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1  | INTRODUC TION

Sea turtles are an iconic group with temperature-dependent sex 
determination (TSD), where the sex of an individual is determined 
by the temperature experienced during the thermosensitive pe-
riod (TSP) while eggs are incubating (Miller, 1997). For all sea tur-
tle species, males are produced at low incubation temperatures and 
females at high incubation temperatures. A serious threat to sea 
turtles is that climate warming is raising incubation temperatures of 
nests and so causing increasing feminization of hatchling sex ratios 
(Glen & Mrosovsky, 2004; Hays et al., 2003; Jensen et al., 2018) as 

well as increasing hatchling mortality (Laloë et al., 2017; Monsinjon 
et al., 2019; Pike, 2014). Unless there is some other mechanism to 
reduce incubation temperatures, ultimately complete feminization 
of populations will lead to their extinction.

Yet as well as warming, it is also expected that the frequency 
of storms and associated extreme rainfall events will vary as part 
of climate change (CSIRO & BOM, 2018; Easterling et al., 2000; 
Kerr, 2011; Schiermeier, 2011; Trenberth, 2011). Extreme weather 
events were shown to have significant impacts on the physiology and 
ecology of plants (Gutschick & BassiriRad, 2003) as well as a range 
of animal taxa (Santidrián Tomillo et al., 2020; Ujvari et al., 2016). 
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Abstract
Understanding how climate change impacts species and ecosystems is integral to 
conservation. When studying impacts of climate change, warming temperatures are 
a research focus, with much less attention given to extreme weather events and their 
impacts. Here, we show how localized, extreme rainfall events can have a major im-
pact on a species that is endangered in many parts of its range. We report incubation 
temperatures from the world's largest green sea turtle rookery, during a breeding 
season when two extreme rainfall events occurred. Rainfall caused nest tempera-
tures to drop suddenly and the maximum drop in temperature for each rain-induced 
cooling averaged 3.6°C (n = 79 nests, min = 1.0°C, max = 7.4°C). Since green sea tur-
tles have temperature-dependent sex determination, with low incubation tempera-
tures producing males, such major rainfall events may have a masculinization effect 
on primary sex ratios. Therefore, in some cases, extreme rainfall events may provide 
a “get-out-of-jail-free card” to avoid complete feminization of turtle populations as 
climate warming continues.
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Potentially, therefore, different aspects of climate change, that is, 
warming versus increased extreme rainfall events, may have con-
trasting impacts on sea turtle incubation conditions.

While it is known that rainfall in general acts to cool the sand at 
incubation depths (Houghton et al., 2007; Lolavar & Wyneken, 2015) 
and has an impact on primary sex ratios (Lolavar & Wyneken, 2017, 
2020), the impact of extreme rainfall or extreme drought has re-
ceived little attention (but see Santidrián Tomillo et al., 2020; Ujvari 
et al., 2016). Here, we report nest temperatures at the world's larg-
est green turtle (Chelonia mydas) rookery at Raine Island, Australia, 
during a breeding season that experienced two extreme rainfall 
events, that is, periods of time during which >500 mm of rain fell 
over five consecutive days. Recently, the extreme female-biased sex 
ratio skew at this rookery was highlighted (Jensen et al., 2018), with 
>99% of juvenile turtles being females. Therefore, at this globally 
important rookery, climate warming and entire feminization of the 
hatchling production is a grave threat.

2  | METHODS

2.1 | Study site

Raine Island (11°35′S, 144°02′E) lies 80 km off the coast of 
Queensland and is located on the outer edge of the Great Barrier 
Reef. It is a small coral cay (approximately 1,800 m in circumfer-
ence) that is vegetated with grasses and low scrubs but has no trees 
that could shade parts of the nesting beach. The sea turtle breed-
ing season typically extends from November to March (Fuentes 
et al., 2010), during which the estimated mean number of females 
nesting varies widely between 5,000 and 70,000 depending on the 
particular season (Mast et al., 2011). The climate is typical wet/dry 
tropical with the warmer wet period occurring during December to 
March, and the cooler dry period occurring in June-August (Limpus 
et al., 2003).

2.2 | Nest temperatures

As part of a long-term monitoring program, we deployed 124 tem-
perature loggers (model DS1921H-F5, Maxim Integrated, San Jose, 
California, USA, precision = 0.0625°C, accuracy = 0.5°C) into nests 
over the course of three excursions to Raine Island during the 
2018/2019 nesting season. We deployed data loggers on October 
19, 2018 (n = 45), December 1, 2018 (n = 52) and 12/13 February 
2019 (n = 27). We placed loggers in the middle of clutches during 
oviposition and recorded temperatures hourly. Loggers were left in 
nests during the whole incubation process and were retrieved after 
hatchling emergence.

Prior to the experiment, we checked the accuracy of all tempera-
ture loggers in a water bath set at hourly intervals of 20, 25, 30, 35, 
and 40°C. This confirmed that loggers were accurate to 0.5°C, as 
specified by the manufacturer.

2.3 | Environmental data

We downloaded rainfall data from the website of the Australian 
Government Bureau of Meteorology (http://www.bom.gov.
au). Rainfall data are available as observations of daily rainfall. 
Measurements are nominally made at 9 a.m., local time, and record 
the total rainfall for the previous 24 hr. Since no weather stations are 
deployed on Raine Island, we used data from the nearest weather 
station, which is situated at Lockhart River Airport (approximately 
150 km southeast of Raine Island).

To assess how rainfall-linked drops in temperatures affected 
nest temperatures, we removed steep declines and subsequent in-
creases in daily mean nest temperatures from our time-series and 
filled resulting gaps using a linear interpolation. We propose that the 
observed difference in nest temperature between a nest with a sud-
den drop in nest temperature and a nest with the drop removed is 
due to the extreme rainfall event.

To examine how sand temperatures have changed at our study 
site in recent decades, we digitized sand temperature recon-
structions during the nesting season for Raine Island from Jensen 
et al. (2018).

2.4 | Sex ratio estimations

For several reasons, it may not be straightforward to reliably esti-
mate hatchlings sex ratios from sand temperatures. First, the time 
during incubation when sex is determined is still not well defined. 
Pioneering experiments in the 1980s showed that the TSP for sex 
determination occurs somewhere in the middle third of embryonic 
development (Yntema & Mrosovsky, 1982). More recently, evidence 
has started to emerge that the TSP might only be a few days during 
the middle third of development (Porter, 2020). Second, for many 
populations, the relationship between temperature and sex ratio is 
not well defined, and so often generic relationships are used (Hays 
et al., 2017; Laloë et al., 2014). Hence rather than trying to estimate 
nest sex ratios, we instead simply report if rain could shift nest tem-
peratures from more female-producing to more male-producing 
temperatures.

2.5 | Nesting seasonality

Green sea turtle nesting season on Raine Island typically extends 
from November to March, with a peak in December/January 
(Fuentes et al., 2010). We modeled the nesting season using a nor-
mal distribution centered on December/January and approximated 
the percentage of nests that were affected by each extreme rain-
fall using this distribution. We also estimated how many extra males 
were produced as a result of the extreme rainfall event that occurred 
in March 2019 using a mean number of eggs per clutch = 104.3 
(SD = 24.85; Limpus, 2008) and a mean emergence success = 60.6% 
(SD = 3.4; Dunstan & Robertson, 2017).

http://www.bom.gov.au
http://www.bom.gov.au
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2.6 | Statistical analyses

We performed the statistical analyses in R version 3.6.1 (R: A lan-
guage and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria, https://www.R-proje 
ct.org).

3  | RESULTS

3.1 | Cooling effect of rainfall

During our study, two extreme rainfall events occurred. Plotting 
nest temperatures alongside rainfall shows that sudden drops in nest 
temperatures coincided with extreme rainfall events recorded at the 
nearest weather station (Figure 1a). The first extreme rainfall event 
occurred at the end of December 2018, and the maximum drop in 
temperature for each nest averaged 4.3°C (n = 52 instrumented 
nests, min = 1.3°C, max = 7.4°C). The second extreme rainfall 
event occurred in March 2019, and the maximum drop in nest tem-
perature averaged 2.3°C (n = 27 instrumented nests, min = 1.0°C, 
max = 2.9°C; Figure 1a,b). Of significance, in many nests incubation 

temperatures dropped below 29.0°C, which is the typical pivotal 
temperature for TSD (i.e., the temperature at which a 50:50 sex ratio 
is expected; Hays et al., 2017). Therefore, the sex ratios of nests that 
were incubating during this time likely changed due to the extreme 
rainfall event.

3.2 | Implications in the face of climate change

Long-term reconstructions of sand temperature on Raine Island 
suggest warming since 1960 (Figure 1c). In addition, empirical meas-
urements show that rainfall events of similar magnitude to those 
recorded in our study have occurred approximately every 6 years 
at our field site (Figure 1c). However, as part of climate change, 
changes in rainfall patterns and intensity are projected for Australia. 
Australia's Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) and Bureau of Meteorology (BOM) predict in-
creases in intense heavy rainfall throughout Australia, particularly 
for short duration extreme rainfall events (CSIRO & BOM, 2018). 
While it is difficult to project exactly how rain patterns will change in 
the future, we can already assess the impact different scenarios will 
have on primary sex ratios (Figure 1d).

F I G U R E  1   (a) Drops in nest temperatures (gray lines) coincided with extreme rainfall events (black bars). For example, 519 mm of rain fell 
between 19 and 23 March 2019 and nest temperatures dropped by an average 2.2°C (n = 27 nests). The black line represents daily mean 
temperatures for all nests. (b) Rainfall-linked drops in sand temperature affected nest temperatures. Mean nest temperature during the 
twenty days that followed an extreme rainfall event (light gray area) was 30.7°C (●), whereas it would have been 32.4°C in the absence of 
rainfall (+). In the most extreme case, the mean temperature during the twenty days that followed an extreme rainfall event was lowered by 
3.1°C due to a rainfall-linked cooling event (mean drop = 1.1°C, n = 79 nests). (c) Sand temperatures (given relative to 1960; solid black line) 
increased on Raine Island between 1960 and the present. The dashed line is the regression line (R2 = 0.26, F1,55 = 19.22, p < .01). Vertical 
bars indicate nesting seasons during which >500 mm of rain fell over five consecutive days. (d) A 1.1°C decrease in mean nest temperature 
(horizontal arrows) during the TSP likely causes more male hatchlings to be produced in a nest. The generic relationship between nest 
temperature and sex ratio is from Hays et al., 2017
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4  | DISCUSSION

Understanding how variable environmental conditions such as 
the weather impact species with TSD continues to be a prolific 
field of research (Fuentes et al., 2011; Godfrey et al., 1996; Hays 
et al., 2003; Lolavar & Wyneken, 2015; Mrosovsky et al., 1984; 
Schoeman et al., 2014; Shine & Elphick, 2001). For sea turtles, 
previous studies have focused on the cooling effect seasonal 
precipitation patterns have on reproductive success and pri-
mary sex ratios (e.g., Laloë and Esteban et al., 2015; Lolavar & 
Wyneken, 2015). For examples, it was shown that more leath-
erback turtle (Dermochelys coriacea) males are produced during 
a wet year on Grenada, in the Caribbean, than during a dry year 
(Houghton et al., 2007). Impacts of rainfall are also observable 
within a same year, and more male turtles are produced during the 
colder and wetter months of the nesting season than during the 
warmer and drier months (Mrosovsky et al., 1984).

In contrast to seasonal—and relatively predictable—precipita-
tion, the impact of extreme weather on primary sex ratios has re-
ceived little attention (Santidrián Tomillo et al., 2020).

Here, we assumed that precipitation recorded at the nearest 
weather station is representative of precipitation at our field site, 
given the synchronicity of temperature drops in our study nests with 
extreme rainfall events recorded at the nearest weather station. We 
have shown that heavy rainfall can cool sea turtle nests appreciably 
and so likely increases the proportion of male hatchlings. For ex-
ample, if mean incubation temperatures during the middle third of 
development drop by an average 1.1°C, as seen in this study, sex 
ratios change from approximately >99% female to approximately 
88% female for a nest incubating at 30.8°C in the absence of a cool-
ing event. Increased cooling (e.g., 2°C) has an even stronger impact 
on sex ratios, particularly at temperatures that produce both males 
and females (Figure 1d). Recent and exciting new developments 
have shown that hatching sex can be determined directly from blood 
samples (Tezak et al., 2020), which may allow rigorous quantification 
of the shift in sex ratio caused by rainfall in the future. However, 
this positive effect of rainfall will not be sufficient if incubation tem-
peratures continue to rise well above the pivotal temperature due 
to future climate warming. In addition, rainfall can have other im-
pacts on incubating clutches beyond lowering sand temperatures. 
For example, increased precipitation may lead to increased mortality 
in clutches if incubation temperatures fall outside the optimal ther-
mal range for embryonic development (Matsuzawa et al., 2002) or if 
nests are flooded.

Our work reiterates the concerns of Jensen et al. (2018) for the 
feminization of the Raine Island green turtle rookery, but also offers 
some hope for the future by showing the importance of isolated ex-
treme rainfall events to produce male hatchlings. If extreme rainfall 
events occur at increased frequency in the future—as is projected for 
this part of Australia (CSIRO & BOM, 2018)—this may result in males 
still being produced on Raine Island despite warming temperatures. 
Further, increased incubation moisture resulted in improved loco-
motor abilities in freshwater turtle hatchlings (Miller, 1993; Miller 

et al., 1987) and the same may be true of sea turtles, given their re-
productive and developmental similarities. Such an effect in sea tur-
tles might result in a male dispersal phenotype with reduced risk of 
predation, at least when passing through predator-dense nearshore 
waters (Gyuris, 2000). Crucially, the operational sex ratio (OSR, that 
is, the ratio of adult females to adult males on the breeding grounds) 
needed to maintain a viable population remains unknown. For ex-
ample, once the OSR is >99% female, at what point (e.g., an OSR of 
99.1%, 99.5%, or 99.9%?) will there be insufficient males to fertilize 
all the potential clutches and hence reduced hatchling production 
and population declines? Assessing clutch fertility with respect to 
the OSR is one approach that may allow this important question to 
be addressed.

With many studies reporting female-biased sex ratios at rook-
eries across the world (Hays et al., 2014) and projections that these 
biases will be exacerbated (Hawkes et al., 2007; Jensen et al., 2018; 
Santidrián Tomillo et al., 2015), the prospect that extreme rainfall 
events can produce unexpected and large cohorts of males in the 
future is a welcome finding. Indeed, increased production of a few 
males can go a long way with sea turtles, as males breed multiple 
times and with multiple females during a breeding season (Lee 
et al., 2018). Male turtles also breed more often than females, who 
have longer interbreeding cycles (Hays et al., 2014). So, future irreg-
ular and large influxes of males into the breeding population, orig-
inating from extreme weather events during incubation, may help 
sustain a population for many decades after the extreme weather 
event occurred. This key conclusion is likely robust, especially given 
that sea turtles are long-lived organisms and may reproduce multiple 
times during their life.

Given that Raine Island is thought to be producing >99% fe-
males, a single wet year when more males are produced may be 
important for helping to sustain the population for many years. We 
estimated that the extreme rainfall event that occurred in March 
2019 affected <2% of all nests produced over the entire breeding 
season, yet as a result we estimate that between 5,600 and 10,400 
additional males were produced. Therefore, considering the impact 
of extreme rainfall events on incubation temperatures may be es-
sential when modeling how primary sex ratios are likely to change 
in the future.

Our results underline the importance of considering extreme 
rainfall events alongside more general warming when assessing 
the impacts of climate change on sea turtle populations (Santidrián 
Tomillo et al., 2020). While the amount of cooling experienced 
may vary between sites, the overarching conclusion that ex-
treme events can cool nests and affect sex ratios is likely to hold 
for many sites around the world (Figure 1d). Ultimately, rainfall 
impacts need to be considered for hatchling survival and hatch-
ling sex ratios. Only by doing so can we provide a holistic picture 
of likely climate change impacts on sea turtles. Our results also 
highlight the potential value of artificially cooling the sand by wa-
tering during a single point in the breeding season, that is, recre-
ating the “perfect storm” if it does not occur naturally, as a way to 
ensure male hatchling production in the face of climate warming. 
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However, we caution that if such management measures were to 
be put in place, careful considerations are needed to ensure the 
nests are not flooded and hatchling successes are not adversely 
impacted.
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