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Abstract: Estimation accuracy is the core performance index of sensor networks. In this study,
a kind of distributed Kalman filter based on the non-repeated diffusion strategy is proposed
in order to improve the estimation accuracy of sensor networks. The algorithm is applied to
the state estimation of distributed sensor networks. In this sensor network, each node only
exchanges information with adjacent nodes. Compared with existing diffusion-based distributed
Kalman filters, the algorithm in this study improves the estimation accuracy of the networks.
Meanwhile, a single-target tracking simulation is performed to analyze and verify the performance
of the algorithm. Finally, by discussion, it is proved that the algorithm exhibits good all-round
performance, not only regarding estimation accuracy.
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1. Introduction

Sensor detection is undergoing a transition from an independent style to a cooperative style,
and sensor networks have found increasing numbers of applications in areas such as in the Internet
of Things [1], environmental monitoring [2], cooperative radar detection [3] and autonomous
driving [4]. According to the types of communication topologies, sensor networks are classified
into centralized networks and distributed networks [5]. A centralized network needs a stable central
node with excellent communication performance, which is not yet realistic in large-scale networks.
Therefore, a large number of researchers are focusing on distributed sensor networks [6,7].

Multiple nodes in a distributed sensor network can simultaneously detect and obtain target state
information with noise. Each node communicates with its adjacent nodes. By using the distributed
estimation algorithm, each node obtains a global and more accurate estimation than a single sensor.
The distributed sensor network does not need to use a high-performance central node and is much
more easily extended to a large-scale network. In short, this kind of sensor network has high stability
and robustness and a low sensor cost [8]. Therefore, it is necessary to study distributed sensor networks.
There are two main existing distributed Kalman filters, namely the consensus-based algorithm and
diffusion-based algorithm.

The idea of consensus-based algorithms is to obtain the global average measure or the
global average information vector and information matrix by performing the average consensus
algorithm [9,10]. Olfatih–Saber first proposed a consensus-based distributed algorithm, called the
Kalman consensus filter [11], which can obtain the mean value of global information vectors and
the information matrix after infinite iterations and obtain the same global optimality estimations
as centralized filters. In [12], the authors address the problem of the consensus of the information
vector and information matrix, which requires infinite iterations to achieve the optimal estimation.
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To handle the correlation problem of estimations, in [13], the authors propose the information consensus
filter (ICF), which fuses the prior information with low weights and the measured information of
adjacent nodes. To handle local unobservability, a finite-time consensus-based distributed estimator
is proposed in [14], which is based on the max-consensus technique. In [15,16], the authors propose
a gossip-based algorithm that adopts a random communication strategy to achieve consensus.
In contrast to consensus-based algorithms, a lower bandwidth can also guarantee the consensus
of gossip-based algorithms with the cost of a slow convergence speed. Consensus-based algorithms
have the same estimation accuracy as the centralized filter, whereas the global consensus is only
achieved asymptotically.

Diffusion-based algorithms exchange intermediate estimations between the neighborhoods
of each node and calculate the final estimation by a convex combination of information from
neighbors. In [17,18], the authors obtain the sum of global measurement information in finite
communication cycles through the diffusion of measurement information and propose a finite-time
distributed Kalman filter (FT-DKF). In [19], the authors extend the algorithm proposed in [17]
to cyclic graphs. The work presented in [20] was the first to propose a distributed estimation
fusion filter based on diffusion. The accuracy of diffusion-based algorithms depends on the
selection of convex combination coefficients. For this reason, in [21], the authors discuss the
optimal selection of convex combination coefficients and formulate a constrained optimization
problem. In [22], the authors propose the cost-effective diffusion Kalman filter (CE-DKF),
which diffuses the information of state estimations and estimation covariances and improves the
performance. The work presented in [23] was the first to apply the covariance intersection (CI) method
to deal with the diffusion-based distributed Kalman filtering problem and address the problem of
the system noise correlation between sensors. In [24], the authors use the local CI to improve local
estimation performance. In [25], the authors proposed a new distributed Kalman filter that avoids the
diffusion of raw data and maintains estimation accuracy by resorting to maximum posterior probability
state estimation. In [26], the results of [25] are improved upon and the distributed hybrid information
fusion (DHIF) algorithm is proposed. The partial diffusion Kalman filter (PDKF) is proposed for the
state estimation of linear dynamic systems in [27]. By only sending partial estimation vectors at each
iteration, the PDKF algorithm reduces the number of internode communication. In [28], the authors
study the performance of PDKF for networks with noises. In summary, diffusion-based algorithms
improve the consensus convergence speed, but the estimation accuracy is reduced at the same time.

From the above review, we can see that the diffusion-based algorithms have some advantages and
some defects. Therefore, in this paper, we aim to design a kind of diffusion distributed Kalman filter
for application to a sensor network. This sensor network is time-invariant and strongly connected.
Each sensor node has its own information and the information from adjacent sensors. By using the
distributed Kalman filter, the estimations of all nodes contain the global information and reflect the
real state of the target after finite communication iterations.

First, a non-repeated diffusion strategy is introduced. The usual diffusion strategy is bi-directional;
this means that the information diffuses back in some way. The non-repeated diffusion strategy
involves removing the information that is received from a node before sending all messages to this
node so that the information is not diffused back. This strategy makes information diffuse only in
one direction, even in an undirected graph. Second, we apply the non-repeated diffusion strategy to
the diffusion-based distributed Kalman filter and propose a new distributed Kalman filter in which
the coefficients of convex combinations are obtained by CI. The introduction of the non-repeated
diffusion strategy prevents sensors from fusing the same estimation repeatedly, which may lead to
some estimations being too highly weighted and the final estimation results to be biased toward these
estimations. Compared with existing distributed Kalman filters, the algorithm in this study has a
lower error of estimations. Besides, we show that the algorithm also has good performance in other
aspects, including communication bandwidth requirements, communication frequency requirements,
applicability to different topologies and robustness to local unobservability. A trace simulation example
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is provided to verify the performance of the distributed Kalman filter based on the non-repeated
diffusion strategy.

The rest of the paper is organized as follows. In Section 2, the system model and a diffusion
distributed Kalman filter based on the non-repeated diffusion strategy are introduced. The result of the
algorithm is shown in Section 3, which verifies the effectiveness of the algorithm. Section 4 discusses
this result and describes the application scenarios of this algorithm. The conclusion of this paper is
summarized in Section 5.

2. Diffusion Distributed Kalman Filtering Algorithms

2.1. System Model

In this study, the sensor network is represented by a graph G = (V, E), where V = {1, 2, 3, . . . , N}
is the set of sensor nodes (where N is the number of nodes in the sensor network and E is the set of
communication channels (edges) between sensors). A graph is called an undirected graph if it consists
of undirected edges. If an undirected edge (i, j) ∈ E exists, node i and node j are neighbors and can
communicate with each other. We use Ni to represent the set of adjacent nodes connected to the node
i. When there is a path between each pair of different nodes i and j, the graph is called a connected
graph. A path is called a cyclic path if this path starts from node A to node B and returns to node A
through node C. If a graph is connected and has no cyclic path, it is called an acyclic graph (tree graph).
We use d to represent the diameter of the graph G, which is the length of the longest path. dij denotes
the length of the shortest path between nodes i and j.

For the distributed estimation problem under this sensor network, we consider the following
target state model

x(t + 1) = Ax(t) + Γω(t), (1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is the state transition matrix, and Γ ∈ Rn×h is a noise
coefficient matrix. ω(t) ∈ Rh is a system noise vector which is a zero-mean Gaussian white noise.
The covariance matrix of ω(t) is Q > 0. Each node of the sensor network can observe the target,
and the measurement equation of each node is

yi(t) = Hix(t) + vi(t), (2)

where yi(t) ∈ Rm is the measurement vector of sensor i, and H ∈ Rm×n is the observation matrix.
vi(t) ∈ Rm is a measurement noise vector, which is a zero-mean Gaussian white noise. The covariance
matrix of vi(t) is Ri > 0. The covariance matrix of system noise ω(t) and measurement noise
vi(t), ∀i ∈ V is

E[ω(t)vi(t)] = Oh×m. (3)

The covariance matrix of measurement noise vi(t), ∀i ∈ V and measurement noise vj(t), ∀j ∈ V is

E[vi(t)vj(t)] = Om×m. (4)

To facilitate the expression, we introduce the following notations: yi,t is the measurement of target
from the node i at time t, x̂i,t|t−1 is the state prediction at time t based on measurements by the sensor i
up to time t− 1, Pi,t|t−1 is an estimation error covariance matrix of x̂i,t|t−1. x̂i,t|t and Pi,t|t are the same
as x̂i,t|t−1 and Pi,t|t−1.

2.2. A New Diffusion Distributed Kalman Filter

In this subsection, we propose a new diffusion distributed Kalman filter. First, we introduce
the seminal diffusion distributed Kalman filter [20], which is summarized in Algorithm 1. x̂loc

i,t|t is the
estimation with local information. Ni + i is a set composed of set Ni and node i, which contains node i
and all adjacent nodes of node i.
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Algorithm 1: The seminal diffusion distributed Kalman filter.
For the node i ∈ V and node j ∈ Ni,
Initialize with:

x̂i,0|0 = Ex0,
Pi,0|0 = E[(x0 −Ex0)(x0 −Ex0)

T];
Local update:

x̂i,t|t−1 = Ax̂i,t−1|t−1,
Pi,t|t−1 = APi,t−1|t−1 AT + ΓQΓT,
(Pi,t|t)

−1 = (Pi,t|t−1)
−1 + HT

i R−1
i Hi,

x̂loc
i,t|t = x̂i,t|t−1 + Pi,t|tHT

i R−1
i (yi,t − Hi x̂i,t|t−1);

Communication and fusion update:
Send x̂loc

j,t|t to adjacent node i,

x̂i,t|t = ∑k∈Ni+i wk x̂loc
k,t|t,

where
∑k∈Ni+i wk = 1, 0 ≤ wk ≤ 1.

The algorithm fuses the estimation of adjacent nodes, increases the information exchange
and improves the estimation accuracy compared with the Kalman filter of a single sensor.
The shortcoming of this algorithm is that it does not deal with the estimation error covariance.
Therefore, Pi,t−1|t−1 in Algorithm 1 is not the accurate estimation error covariance of x̂i,t−1|t−1 in
Algorithm 1, and the estimation accuracy of Algorithm 1 is reduced. In this work, we diffuse and fuse
the estimation error covariance to optimize Algorithm 1.

In general, due to the process noise and complex sensor interactions, the cross-covariance
between different estimations is unknown. In the case of unknown cross-covariance, we can use
CI [25], the ellipsoidal intersection (EI) method [29] and the information sharing principle [30], etc.
The information sharing principle requires the distribution of the covariance of global estimation
to each node according to a certain proportion, which leads to a great burden of communication.
From Algorithm 1, we know that the diffusion-based distributed Kalman filtering algorithm is a
convex combination of estimations of adjacent nodes. Similarly, the EI method and CI method obtain
more accurate estimations by adjusting the convex combination coefficients of multiple estimates.
From this perspective, we can apply the EI method and CI method to extend the diffusion-based
distributed filtering algorithm. However, the EI method has some disadvantages compared with the
CI method. First, the EI method can provide a more accurate estimation, but its result does not result
in consistent estimation. Second, the choice of whether to use EI method is an engineering problem.
Third, the calculation process of the EI method is complex, which results in it being inconvenient to
describe the algorithm proposed in this paper. Therefore, we use the CI method to fuse estimations,
as described in Algorithm 2.

In Algorithm 2, Ploc
i,t|t is the estimation error covariance of x̂loc

i,t|t and wi, i ∈ V are weight coefficients
of CI that minimize the following equation:

min
wi≥0,∑i∈V wi=1

[
tr
(

∑
i∈V

wiP−1
i,t|t

)]
(5)

with tr(·) being the trace function. Equation (5) is a nonlinear optimization problem whose
computational cost is usually expensive and unaffordable for sensors. The weight can be set as
the mean to reduce computational cost.
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Algorithm 2: A centralized Kalman filter based on the covariance intersection (CI) method.
For the node i ∈ V,
Initialize with:

x̂loc
i,0|0 = Ex0,

Ploc
i,0|0 = E[(x0 −Ex0)(x0 −Ex0)

T];
Local update:

Ploc
i,t|t−1 = APloc

i,t−1|t−1 AT + ΓQΓT,

x̂loc
i,t|t−1 = Ax̂loc

i,t−1|t−1,

x̂loc
i,t|t = x̂loc

i,t|t−1 + HT
i R−1

i (yi,t−1 − Hi x̂loc
i,t|t−1),

(Ploc
i,t|t)

−1 = (Ploc
i,t|t−1)

−1 + HT
i R−1

i Hi;
Fusion update:

P−1
t|t = ∑i∈V wi(Ploc

i,t|t)
−1,

x̂t|t = Pt|t ∑i∈V wi(Ploc
i,t|t)

−1 x̂loc
i,t|t,

where wj is calculated by Equation (5).

The error covariance of estimation calculated by CI is approximate, and so the result of Algorithm 2
is also approximate, whereas CI provides a conservative result which guarantees that the accuracy in a
specific direction is not lower than that of any node in this direction. The estimation of Algorithm 2
and the optimal estimation satisfy the following equation:

x̂t|t ≈ E(xt | yi,0, yi,1, . . . , yi,t, i ∈ V). (6)

Applying Algorithm 2 to Algorithm 1, we obtain a diffusion distributed Kalman filter that fuses
estimation and its error covariance concurrently, which is presented in Algorithm 3.

Algorithm 3: A diffusion distributed Kalman filter with the CI method.
For the node i ∈ V and node j ∈ Ni,
Initialize with:

x̂i,0|0 = Ex0,
Pi,0|0 = E[(x0 −Ex0)(x0 −Ex0)

T];
Local update:

x̂i,t|t−1 = Ax̂i,t−1|t−1,
Pi,t|t−1 = APi,t−1|t−1 AT + ΓQΓT,
(Ploc

i,t|t)
−1 = (Pi,t|t−1)

−1 + HT
i R−1

i Hi,

x̂loc
i,t|t = x̂i,t|t−1 + Pi,t|tHT

i R−1
i (yi,t − Hi x̂i,t|t−1);

Communication and fusion update:
Send x̂loc

j,t|t and Ploc
j,t|t to adjacent node i,

P−1
i,t|t = ∑k∈Ni+i wk(Ploc

k,t|t)
−1,

x̂i,t|t = Pi,t|t
[

∑k∈Ni+i wk(Ploc
k,t|t)

−1 x̂loc
k,t|t
]
, (7)

where wk is calculated by Equation (5).

In Algorithm 3, x̂loc
i,t|t is calculated from x̂i,t−1|t−1 by local update. x̂i,t−1|t−1 fuses information of

x̂loc
j,t−1|t−1. Therefore, x̂loc

i,t|t also contains information of x̂loc
j,t−1|t−1 and x̂loc

i,t|t is correlative to x̂loc
j,t−1|t−1.

Since x̂loc
j,t|t is also correlative to x̂loc

j,t−1|t−1, x̂loc
i,t|t is correlative to x̂loc

j,t|t. In Equation (7), Algorithm 3 fuses

x̂loc
i,t|t and x̂loc

j,t|t and omits their correlation. In order to improve the accuracy of Algorithm 3, we separate
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diffusion update from local update, and propose a diffusion distributed Kalman filter based on CI
in Algorithm 4.

Algorithm 4: A diffusion distributed Kalman filter separating diffusion update.
For the node i ∈ V and node j ∈ Ni,
Initialize with:

x̂loc
i,0|0 = Ex0,

Ploc
i,0|0 = E[(x0 −Ex0)(x0 −Ex0)

T],
x̂i,0|0 = Ex0,
Pi,0|0 = E[(x0 −Ex0)(x0 −Ex0)

T];
Local update:

x̂loc
i,t|t−1 = Ax̂loc

i,t−1|t−1,

Ploc
i,t|t−1 = APloc

i,t−1|t−1 AT + ΓQΓT,

(Ploc
i,t|t)

−1 = (Ploc
i,t|t−1)

−1 + HT
i R−1

i Hi,

x̂loc
i,t|t = x̂loc

i,t|t−1 + Ploc
i,t|tHT

i R−1
i (yi,t − Hi x̂loc

i,t|t−1);
Diffusion incremental Update:

x̂i,t|t−1 = Ax̂i,t−1|t−1,
Pi,t|t−1 = APi,t−1|t−1 AT + ΓQΓT,
(Pdiffusion

i,t|t )−1 = P−1
i,t|t−1 + HT

i R−1
i Hi,

x̂diffusion
i,t|t = x̂i,t|t−1 + Pdiffusion

i,t|t HT
i R−1

i (yi,t − Hi x̂i,t|t−1);
Communication and fusion update:

Send x̂diffusion
j,t|t and Pdiffusion

j,t|t to adjacent node i,

P−1
i,t|t = ∑j∈Ni

wj(Pdiffusion
j,t|t )−1 + wi(Ploc

i,t|t)
−1,

x̂i,t|t = Pi,t|t
[

∑j∈Ni
wj(Pdiffusion

j,t|t )−1 x̂diffusion
j,t|t + wi(Ploc

i,t|t)
−1 x̂loc

i,t|t
]
,

where wj and wi is calculated by Equation (5).

In Algorithm 4, each node requires a local update and diffusion incremental update. The results
x̂diffusion

i,t|t and Pdiffusion
i,t|t of the incremental diffusion update are diffused to adjacent nodes. The results

x̂i,t|t and Ploc
i,t|t of the local update are used to fuse with the received information. Compared with

Algorithm 3, Algorithm 4 uses the local information to fuse with the received information in the fusion
process instead of using the fusion results of the last moment to fuse with the received information;
this solves the correlation problem caused by fusing the received information of the last moment with
the received information at the current moment in Algorithm 3 at every moment.

2.3. Distributed Kalman Filter Based on the Non-Repeated Diffusion Strategy

In this subsection, we proposed a distributed Kalman filter based on the non-repeated diffusion
strategy and analyze its performance. First, we introduce the non-repeated diffusion strategy in
Algorithm 5. Each node in Algorithm 5 has local information Iloc

i,t at each moment. Ii,t is all of the
information of node i at time t and is calculated by Equation (9). Ii→i1,t is the information that is
sent from node i to node i1 at time t and is calculated by Equation (8). In this strategy, the diffusion
information for each adjacent node is calculated. The diffusion information Ii→i1,t is calculated by
subtracting the received information from node i1 at the last moment from all information at the last
moment. The strategy avoids the sent information from a node returning to this node again.
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Algorithm 5: The non-repeated diffusion strategy.
For the node i ∈ V and node i1 ∈ Ni,
Initialize information of node i at time t with Iloc

i,t ;
Initialize with:

Ii1→i,0 = 0;
Diffusion update:

Ii→i1,t = ∑i2∈Ni−i1 Ii2→i,t−1 + Iloc
i,t ; (8)

Communication and fusion information:
Send Ii1→i,t to adjacent node i,
Ii,t = ∑i1∈Ni

Ii1→i,t + Iloc
i,t . (9)

Assumption 1. The sensor network is an acyclic graph.

Theorem 1. Let Assumption 1 hold. Running Algorithm 5, no node of the sensor network will ever receive its
own information.

Proof of Theorem 1. There is a node i in an acyclic graph. Substituting Equation (8) into Equation (9),
we obtain

Ii,t = ∑
i1∈Ni

( ∑
i2∈Ni1

−i
Ii2→i1,t−1 + Iloc

i1,t) + Iloc
i,t . (10)

Substituting Equation (8) into Equation (10) many times, all information of node i at time t can be
presented as

Ii,t = ∑
i1∈Ni

( ∑
i2∈Ni1

−i
· · · ( ∑

in∈Nin−1
−in−2

Iin→in−1,t−(n−1) + Iloc
in−1,t−(n−2)) · · ·+ Iloc

i1,t) + Iloc
i,t , (11)

where n ∈ N∗. The sets of adjacent nodes of any two points in an acyclic graph do not produce an
intersection set (except for each other); otherwise, there will be a cyclic path through the intersection
set. Thus, there is no intersection set among Nin−1 − in−2, n ∈ N∗ and the element of Nin−1 − in−2 will
constantly decrease as n increases. There is an m that means that Nin−1 − in−2 = ∅, n ≥ m. At this
moment, all information of node i is reduced as

Ii,t = Iloc
i,t + ∑

i1∈Ni

Iloc
i1,t + ∑

i2∈Ni1

Iloc
i2,t + · · ·+ ∑

im∈Nim−1

Iloc
im ,t−(m−1), (12)

where Iloc
i,t is the information that node i already has. Therefore, the node i never receives its own

information from other nodes.

We introduce the non-repeated diffusion strategy into Algorithm 4 and propose a new diffusion
distributed Kalman filter, which is the core of this paper and is presented in Algorithm 6. In Algorithm 6,
x̂i→j,t|t and Pi→j,t|t are the estimation and its error covariance diffused from node i to j.
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Algorithm 6: A distributed Kalman filter based on the non-repeated diffusion strategy.
For the node i ∈ V and node j ∈ Ni.
Initialize with:

x̂loc
i,0|0 = Ex0, Ploc

i,0|0 = E[(x0 −Ex0)(x0 −Ex0)
T],

x̂j→i,0|0 = 0, Pj→i,0|0 = E[(x0 −Ex0)(x0 −Ex0)
T];

Local update:
x̂loc

i,t|t−1 = Ax̂loc
i,t−1|t−1,

Ploc
i,t|t−1 = APloc

i,t−1|t−1 AT + ΓQΓT,

(Ploc
i,t|t)

−1 = (Ploc
i,t|t−1)

−1 + HT
i R−1

i Hi,

x̂loc
i,t|t = x̂loc

i,t|t−1 + Ploc
i,t|tHT

i R−1
i (yi,t − Hi x̂loc

i,t|t−1);
Diffusion incremental update:

P−1
i→j,t = ∑g∈Ni−j wj,g→iP−1

g→i,t−1|t−1 + wj,i→i(Ploc
i,t−1|t−1)

−1, (13)

x̂i→j,t = Pi→j,t
[

∑g∈Ni−j wj,g→iP−1
g→i,t|t x̂g→i,t−1|t−1 + wj,i→i(Ploc

i,t−1|t−1)
−1 x̂loc

i,t−1|t−1

]
, (14)

x̂i→j,t|t−1 = Ax̂i→j,t,
Pi→j,t|t−1 = APi→j,t AT + ΓQΓT,
P−1

i→j,t|t = P−1
i→j,t|t−1 + HT

i R−1
i Hi,

x̂i→j,t|t = x̂i→j,t|t−1 + Pi→j,t|tHT
i R−1

i (yi,t − Hi x̂i→j,t|t−1);
Communication and fusion update:

Send x̂j→i,t|t and Pj→i,t|t to adjacent node i,
P−1

i,t|t = ∑j∈Ni
wj→iP−1

j→i,t|t + wi→i(Ploc
i,t|t)

−1,

x̂i,t|t = Pi,t|t
[

∑j∈Ni
wj→iP−1

j→i,t|t x̂j→i,t|t + wi→i(Ploc
i,t|t)

−1 x̂loc
i,t|t
]
,

where wj is calculated by Equation (19).

Theorem 2. Let Assumption 1 hold. The estimations calculated by Algorithm 6 fuse the global information and
reflect the real state of the target after a finite number of communications.

Proof of Theorem 2. The step of the fusion update in Algorithm 4 combines information from adjacent
nodes of node i linearly. In the step of the diffusion update, all information of node i is diffused to
all adjacent nodes. Therefore, adjacent nodes of node i can receive the information from the other
adjacent nodes of node i. In every communication, the information of each node is diffused to the next
node. Algorithm 6 adds two steps—Equations (13) and (14)—which are derived from the non-repeated
diffusion strategy of Algorithm 5. From Theorem 1, we know that Algorithm 6 realizes the prerequisite
that each node never receives its own information. Since the information is diffused to the next node
and each node does not receive its own information, the information is always diffused in one direction.
Each node can receive the information from other nodes besides its neighbors. The amount of received
information depends on the number of other nodes within a certain distance. Due to applying CI to
the fusing of the information, a conservative estimation is obtained that is the same as Equation (6).
The estimation of node i is

x̂i,t|t ≈ E(xt | yl,1, . . . , yl,til
, l ∈ V′), (15)

where
til = t− dil + 1, (16)

and V′ is a set of nodes, whose measures can be received by node i. {yl,1, . . . , yl,til
, l ∈ V′} represents

the measurements of nodes in V′, and til denotes the maximum moment before which the measurement
information from node l can be received by node i.
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Assume that the two nodes with the longest distance in the sensor network are node i and node j
(dij = d); with d communications after time t1 (at time t = t1 + d− 1), we obtain

til = t1 + d− dil , ∀l ∈ V. (17)

For node j, there is
tij = t1. (18)

At this moment, node i receives the measure yj,t1 . Each node can receive the estimates and
covariances of all nodes in the sensor network because the two nodes with the longest distance can
communicate. Due to the fusing of the estimations and covariances of all nodes by CI, each node
obtains an estimation that includes the global information and reflects the real state of target after
d communications.

wj,g→i, wj,i→i, wj→i and wi→i in Algorithm 6 are the weight coefficients of CI, which minimize the
following equation (take wj→i, wi→i as an example):

min
wj→i≥0,wi→i≥0,∑j∈Ni

wj→i+wi→i=1

[
tr
(

∑
j∈Ni

wj→iξ j→i + wi→i(Ploc
i,t−1|t−1)

−1
)]

. (19)

Equation (19) is a nonlinear optimization problem, as with Equation (5), whose computational
cost is also expensive and unaffordable for sensors. The weight can be set as the mean to reduce
computational cost.

3. Results

In this section, an example is simulated to show the efficiency of Algorithm 6, and the comparisons
with CE-DKF [22] and DHIF [26] are also shown. CE-DKF and DHIF are two existing prominent
diffusion-based distributed filter algorithms.

Specifically, we consider a sensor network of 20 nodes whose topological structure is shown in
Figure 1. Each node can detect the target and communicate bi-directionally with its adjacent nodes.
The linear dynamical system of Equation (1) is considered, where the state vector xt = [αt βt α̇t β̇t]T

consists of position αt, βt and speed α̇t, β̇t from horizontal and vertical directions, respectively. The unit
is meters. The initial state is [0 0 20 20]T. The acceleration of the target is modeled as the system noise
ω(t) = [α̈t β̈t]T whose mean is [0 0]T and variance is Q. Here, we consider the case where Q is equal to

Q1 =

[
10 0
0 10

]T

or

Q2 =

[
100 0
0 100

]T

.

The state transition matrix is

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,

and the noise coefficient matrix is

Γ =


0.5 0
0 0.5
1 0
0 1

 .

The sensor measurement model is Equation (2), where
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H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

the mean of vi(t) is [0 0 0 0]T, and the variance of vi(t) is

Ri =


5 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1


T

, ∀i ∈ V.

Figure 1. A sensor network with 20 nodes.

Next, we perform a simulation 2000 times to compare Algorithm 6 with other distributed filtering
algorithms. The fusion weights of both Algorithm 6 and DHIF are mean values.

Figures 2 and 3 show the estimation error of the algorithms for state αt. The equation to calculate
the error is

ε =

√
1
N ∑

i∈V
(αi,t|t − αt)2. (20)
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Figure 2. Mean estimation errors of different estimation algorithms (Q = Q1). CE-DKF: cost-effective
diffusion Kalman filter; DHIF: distributed hybrid information fusion.
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Figure 3. Mean estimation errors of different estimation algorithms (Q = Q2).

The data of Figures 2 and 3 are collated in Table 1.

Table 1. Error performance comparison of different algorithms.

Algorithms Steady State Error (m) Error Reduction of Algorithm 6 (%) Error Convergence Time (s)
Q1 Q2 Q1 Q2 Q1 Q2

Algorithm 6 0.7301 0.7297 0 0 7 7

CE-DKF 0.7476 0.8640 2.34 15.54 9 10

DHIF 0.9214 0.9233 20.76 20.97 8 9

The error reduction of Algorithm 6 is the percentage of error that Algorithm 6 reduces compared
to other algorithms. The error convergence time is the earliest time when the error reaches a steady
state. From Table 1, we see that Algorithm 6 reduces the estimation error by up to 20.97% and reaches
a steady state faster than CE-DKF and DHIF. For the case in which the noise covariance matrix Q is
large, the performance of Algorithm 6 is more prominent. In the case of a small Q, Algorithm 6 only
reduces the error by 2.34% compared with CE-DKF. Because the maneuverability of target is small in
this case, the advantages of Algorithm 6 are not obvious.

Figures 4 and 5 show the standard deviations (SDs) of the estimations of sensors for state αt,
which represents the degree of consensus of estimations from all nodes in the sensor network and is
calculated by

Φ =

√√√√ 1
N ∑

i∈V

(
αi,k|k −

1
N ∑

j∈V
αj,k|k

)2
. (21)
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Figure 4. Standard deviation of estimations (Q = Q1).
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Figure 5. Standard deviation of estimations (Q = Q2).

The data in Figures 4 and 5 are collated in Table 2.

Table 2. Consensus performance comparison of different algorithms.

Algorithms Steady State SD (m) SD Reduction of Algorithm 6 (%) Convergence Time of SD (s)
Q1 Q2 Q1 Q2 Q1 Q2

Algorithm 6 0.6655 0.6702 0 0 7 7

CE-DKF 0.6710 0.7882 0.81 14.97 10 9

DHIF 0.8570 0.8631 22.34 22.35 8 8

The SD reduction of Algorithm 6 is the percentage by which Algorithm 6 reduces the SD compared
to other algorithms. The convergence time of SD is the earliest time when SD reaches a steady state.
From Table 1, we see that Algorithm 6 reduces the SD of estimation by up to 22.34% and reaches a
steady state faster than CE-DKF and DHIF. This means that Algorithm 6 can ensure that all nodes
in the sensor network have a higher degree of consensus. In the case of a small Q, Algorithm 6 only
reduces SD by 0.81% compared with CE-DKF. The reason for this is the same as above: the error
advantage of Algorithm 6 is small in the case of a small Q.

In each communication, each sensor applying Algorithm 6 only needs to send its own estimation
x̂(t | t) ∈ Rn and the estimation error covariance P ∈ Rn×n. Therefore, the communication traffic is
n× n + n in terms of the number of transmitted digits. We give the communication bandwidth and
frequency requirement of some popular algorithms in Table 3. The communication frequency in this
study means the number of communications with an adjacent node required for each node to complete
estimation. In addition to CE-DKF and DHIF, we compare the communication requirements of other
two consensus-based algorithms. From Table 3, we can see that the communication bandwidth and
frequency requirement of Algorithm 6 is the lowest (or one of the lowest).

Table 3. Communication requirements of different algorithms. FT-DKF: finite-time distributed Kalman
filter; ICF: information consensus filter.

Algorithms Bandwidth Requirement Frequency Requirement (Hz)

Algorithm 6 n× n + n 1
ICF [13] n× n + n d

FT-DKF [18] n× n + n d
CE-DKF n× n + n 1

DHIF 2× (n× n + n) 1
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4. Discussion

In this section, we discuss the result of Algorithm 6, including its estimation accuracy, degree
of consensus, communication requirement, applicability to different topologies and robustness to
local unobservability.

4.1. Estimation Accuracy

The reason why Algorithm 6 has better estimation accuracy than other diffusion-based algorithms
is that Algorithm 6 applies the non-repeated diffusion strategy, which eliminates repeated information
and reduces redundancy. In addition, Algorithm 6 improves the efficiency of information exchange
due to non-redundant information exchange, meaning that it can converge to a steady-state value faster
than other diffusion-based algorithms. The accuracy advantage of Algorithm 6 is small in the case
of a small Q; this means that Algorithm 6 is good at estimating unknown models and maneuvering
states. The only disadvantage is that Algorithm 6 compresses the fusion weight in the process of
communication, which causes the fusion weight of Algorithm 6 to deviate and reduces the accuracy.
This is a limitation of Algorithm 6. Future work will present a better weighting strategy.

4.2. Degree of Consensus

In sensor network estimation, it is very important that the estimation of all nodes is consistent.
According to Section 3, Algorithm 6 has a lower estimation variance and a higher degree of consensus.
It can be seen from Tables 1 and 2 that the variance has a certain correlation with estimation error.
Therefore, it can be considered that the reduction of error reduces the estimation dispersion range and
the variance of Algorithm 6. Similarly, because the error converges faster, the consensus convergence
rate is also faster. The advantage of the degree of consensus is small in the case of a small Q; this also
means that Algorithm 6 is good at estimating unknown models and maneuvering states.

4.3. Communication Requirement

There are a large number of low-cost sensor networks with low communication bandwidths.
For this kind of sensor network, the communication bandwidth requirement of the distributed filter
algorithm has to be considered. From Section 3, we know that the communication traffic of Algorithm 6
is competitive against other distributed algorithms.

As with the communication bandwidth, communication frequency is limited for low-cost sensor
networks. Some algorithms must satisfy a certain number of communications in order to receive
global information and maintain a certain accuracy. When the number of communications is 1 Hz,
Algorithm 6 can still guarantee that every node obtains global information.

When the communication frequency is less than 1 Hz, Algorithm 6 can still guarantee
that every node obtains global information by combining measurements. In short, at a low
communication frequency, as long as the communication frequency is greater than 0 Hz, Algorithm 6
can obtain better accuracy than some algorithms that must run in a certain communication frequency.
This communication frequency requirement is also the advantage of diffusion-based algorithms, and
thus we apply the diffusion-based algorithm and optimize it.

4.4. Applicability to Different Topologies

Theorem 2 assumes that the topology of the sensor network is an acyclic graph (tree graph).
In fact, Algorithm 6 can also be applied to cyclic graphs. For sensor networks with a cyclic path,
we can apply the spanning tree algorithm to convert a cyclic graph to an acyclic graph before applying
Algorithm 6. Without doubt, this increases the complexity of Algorithm 6, which is also one of the
limitations of Algorithm 6. Next, we can study this aspect and time-varying sensor networks.
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4.5. Robustness to Local Unobservability

In some cases, some nodes miss the target but other nodes detect the target. The weight wj→i of
the nodes that miss the target can be considered to be 0. At this moment, Assumption 1 still holds.
Since Theorem 2 is independent of the node weight, Algorithm 6 still guarantees that Theorem 2 holds.
Therefore, Algorithm 6 is robust to local unobservability and is suitable for wider sensor networks.

5. Conclusions

In this study, a distributed Kalman filter is proposed based on the non-repetition diffusion
strategy. It operates in a fully distributed mode and does not need to obtain information about
the sensor network, which gives it excellent expansibility. The core of the algorithm lies in the
non-repeated diffusion strategy, which optimizes the diffusion-based distributed Kalman filtering
algorithms. Compared with existing distributed Kalman filtering algorithms, the algorithm proposed
in this study has a lower estimation error. Besides, the algorithm also shows outstanding performance
in terms of the degree of consensus, communication bandwidth requirement, communication frequency
requirement, applicability to different topologies and robustness to local unobservability. The algorithm
shows excellent performance in the tracking of maneuvering targets and the state estimation of low-cost
sensor networks. By the simulation of a single target trace, we verify the performance of the algorithm.
Future research topics include the weighting strategy and time-varying sensor networks.
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The following abbreviations are used in this manuscript:

ICF Information consensus filter
FT-DKF Finite-time distributed Kalman filter
CE-DKF Cost-effective diffusion Kalman filter
CI Covariance intersection
DHIF Distributed hybrid information fusion
PDKF Partial diffusion Kalman filter
EI Ellipsoidal intersection
SD Standard deviation
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