-/- (middle),

and MAVS-/- (right) A549 cells. R-squared values were calculated using linear regression anal-

ysis.

(PDF)
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�� p<0.01, ns = not significant.
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