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Background: Lipid metabolism disorder, a new hallmark of cancer initiation, has been involved
in lung adenocarcinoma (LUAD). However, few biomarkers about lipid metabolism-related genes
(LMRGs) have been developed for prognosis prediction and clinical treatment of LUAD patients.

Methods: In this study, we constructed and validated an effective prognostic prediction
model for LUAD patients depending on LMRGs. Subsequently, we investigated the
prediction model from immune microenvironment, genomic changes, and immunotherapy.

Results: Then, eleven LMRGs were identified and applied to LUAD subtyping. In
comparison with the high-risk group, the low-risk group exhibited a remarkably favorable
prognosis, along with a higher immune score and lower tumor purity. Moreover, the low-risk
group presented higher levels of immune checkpoint molecules, lower tumor immune
dysfunction and exclusion (TIDE) score and tumor mutation burden (TMB), and higher
likelihood of benefiting from immunotherapy. Furthermore, the genomic changes of six
LMRGs (CD79A, HACD1, CYP17A1, SLCO1B3, ANGPTL4, and LDHA) were responsible
for the difference in susceptibility to LUAD by greatly influencing B-cell activation.

Conclusion:Generally speaking, the LMRGmodel is a reliable independent biomarker for
predicting adverse outcomes in LUAD patients and has the potential to facilitate risk-
stratified immunotherapy.
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INTRODUCTION

Lung cancer, composed of approximately 85% non-small-cell
lung cancer (NSCLC) and 15% small cell lung cancer (SCLC), is
one of the most prevalent malignant cancers worldwide, with over
1.4 million deaths each year (Zarogoulidis et al., 2013). To date,
lung adenocarcinoma (LUAD) has exceeded lung squamous cell
carcinoma (LUSC) in the morbidity and become the most
common pathological type of lung cancer (Bray et al., 2018).
As we all know, diagnosed at an advanced stage remains a major
cause of the high mortality of LUAD. Traditional prognostic
prediction still relies on histopathologic diagnosis and tumor
stage. However, these models fail to identify high-risk population
and predict LUAD patients who are more likely to benefit from
immunotherapies. Hence, it is imperative to explore accurate and
effective prognostic biomarkers and models to assist clinical
individualized treatment.

Metabolic reprogramming, a well-established hallmark of
cancer, is critical for tumor initiation and progression
(Hanahan and Weinberg, 2011). Lipids are composed of
thousands of different molecules, including phospholipids,
fatty acids, triglycerides, and sphingolipids. Fatty acids and
cholesterol are the basic structure of cell membrane, which
play a significant role in tumor cell proliferation, invasion, and
metastasis (Orita et al., 2008). Lipids also can act as second
messengers to transmit signals in tumor cells and participate in
energy supply to tumor progression (Orita et al., 2007). In recent
years, plenty of studies have focused on revealing the molecular
mechanisms and signal pathways of LUAD caused by alteration
of lipid composition. Hall et al. confirmed that MYC expression
drives aberrant lipid metabolism in LUAD using the transgenic
mouse model (Hall et al., 2016). Masri et al. found that the
STAT3–SOCS3 pathway mediated the changes of insulin,
glucose, and lipid metabolism in lung adenocarcinoma-bearing
mice (Masri et al., 2016). These findings confirm the role of lipid
metabolism in LUAD and indicate that lipid metabolism-related
genes (LMRGs) may have a great prospect to act as prognostic
markers of LUAD.

Therefore, we integrated gene expression and survival
information of LUAD patients from TCGA and GEO
databases to construct and validate a gene signature related to
lipid metabolism to assess the risk of adverse outcomes. We then
used this gene signature to divide LUAD patients into high- and
low-risk groups and analyze the differences of signaling pathways
and tumor microenvironment. On this basis, we identified the
potential molecule affecting the response to immunotherapy in
LUAD patients. Taken together, our study aimed to construct a
robust prognosis prediction model based on LMRGs and provide
an effective tool for immunotherapy of LUAD patients.

MATERIALS AND METHODS

Patient Data Collection and Procession
The level 3 RNA sequencing profile and matching clinical data of
500 LUAD tumor tissues and 59 adjacent non-tumorous tissues in
The Cancer Genome Atlas (TCGA) were downloaded using the R

package “TCGAbiolinks,” whose expression profiles were
normalized using the R package “Deseq2.” RNA-seq expression
matrix and clinical data of GSE31210 (226 lung adenocarcinoma
samples; GPL570 platform) and GSE3141 (111 lung
adenocarcinoma samples; GPL570 platform) were obtained
from the Gene Expression Omnibus (GEO) database using the
R package “GEOquery,” whose expression profiles were
normalized using the R package “limma” and served as the
validation set. The data from TCGA and GEO are both publicly
available and were used following the TCGA and GEO data access
policies and publication guidelines. Eleven cases, with matched
non-tumor and LUAD tumor tissue samples from the Shanghai
Tongren Hospital of Shanghai Jiaotong University, were enrolled
in this study. The CD79A mRNA expression profiling of
GSE11969 (90 tumor samples and 5 non-tumor samples of lung
adenocarcinoma; GPL7015 platform), GSE30219 (85 tumor
samples and 14 non-tumor samples of lung adenocarcinoma;
GPL570 platform), GSE31210 (226 tumor samples and 20 non-
tumor samples of lung adenocarcinoma; GPL570 platform),
GSE32683 (53 lung adenocarcinomas and 53 matched adjacent
non-malignant lung samples; GPL570 platform), GSE75037 (83
lung adenocarcinomas and 83 matched adjacent non-malignant
lung samples; GPL6884 platform), and GSE81089 (108 tumor
samples and 19 non-tumor samples of lung adenocarcinoma;
GPL570 platform) was downloaded from the GEO database and
compared between tumor and non-tumor tissues of LUAD
patients with “limma” R package. A total of 500 samples from
the TCGA-LUAD cohort were divided into high- and low-risk
groups by the risk prediction model. Then, the “limma” R package
was utilized to analyze the mRNA expression profile between two
groups to screen out DEGs with a threshold of FDR < 0.05.

Identification of LMRGs for Prognostic
Prediction
Five lipid metabolism-related gene sets, including Hallmark fatty
acid metabolism, KEGG glycerophospholipid metabolism, lipid
raft, Reactome metabolism of lipids and lipoproteins, and
Reactome phospholipid metabolism, were selected and
extracted from Molecular Signatures Database v 7.2 (MSigDB)
(Subramanian et al., 2005). After removing the overlapped genes,
664 lipid metabolism-related genes were acquired.

Differentially expressed genes between tumor samples and
normal samples in TCGA-LUAD cohort were analyzed with the
R package “DESeq2” based on the mRNA expression data of raw
counts. A threshold of FDR less than 0.05 (FDR < 0.05) and the
absolute log2 fold-change greater than 1 (|log2FC| > 1) were set to
define differentially expressed genes (DEGs). Finally, 217 LMRGs
were obtained by intersecting DEGs and genes involved in five
lipid metabolism-related gene sets.

Construction and Evaluation of the
Prognostic Signature
First, univariate Cox regression analysis of overall survival (OS)
was conducted to prefilter lipid metabolism-related genes (LRGs)
with prognostic values. The least absolute shrinkage and selection
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operator (LASSO) Cox regression analysis was used to narrow the
range of variables with the R package “glmnet.”Multivariate Cox
stepwise regression analysis was applied to ultimately determine
the target variable. Then, an LRG-related prognostic gene
signature was constructed based on a linear combination of
the regression coefficient derived from the multivariate Cox
stepwise regression model coefficients (β) multiplied with its
mRNA expression level. The detailed calculation formula was
presented as follows: risk score = ∑n

i�1coefi x Genei, where
“coefi” and “Genei” denote the coefficient and mRNA
expression levels of each lipid metabolism-related gene. All
patients were stratified into high-risk and low-risk groups
based on the median value of the calculated risk score.
According to the expression profile of selected genes in the
signature, PCA and t-SNE were conducted to explore the
distribution of high- and low-groups with R packages
“ggfortify” and “Rtsne,” respectively. The Kaplan–Meier
survival curve combined with a two-tailed log-rank test was
used to compare the survival probability between the high-
and low-risk groups by R packages “survival” and
“survminer.” The time-dependent receiver-operating
characteristic (ROC) curve was applied to evaluate the
predictive power of the gene signature for OS by the R
package “survivalROC.” The prognostic model was also
validated in two independent cohorts from GSE31210 and
GSE3141.

Establishment and Evaluation of the
Nomograms for LUAD Survival Prediction
Univariate and multivariate Cox regression analyses were utilized
to identify whether the risk score and other clinicopathological
variables (including age, gender, pathological stage, tumor stage,
and risk score) could be independent of this prognostic model for
LUAD patients. Subsequently, we employed all independent
clinical prognostic factors selected from previous analysis to
construct a nomogram which can assess the OS probability of
1, 2, and 3 years in LUAD patients. The 1-year, 2-year, and 3-year
calibration curves were drawn to compare the observed
prediction probability with the actual OS probability to verify
the accuracy of the nomogram. Overlapping the reference line
showed the great accuracy of the model. Decision curve analysis
(DCA) curves were drawn to visually evaluate the net benefit for
different independent clinical prognostic factors of the model.

Function Enrichment Analysis
Risk score-related DEGs (|log2FC| ≥ 1, FDR < 0.05) were
identified between high- and low-risk groups. Then, Gene
Ontology (GO) and gene set enrichment analysis (GSEA) were
conducted to explore enriched terms predicted to have an
association with the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway in all hallmarks with R packages
“clusterProfiler” and “GSEABase,” respectively.

Immunohistochemical (IHC) Analysis
Immunohistochemically stained images were downloaded from
the Human Protein Atlas (HPA) (https://www.proteinatlas.org/)

and compared between tumor and non-tumor tissues of LUAD
patients.

Mutant Gene Analysis
TCGA-LUAD mutation data with the non-synonymous
mutations and non-sense mutations included were
downloaded with “TCGAbiolinks” package and analyzed and
visualized using “maftools” package. The corresponding TMB
value of each sample was obtained by calculating the mutations
per million bases.

Tumor Immune Dysfunction and Exclusion
(TIDE) Analysis
TIDE is an effective algorithm that integrates two mechanisms of
tumor immune escape—T-cell dysfunction and T-cell exclusion,
which could be useful to predict immune checkpoint inhibitor
(ICI) response in cancer treatment. The TIDE online web (http://
tide.dfci.harvard.edu) was used to calculate the TIDE score, MSI
score, T-cell exclusion score, and T-cell dysfunction score with
the normalized RNA-seq data.

Copy Number Variation (CNV) Analysis
After TCGA-LUAD CNV data were downloaded with
“TCGAbiolinks” package and combined with the mRNA
expression data, the local Perl script was used to calculate the
amplification and deletion frequency of each sample. The location
of 11 hub genes was identified and visualized with “RCircos” R
package.

Evaluation of Tumor-Infiltrating Immune Cells (TIICs) and
Immune Checkpoint Inhibitors (ICIs) Using ssGSEA,
CIBERSORT, and ESTIMATE Algorithms and TIMER and
TISIDB Databases

Single-sample gene set enrichment (ssGSEA) analysis was
conducted to calculated the TIIC abundance profiles in LUAD
tumor samples with “GSVA” package. The CIBERSORT
algorithm was used to quantify the abundance of 22 immune
cell type signature (LM22) subtypes, including seven T-cell types,
two NK-cell types, three macrophage cell types, two B-cell types,
two dendritic cell types, two mast cell types, plasma cells,
monocytes, eosinophils, and neutrophils, in both high- and
low-risk groups. The ESTIMATE algorithm was utilized to
estimate the ratio of the immune–stromal components in the
TME for each sample calculated with the immune score, stromal
score, and ESTIMATE score with “estimate” R package. The
“Gene” module of TIMER (https://cistrome.shinyapps.io/timer/)
and TISIDB (http://cis.hku.hk/TISIDB/index.php) was used to
explore the association of abundance of tumor-infiltrating
lymphocytes (TILs) with gene expression. In addition, the
mRNA level of 25 critical immune checkpoints obtained from
the literature between high- and low-risk groups was compared in
TCGA-LUAD cohort.

Statistical Analysis
All data were presented as mean ± SD and analyzed with R
studio software (Version 1.2.5001). An unpaired two-tailed
Student’s t-test between two groups was performed. The
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Kaplan–Meier plot and log-rank test were applied to show the
survival difference between high- and low-risk groups with R
package “Survival.” Harrell’s concordance index (C-index)
was computed for the predictive accuracy of the prognostic
model. A p value <0.05 was considered statistically
significant.

RESULTS

Identification of Prognostic LMRGs in the
TCGA-LUAD Cohort
The entire work of this study was conducted as described in the
flow chart (Figure 1). A total of 217 (32.7%) LMRGs (Figure 2A)
were differentially expressed between tumor tissues (n = 500) and
adjacent tissues (n = 59), 61 of which were remarkably associated
with overall survival (OS) with the univariate Cox regression
analysis (Figure 2B).

LASSO Cox regression analysis was employed to narrow the
genes to 20 from 61 genes mentioned above (Figure 2C). Finally,
an 11-LRG-based signature including ANGPTL4, CD79A,
CIDEC, CYP17A1, ELOVL2, HACD1, LDHA, MTMR10,
NPAS2, PLEKHA6, and SLCO1B3 was identified with
multivariate stepwise regression analysis and subsequently
used to construct a clinical prognostic model. The risk score
of each LUAD patient was calculated with the coefficients
(Figure 2D) achieved from the multivariate stepwise
regression analysis. The detailed calculation formula was
presented as follows: 0.086 × expression level of ANGPTL4 +
(−0.128) × expression level of CD79A + 0.247 × expression level
of CIDEC + (−0.584) × expression level of CYP17A1 + 0.398 ×
expression level of ELOVL2 + 0.132 × expression level of HACD1
+ 0.221 × expression level of LDHA + (−0.412) × expression level
of MTMR10 + 0.165 × expression level of NPAS2 + 0.112 ×
expression level of PLEKHA6 + 0.111 × expression level of
SLCO1B3. Compared with normal tissues, three genes

FIGURE 1 | Flow chart of this study.
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(CYP17A1, HACD1, and MTMR10) were down-regulated in
tumor tissues, while the others were up-regulated (Figure 2E).
Then, all TCGA-LUAD patients were stratified into a high-risk
group (n = 250) and a low-risk group (n = 250) according to the
median cut-off value (Figure 3A). Patients in the high-risk group
had a higher probability of premature death compared with those

in the low-risk group. t-SNE and PCA showed that the 11-gene
signature expression of patients in the high- and low-risk groups
was clearly divided into two clusters (Figure 3B). Consistently,
dramatically worse OS was observed in the high-risk group than
the low-risk group through the Kaplan–Meier plot (p < 0.0001)
(Figure 3C). After that, the time-dependent ROC curve was

FIGURE 2 | Selection of LMRGs associated with the survival of lung adenocarcinoma. (A) Venn diagram shows the intersection of DEGs and LRGs. (B) Forest plot
of LMRGs associated with TCGA-LUAD survival. (C) Selection of the optimal parameter (lambda) in the LASSO Cox model for TCGA-LUAD. (D) LASSO coefficients of
the 11 hub genes in TCGA-LUAD. (E) Heatmap of top 11 hub genes in TCGA-LUAD. “Group” means the tumor or adjacent tissues of TCGA-LUAD samples, while
“Change” represents the expression trend of 11 lipid metabolism-related genes in tumor tissues when compared with adjacent tissues. DEG, differentially
expressed gene; LMRG, lipid metabolism-related gene. Construction of the 11-LRG-based prognostic model in the TCGA-LUAD cohort.
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utilized to evaluate the prediction performance of the risk score. It
was found the predicted area under the curve (AUC) of this
model for 1-year, 3-year, 5-year, and 10-year overall survival rates
reached 0.749, 0.739, 0.76, and 0.744, respectively (Figure 3D).
The C-index for this clinical prognostic model reached 0.735.

The GSE31210 and GSE3141 external validation cohort was
utilized to verify the robustness of the 11-LRG-based risk model.
We calculated the risk score of two validation datasets with the
above formula, based on the median using which patients were
divided into high-risk and low-risk groups, respectively. The
results showed patients with high risk score had worse OS in
both GSE31210 and GSE3141, which was in line with that of
TCGA-LUAD cohort (Figures 4A,D). In addition, t-SNE
dimensionality reduction analysis found the mRNA profiles of
11 genes of the high- and low-risk groups were distinctly divided
into two clusters in both GSE31210 and GSE3141 (Figures 4B,E).

Furthermore, KM curves demonstrated patients in the low-risk
group had higher survival probability than those in the high-risk
group in both GSE31210 (p = 0.019) and GSE3141 (p = 0.039)
(Figures 4C,F).

Differences in tumor immune microenvironment were
explored to distinguish high- and low-risk LUAD patients.
The ssGSEA results showed that the infiltrating levels of
neutrophils, aDCs, iDCs, pDCs, macrophages, γδT, Tfh, Th1
cells, Tregs, NK cells, and B cells were notably elevated with the
increased risk score (Figure 5A), indicating the activation of the
body’s immune response. In order to further clarify the immune
cell infiltration status between the high- and low-risk groups, the
infiltration of 22 kinds of tumor-infiltrating immune cells (TIICs)
was analyzed with the CIBERSORT algorithm. Compared with
TIICs of LUAD patients in the low-risk group, B-cell memory
(p = 0.0018), T-cell CD8 (p = 0.0072), T-cell CD4 memory

FIGURE 3 | Characteristics of the LRG-related prognostic gene signature. (A) Heatmap of the 11-LRG-related gene expression profiles and the distribution of risk
score and survival time/status for TCGA-LUAD. (B) t-SNE and PCA plot of 11-LRG-related gene expression profiles. (C) The Kaplan–Meier curve was plotted to estimate
the overall survival probabilities of the low- and high-risk groups. (D) The ROC curve was plotted to predict the 1-, 3-, 5-, and 10-year prognosis.
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resting (p < 0.0001), monocytes (p = 0.0015), and mast cell resting
(p = 0.020) remarkably decreased, while T-cell CD4 naïve (p =
0.046), NK cell activated (p = 0.019), macrophage M0 (p <
0.0001), and eosinophils (p = 0.0093) significantly increased in
the high-risk group (Figure 5B). The stacked bar chart of the
proportions of 22 TIICs in the patients from both groups is
exhibited in Supplementary Figure S1B. Among all TIICs with
significant differences in abundance, T-cell CD4 memory resting,
macrophage M0, and T-cell CD8 accounted for the highest
proportions, demonstrating a key immunological function of
them in the development and progression of LUAD. In
addition, the ESTIMATE results revealed that LUAD patients
with low risk had a higher stromal score, immune score, and
ESTIMATE score but lower tumor purity than those in the high-
risk group (Figures 5C–F).

Antigens produced by tumor mutations were closely related to
immunotherapy. We found that the tumor mutation burden
(TMB) of LUAD patients in the high-risk group was

significantly higher than that in the low-risk group
(Figure 6A). In detail, the mutation frequency of the top 20
genes in the high-risk group was higher than that in the low-risk
group (Figure 6B). Moreover, TP53, TTN, MUC16, CSMD3, and
RYR2 ranked as the top five genes with the highest mutation
frequency in both groups. Among them, P53 mutations are
mainly missense mutation and non-sense mutation, while
TTN, MUC16, CSMD3, and RYR2 mutations are mainly
missense mutation and multi-hit.

The up-regulated genes were mainly enriched in the
biological processes such as the ncRNA metabolic process,
post-translational protein modification, and the ATP
metabolic process (Supplementary Figure S1A), while the
down-regulated genes were involved in the process of T-cell
activation, regulation of T-cell activation, leukocyte
proliferation, and regulation of lymphocyte-mediated
immunity (Supplementary Figure S1B). Overall, all DEGs
were related to several biological processes including the

FIGURE 4 | Validation of the LRG-related prognostic model. (A,D) Heatmap of the 11-LRG-related gene expression profiles and the distribution of risk score and
survival time/status for GSE31210 and GSE3141. (B,E) t-SNE and PCA plot of 11-LRG-related gene expression profiles for GSE31210 and GSE3141. (C,F) The
Kaplan–Meier curve was plotted to estimate the overall survival probabilities of the low- and high-risk groups for GSE31210 and GSE3141. Diverse tumor immune
microenvironment between high- and low-risk LUAD patients.
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T-cell receptor signaling pathway, antigen processing and
presentation of exogenous antigen, leukocyte proliferation,
and response to hypoxia (Figure 7A). Based on these DEGs,

GSEA and several dominantly enriched pathways, including
immune-related pathways such as TNFα signaling via NF-κB,
and other pathways including angiogenesis,

FIGURE 5 | Differences in tumor immune microenvironment (TME) between high- and low-risk LUAD patients. (A) Heatmap of 28 infiltrating immune cell levels
between high and low risks with ssGSEA. (B) Comparisons of 22 important immune fractions between high and low risks with CIBERSORT. (C–F) Comparison of the
ESTIMATE score, stromal score, immune score, and tumor purity between high and low risks with ESTIMATE.
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epithelial–mesenchymal transition, estrogen response early,
estrogen response late, glycolysis, and hypoxia were also
performed (Supplementary Figure S1C).

As we all know, an immune checkpoint inhibitor is a
promising lung cancer treatment strategy that has emerged
in recent years. Compared with the high-risk group, 25
emerging immune checkpoints including PD1, CTLA4, and
LAG3 were highly expressed, while CD276 and TNFRSF14
showed low expression level in the low-risk group (p < 0.05)
(Figure 7B). Then, we utilized the tumor immune
dysfunction and exclusion (TIDE) algorithm to predict the
efficacy of response to immunotherapy. Interestingly, we
found that the TIDE score of the low-risk group was
significantly lower than that of the high-risk group,
indicating more likely effectiveness for immunotherapy in
the low-risk group (Figure 7C). In addition, the remarkably
higher MSI score and T cell exclusion score and lower T cell
dysfunction score were observed in the high-risk group
(Figures 7D–F). These data further suggest that patients in
the low-risk subtype may be more likely to benefit from
immunotherapy.

Nomogram Construction and Model
Evaluation
The 11-LRG-based signature and main clinical factors were
incorporated into univariate and multivariate Cox regression
analyses to determine whether the signature could
independently predict the survival of LUAD patients. First,
univariate Cox analysis confirmed the T stage, tumor stage,
and risk score of signature were associated with poor
prognosis in patients with LUAD (Figure 8A). Then,
multivariate Cox regression analysis further indicated that
both the risk score of signature and tumor stage were
significantly correlated with the OS of LUAD patients, which
proved that the 11-LRG-based signature could independently
predict the OS for the TCGA-LUAD patients (Figure 8B).
Subsequently, a nomogram integrating the signature and
tumor stage was constructed (Figure 8C). To evaluate the
predictive performance of the nomogram, calibration curves
and decision curve analysis (DCA) were conducted, which
showed good performance in predicting the survival
probability of LUAD patients. The results confirmed that
calibration curves of 1-, 2-, 3-, and 5-year OS showed superior

FIGURE 6 | Tumor mutation landscape between high- and low-risk LUAD patients. (A) Tumor mutation burden between high- and low-risk groups. (B) Tumor
mutation landscape of high- and low-risk groups.
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agreement between the predicted and actual survival LUAD
cohorts (Figure 8D). Furthermore, DCA of the risk model
showed the best net benefit for predicting 1-, 2-, 3-, 5-, and
10-year overall survival, especially for 5-year survival (Figure 8E).
Thus, these results indicated that the nomogram was an optimal
model in predicting the survival probability of LUAD patients.

We first summarized the transcriptional regulation, frequency
of copy number variations (CNVs), and somatic mutations of 11
hub lipid metabolism-related genes in LUAD. The comprehensive
landscape of 11 hub gene interactions, prognostic significance, and
association with immune cells for LUAD patients was exhibited
with the regulatory network (Figure 9A). We found that the six
hubs including ANGPTL4, LDHA, CYP17A1, HACD1, SLCO1B3,
and CD79A not only presented an extensive correlation in
expression but also markedly correlated with B cells. RNA-seq
data from 12 paired normal tissues and LUAD tissues collected
from Tongren Hospital showed that SLCO1B3 (logFC = 4.23, p =
0.01), CD79A (logFC = 2.80, p = 0.00), LDHA (logFC = 1.41, p =
0.00), NPAS2 (logFC = 1.39, p = 0.01), PLEKHA6 (logFC = 1.23,
p = 0.00), ANGPTL4 (logFC = 0.85, p = 0.04), and CIDEC (logFC =
1.82, p = 0.00) increased, while HACD1 (logFC = −1.67, p = 0.00),
CYP17A1 (logFC = −1.91, p = 1.00), MTMR10 (logFC = −1.03, p =
0.08), and ELOVL2 (logFC = −0.16, p = 0.89) decreased in tumor
(Figure 9C). Among 567 samples, 55 experienced mutations of 11
hub regulators, with frequency 9.7%. It was found that SLCO1B3

showed the highest mutation frequency followed by PLEKHA6
and CYP17A1, while ANGPTL4, CD79A, HACD1, and CIDEC
did not show any mutations in LUAD samples (Figure 9B). The
investigation of CNV alteration frequency showed several CNV
alteration in 11 hub regulators, 5 of which including PLEKHA6,
ELOVL2, NPAS2, SLCO1B3, and HACD1 focused on the
amplification in copy number, while the rest including
ANGPTL4, MTMR10, CIDEC, CYP17A1, LDHA, and CD79A
had more popular frequency of CNV deletion (Figure 9D). In
addition, the location of CNV alteration of 11 hub regulators on
chromosomes was exhibited (Figure 9E).

In order to investigate the molecule most relevant to the
immune microenvironment, we conducted the correlation
analysis between 11 lipid metabolism-related genes and six
kinds of immune cells using the TIMER database (Figure 10,
Supplementary Figure S4). Among the 11 genes, we found that
eight genes were closely related to the activation of B cells, four
genes were related to the activation of CD8+ T cells, seven genes
were related to the activation of CD4+ T cells, four genes were
related to the activation of macrophages, seven genes were related
to the activation of neutrophils, and four genes were related to the
activation of dendritic cells (p < 0.05). Interestingly, CD79A
showed a close relationship with B cells (r = 0.616, p = 5.73e-
52), CD4+ T cells (r = 0.4, p = 4.84e-20), CD8+ T cells (r = 0.199,
p = 9.43e-06), dendritic cells (r = 0.225, p = 5.41e-07), and

FIGURE 7 | Immune checkpoint inhibitors and immunotherapy between high- and low-risk LUAD patients. (A) Tumor mutation burden between high- and low-risk
groups. (B) Tumor mutation landscape of high- and low-risk groups. (C–F) TIDE score, MSI score, dysfunction score, and exclusion score between high- and low-risk
groups.
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FIGURE 8 | Construction and evaluation of the nomogram predicting the OS for TCGA-LUAD patients. (A,B) Univariate and multivariate regression analyses of
clinical parameters. (C) Nomogram for predicting 1-, 3-, and 5-year OS of LUAD patients based on four independent prognostic factors. (D) One-, 2-, 3-, and 5-year
calibration curves of TCGA-LUAD. (E)One-, 2-, 3-, 5-, and 10-year decision curve analysis of TCGA-LUAD. Comprehensive analysis of transcription, mutation, and copy
number variation among 11 lipid metabolism-related genes.
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neutrophils (r = 0.237, p = 1.36e-07), which may mediate the
linkage between lipid metabolism and immunotherapy.
Therefore, we further analyzed the expression, prognosis, and
relationship with the risk score and immune microenvironment
of CD79A in TCGA and TISIDB databases.

In the TCGA-LUADcohort, themRNA level of CD79A showed a
negative correlation with risk score based on the 11-LMRG signature
(r = −0.28, p = 3.8e-10), macrophage M0 (r = −0.21, p = 3.52e–06),
and mast cell resting (r = -0.21, p = 2.32e–06), but a positive
correlation with B-cell memory (r = 0.32, p = 5.34e–13), T-cell
CD8 (r = 0.21, p= 1.44e–06), and plasma cells (r = 0.45, p= 2.52e–25)
(Supplementary Figure S2A). Moreover, CD79A exhibited a strong
correlation with several immune cells, immunoinhibitors, and
immunostimulators (Supplementary Figure S2B), such as tumor-
infiltrating lymphocytes including immature B cells (r = 0.697, p =
2.2–16) and activated B cells (r = 0.848, p = 2.2e–16),
immunoinhibitors including BTLA (r = 0.659, p = 2.2–16) and
TIGIT (r = 0.614, p = 2.2e–16), and immunostimulators including
CD27 (r = 0.907, p = 2.2–16) and TNFRSF17 (r = 0.883, p = 2.2e–16)
in the TISIDB database (Supplementary Figure S2C).

The mRNA expression level of CD79A was higher in LUAD
tissues than in the non-tumor tissues in six datasets including

GSE31210 (p = 3.4e-07), GSE75037 (p = 1e-05), GSE32683 (p =
0.00043), GSE11969 (p = 0.02), GSE30219 (p = 9.9e-06), and
GSE81089 (p = 0.0093) (Supplementary Figure S3A), and it was
negatively correlated with tumor stages (rho = −0.207, p = 2.59e-
06) (Supplementary Figure S3C). In addition, the CD79A
protein expression level increased in LUAD tissues than in the
normal lung tissues in the HPA database (Supplementary Figure
S3B). Survival analysis showed that the OS of the CD79A high
expression group was significantly higher than that of the low
expression group (p < 0.01) in the TISIDB database
(Supplementary Figure S3D).

DISCUSSION

Lipid metabolism disorder is a hallmark of malignant tumor.
Convincing evidence has suggested that abnormal metabolic
activities could promote cancer development, due to its crucial
role in angiogenesis, energy regulation, and cell proliferation (Liu
et al., 2020a; Valença and Ferreira, 2020; Vazquez et al., 2020).
Several lipid metabolism-based clinical prognostic models have
been constructed for colorectal cancer, glioblastoma, and oral

FIGURE 9 | Landscape of the transcriptional regulation, incidence of copy number variations (CNVs), and somatic mutations of 11 hub lipid metabolism-related
genes in LUAD. (A) Interaction between 11 hub genes in LUAD. The circle size represents the p value of each gene on the prognosis, and the range of values calculated
by the log-rank test was p < 0.001, p < 0.01, and p < 0.05, respectively. Green dots in the circle mean risk factors of prognosis; black dots in the circle mean protective
factors of prognosis. The lines linking genes show their interactions, and thickness shows the correlation strength calculated by the correlation coefficient was r <
0.15, 0.15 ≤ r < 0.3, and r > 0.3. Significant negative correlation is marked in blue, while significant positive correlation is marked in red. The gene associated with mostly
related immune cells, such as dendritic cells, B cells, T cells, and neutrophils, based on TIMER is marked in red, yellow, blue, and brown, respectively. (B)Waterfall plot of
tumor somatic mutation for 11 hub lipid metabolism-related genes. (C) Log (fold-change) of 11 hub lipid metabolism-related genes between 12 paired normal and LUAD
tissues collected from Shanghai Tongren Hospital. (D,E) CNV alteration frequency and chromosome location of 11 hub lipid metabolism-related genes. CD79A with
good prognosis was the molecule most relevant to the immune microenvironment.
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FIGURE 10 | Relationship between 11 lipid metabolism-related genes and 6 kinds of immune cells using the TIMER database. The correlation scatter plot showed
the relationship between 11 genes and infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in LUAD.
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squamous cell carcinoma (Hu et al., 2019; Wu et al., 2019; Gharib
et al., 2020). However, to our knowledge, the prognostic model of
LMRG signature for LUAD patients has not been reported. In this
case, our research focused on five lipid metabolism pathways
strongly related to cancers, including fatty acid metabolism,
glycerophospholipid metabolism, lipid raft, metabolism of
lipids and lipoproteins, and phospholipid metabolism.

In this research, we attempted to construct an efficient
prognostic model for LUAD patients based on 11 LMRGs
screened by univariate Cox regression analysis, LASSO Cox
regression analysis, and multivariate Cox stepwise regression
analysis and calculated the risk score. Then, a nomogram was
constructed to better predict accurate clinical outcomes. The
nomogram integrated multiple prediction indicators based on
multivariate regression analysis and then used line segments with
scale to show the relationship between variables in the prediction
model. A nomogram based on the autophagy gene signature had
a concordance index of 0.71 to predict the survival possibility of
NSCLC patients (Liu et al., 2019). Our nomogram generated a
graphical statistical prediction model that assigns scores to each
level of all independent factors, including age, T stage, and clinical
stage and risk score. Calibration curves exhibited that the
nomogram could accurately predict 1-, 2-, 3-, and 5-year
survival probabilities. DCA curves showed that the nomogram
had good benefit in predicting 1-year, 2-year, 3-year, 5-year, and
10-year survival, especially 5-year survival, meaning a potential
translational value of the nomogram in LUAD patients.

Next, we conducted the lipid metabolism phenotype and
differentially expressed gene analysis between high-risk and
low-risk groups. Our results found up-regulated genes
exhibited enrichment of post-translational protein
modification, ATP metabolic progress, and ncRNA metabolic
progress, whereas down-regulated genes mainly displayed
enrichment of some immune progress, including regulation of
T-cell activation, T-cell activation, and regulation of lymphocyte-
mediated immunity, which hinted that different lipid metabolism
status might be associated with immune microenvironment. A
study found that cholesterol in the tumor environment can
increase the CD36 expression of CD8+ T cells and then ingest
too many fatty acids, leading to lipid oxidative damage and iron
death, further resulting in the loss of its lethal function and
promoting the growth of tumors (Bray et al., 2018). At present, it
is believed that the relationship between lipids and immunity is
that cancer cells use lipids to support their aggressive behavior
and allow immune escape, while metabolic reprogramming of
cancer cells destroys the balance between lipid synthesis and
catabolism, resulting in lipid accumulation in the tumor
microenvironment (Hanahan and Weinberg, 2011). Therefore,
lipid metabolism and immunity are closely related in cancer,
which is worthy of in-depth exploration.

Immune checkpoints have become a promising strategy for
the treatment of many cancers. Whether the immune
microenvironment and response to immunotherapy between
high- and low-risk groups differed was further explored.
CIBERSORT is a powerful tool to deconvolute the expression
matrix of 22 human immune cell subtypes based on the principle
of linear support vector regression, which has been widely used in

plenty of oncology research studies (Huang et al., 2019; Liu et al.,
2020b; Deng et al., 2020). Immune cell infiltration analysis found
a distinctly different immune microenvironment especially the
abundance of T cells and B cells between high- and low-risk
groups. Interestingly, a large number of clinical cohort studies
also showed that there was a positive correlation between B-cell
infiltration and response to immunotherapy in a variety of
different tumor types, emphasizing the important role of
B cells in anti-tumor immunity (Helmink et al., 2020;
Petitprez et al., 2020). T-cell failure has been identified as an
important mechanism for cancer cells to escape host immunity
(Marijt et al., 2019). Our results showed that, of all tumor-
infiltrating immune cells (TIICs), the abundance of B-cell
memory, T-cell CD8 memory, and T-cell CD4 memory resting
significantly decreased in the high-risk group, which was
consistent with the GO enrichment result that the immune
process was inhibited, indicating there existed immune escape
caused by T-cell depletion in the high-risk group. Higher tumor
TIDE prediction scores were associated not only with poor
efficacy of immune checkpoint inhibition therapy but also
with poor survival of patients treated with anti-PD1 and anti-
CTLA4 (Zarogoulidis et al., 2013). We then analyzed the
expression of 25 common immune checkpoint molecules
(including CTLA4, PD1, PD-L1, TIGIT, and LAG3). The
results showed that 23 of 25 immune checkpoint molecules
were lowly expressed in the high-risk group, suggesting the
low-risk patients may be more likely to benefit from the
updated immunotherapy. However, the lower TIDE score in
the low-risk group suggested that the immune checkpoint
blocking (ICB) therapy effect may be worse in the high-risk
group, whose overall survival time may be shortened. In general,
these data further support that the prognosis of low-risk subtypes
is better, which may have a better prospect for immunotherapy.

Subsequently, we tried to explore the relationship between the
genomic changes of 11 LMRGs and the susceptibility of LUAD.
Further analysis confirmed that six genes (ANGPTL4, LDHA,
CYP17A1, HACD1, SLCO1B3, and CD79A) related to B-cell
activation were highly co-expressed, three of which (SLCO1B3,
CYP17A1, and LDHA) had higher mutation frequency and
higher levels of copy number variation, as well as relating to
the pathogenesis of LUAD. Therefore, we concluded gene
mutation and copy number variation may affect the
susceptibility of LUAD patients genotyped by the risk score
through influencing B-cell function.

To find the correlation between lipid metabolism and TME,
we next conducted further analysis with TIMER and TISIDB
databases. TISIDB is a kind of tumor immune-related repository,
including 4,176 records from 2,530 publications and 988 genes
related to anti-tumor immunity (Ru et al., 2019). CD79A (IgA), a
part of BCR complex, was one of the specific antibodies on the
surface of B cells (Müller-Winkler et al., 2021). However, when
the antigen binds to the BCR complex receptor, CD79A is
phosphorylated and internalized to activate B cells into plasma
cells or memory B cells. At the same time, the number of lipid
raft-related receptors increased, which participated in the
regulation of lipid metabolism (Eleftheriadis et al., 2020). A
study also confirmed that the increased expression of CD79A
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protein was associated with good prognosis of LUAD patients
(Enfield et al., 2019). Moreover, the strong correlation between
CD79A and risk score, B cells, T cells, TIGIT, BTLA, CD27, and
TNFRSF17 revealed the crucial role of CD79A in regulating the
tumor microenvironment (TME) in LUAD patients. High-risk
genes in the model, including ANGPTL4, LDHA, and NPAS2,
have been reported to promote angiogenesis, glycolysis, drug
tolerance, the invasive and migratory potential, and cell cycle and
apoptosis in lung cancer patients or cell lines (Galaup et al., 2006;
Park et al., 2016; Gu et al., 2017; Li et al., 2018). CIDEC,
CYP17A1, ELOVL2, and HACD1 were also associated with a
variety of cancers including clear cell renal cell carcinoma,
prostate cancer, neuroblastoma, and uveal melanoma and
mainly participated in the metabolism of lipid storage
droplets, promotion of de novo androgen biosynthesis, and
regulation of fatty acid and inflammatory response (Yu et al.,
2013; Xiao et al., 2018; Ding et al., 2019; Xu et al., 2019). The
molecular function of PLEKHA6 was related to the hormonal
receptor, thus leading to the poor prognosis of breast cancer
(Aushev et al., 2019). Overall, we believed that CD79Amay be the
crucial molecule connecting the two mechanisms due to its dual
role in regulation of lipid metabolism via participating in B-cell
activation and have the potential to influence the response to
immunotherapy in LUAD patients. Specifically, when B cells are
stimulated by antigens to differentiate into plasma cells and
memory B cells, frequent BCR signal transmission leads to the
increase of lipid raft quantity and energy demand. At this time,
lipid droplets act as regulators to maintain energy metabolism
and provide material preparation (such as cholesterol and
phospholipids) and energy for lipid rafts and their biological
processes. However, once the lipid decomposition process is
abnormal, lipid droplets would accumulate in the cells and
further lead to lipid metabolism disorder and inflammation.
Interestingly, CD79A may also play a role in enhancing the
body’s immune capacity to repair lipid abnormalities and anti-
inflammatory effect in this circumstance.

CONCLUSION

In summary, our study constructed a high efficiency LMRG
prognosis predictive model to separate LUAD patients into

high- and low-risk groups, which may be helpful to promote
the individualized immunotherapy for LUAD patients.
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