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A B S T R A C T   

Individuals who are diagnosed with chronic kidney disease, particularly those receiving main-
tenance hemodialysis treatment, face a greater likelihood of suffering from severe symptoms and 
fatality due to COVID-19. This study aimed to explore the optimal vaccination approach for these 
individuals. The study used data analysis tasks such as data preprocessing, cleaning, and explo-
ration, and machine learning models including linear regression, random forest, XGBoost, 
gradient boosting, AdaBoost, decision trees, Lasso, and ridge regression were used to construct 
the predictive model. The study found that the Lasso model performed the best overall in pre-
dicting anti-S IgG antibodies levels in response to COVID-19 vaccines for people with kidney 
failure with MAE of 8.81, RMSE of 19.59, and R2 value of 0.93. The adjusted R2 value for the 
Lasso model was also 0.93, indicating that the model’s ability to explain the variance in the data 
was not affected by the number of predictors in the model. The Random Forest model best pre-
dicted the duration of immunogenicity, with R2 and adjusted R2 values of 0.71 and 0.69, 
respectively. The ensemble model that includes all eight models, i.e., Ridge, Lasso, Linear 
Regression, Random Forest, AdaBoost, Gradient Boosting, XGBoost, and Decision Tree, has the 
best performance with the lowest MAE, the lowest RMSE, the highest R2, and the highest adjusted 
R2 values of 3.91, 5.00, 0.73, and 0.72, respectively. However, further research is required to 
validate these models and extend their application to different populations and vaccine types, as 
well as considering other factors that may affect immune response to COVID-19 vaccines. These 
findings can be helpful in improving vaccination strategies and promoting public health.   

1. Introduction 

The COVID-19 pandemic has had a significant impact on patients with chronic kidney disease (CKD), particularly those on 
maintenance hemodialysis. These patients are at a higher risk of severe illness and death from COVID-19 due to their underlying 
comorbidities and immunocompromised state [1]. The efficacy and immunogenicity of COVID-19 vaccines in these patients is an 
important area of research as it can help to determine the best vaccination strategies for this population. 

Previous studies have shown that patients with CKD are at an increased risk of severe illness and death from COVID-19 [1,2]. 
Additionally, patients on maintenance hemodialysis are at a higher risk due to their underlying comorbidities and 
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immunocompromised state [1]. Several studies have also reported that the immune response to COVID-19 vaccines is impaired in 
patients with CKD, including those on maintenance hemodialysis [3–5]. 

The vaccine for COVID-19 is considered as an important tool to reduce the serious effects of the pandemic, however, it remains 
unclear if the vaccines are as effective in patients with CKD [6]. Furthermore, the vaccines for COVID-19 have been shown to have 
variable efficacy and immunogenicity in CKD patients on maintenance hemodialysis [7], and this highlights the need for more research 
to determine the best vaccination strategies for this population. 

Studies have also shown that the immune response to COVID-19 vaccines may be impaired in CKD patients on maintenance he-
modialysis [3,4]. Kolb et al. found that dialysis patients had lower antibody titers and higher rates of seropositivity after vaccination 
with the Pfizer-BioNTech vaccine compared to the general population. Piotrowska et al. also reported that the immune response to the 
Pfizer-BioNTech vaccine was impaired in end-stage renal disease patients on hemodialysis, peritoneal dialysis, and kidney transplant 
recipients. Additionally, these patients had lower levels of local and systemic immunity after vaccination. Chen et al. conducted a 
meta-analysis of studies on the immunogenicity of COVID-19 vaccines in patients with end-stage kidney disease. The authors found 
that the immunogenicity rates were lower in these patients compared to the general population, and the results were consistent across 
the different vaccines studied. The authors concluded that the immunogenicity of COVID-19 vaccines may be impaired in patients with 
end-stage kidney disease. 

In addition to the impaired immune response, patients on maintenance hemodialysis may also have other factors that can affect the 
efficacy of the vaccines such as being on immunosuppressive drugs and having anemia [6]. 

Further, studies have shown that the immunity provided by COVID-19 vaccines may not be long-lasting in CKD patients on 
maintenance hemodialysis [8]. Munro et al. conducted a blinded, multicenter, randomized, controlled trial in the UK, which inves-
tigated the safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of BNT162b2 (Pfizer) 
or ChAdOx1 (AstraZeneca). The study included a subgroup of patients with chronic kidney disease, including those on hemodialysis. 
The results showed that the immunogenicity of the vaccines was lower in this subgroup, with a lower antibody response and a higher 
rate of seropositivity after the third dose. 

In addition, some studies have suggested that patients on maintenance hemodialysis may require more frequent or higher doses of 
COVID-19 vaccines to achieve an adequate immune response [5,6]. However, more research is needed to confirm these findings and to 
determine the optimal dosing and vaccination schedule for CKD patients on maintenance hemodialysis. 

Furthermore, studies have shown that the immunity provided by COVID-19 vaccines may not be long-lasting in CKD patients on 
maintenance hemodialysis [9]. Dekervel et al. conducted a study on the humoral response of BNT162b2 vaccine in patients on he-
modialysis and found that the antibody levels were decreasing rapidly over time in this population. This highlights the need for more 
research to determine how long the immunity provided by COVID-19 vaccines lasts in CKD patients on maintenance hemodialysis, and 
whether or not these patients will require booster doses in the future. 

Pfizer-BioNTech, Moderna, and AstraZeneca are three of the COVID-19 vaccines that have been authorized for emergency use 
worldwide. Studies have shown that the Pfizer-BioNTech and Moderna vaccines are the most commonly studied in CKD patients on 
maintenance hemodialysis. AstraZeneca vaccine, on the other hand, has been studied less in this population [3–5,7]. 

In terms of efficacy, studies have shown that the Pfizer-BioNTech and Moderna vaccines have a lower efficacy in CKD patients on 
maintenance hemodialysis compared to the general population [4,5]. AstraZeneca vaccine efficacy in CKD patients on maintenance 
hemodialysis has been studied less and more research is needed to determine the efficacy of this vaccine in this population. 

In terms of immunogenicity, studies have reported that the antibody titers and rates of seropositivity are lower in CKD patients on 
maintenance hemodialysis who have received the Pfizer-BioNTech and Moderna vaccines [3,4]. The AstraZeneca vaccine immuno-
genicity in CKD patients on maintenance hemodialysis has been studied less, and more research is needed to determine the immu-
nogenicity of this vaccine in this population. 

It should be noted that, while some studies have shown a lower efficacy and immunogenicity of the Pfizer-BioNTech, Moderna, and 
AstraZeneca vaccines in CKD patients on maintenance hemodialysis, other studies have shown similar results to the general population 
[8]. Therefore, more research is needed to confirm the findings and to determine the best vaccination strategies for CKD patients on 
maintenance hemodialysis. 

In summary, previous studies have shown that the immunity provided by COVID-19 vaccines may be impaired in CKD patients on 
maintenance hemodialysis, with lower antibody titers and higher rates of seropositivity. The Pfizer-BioNTech, Moderna, and Astra-
Zeneca vaccines have been authorized for emergency use worldwide, and studies have shown that the Pfizer-BioNTech and Moderna 
vaccines are the most commonly studied in CKD patients on maintenance hemodialysis. The studies have reported that the efficacy and 
immunogenicity of the Pfizer-BioNTech, Moderna, and AstraZeneca vaccines may be lower in CKD patients on maintenance hemo-
dialysis, but more research is needed to confirm the findings and to determine the best vaccination strategies for this population. 
Factors such as being on immunosuppressive drugs and having anemia may also affect the efficacy of the vaccines in these patients. 
Machine learning (ML) models can be used to predict immunogenicity in CKD patients on maintenance hemodialysis, which can help 
to identify patients who are at risk of waning immunity and who may need additional booster doses. 

Machine learning is a type of artificial intelligence (AI) that utilizes algorithmic approaches to enable machines to solve problems 
without explicit computer programming, as stated by Ref. [10]. ML has become increasingly important in the field of medicine, as it 
can optimize the care of patients with chronic diseases, inform precision medicine approaches, and facilitate clinical trials. The number 
of articles utilizing ML in the medical field has been rapidly increasing, particularly in the areas of diagnostics and drug discovery. 
According to Accenture data, AI applications in healthcare can potentially save the United States healthcare sector $150 billion 
annually by 2026, as reported by Ref. [11]. This demonstrates the significant potential of ML in healthcare and explains the growing 
involvement of AI companies in the field of medicine, from diagnosis to treatment and drug development. 
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As far as we are aware, there have been no previous studies that have utilized machine learning to predict the immunogenicity of 
COVID-19 vaccines in patients with chronic renal disease undergoing hemodialysis. Therefore, the primary objective of this study is to 
develop a machine learning model that can accurately predict the immunogenicity of COVID-19 vaccines in this specific patient 
population. We used a variety of the most common machine learning models used in research, including linear regression, random 
forest, XGBoost, gradient boosting, AdaBoost, decision trees, Lasso, and ridge models. 

2. Materials and methods 

This study looked at a group of adult patients (n = 172) who were receiving hemodialysis treatment at a single center in Madinah, 
Saudi Arabia. The data collected for this study are presented in Table 1. In addition, blood samples were taken from the patients and the 
samples were frozen and later tested for the presence of SARS-CoV-2 anti-S IgG antibodies using a commercial ELISA kit. The study 
obtained ethical approval from the Research Ethics Committee of the College of Applied Medical Sciences, Taibah University. The 
ELISA test involved using 172-well plates and adding plasma and a sample diluent buffer to each well. After incubation and washing, 
horseradish peroxidase-labeled anti-human IgG antibody was added, followed by substrates A and B. The optical densities were then 
measured, and a cut-off value was calculated using a formula based on the mean absorbance of the negative controls. 

Descriptive statistics were used to summarize the characteristics of the study sample. Mean and standard deviation were used for 
continuous variables, while frequency and percentage were used for categorical variables. 

In this study, the Google Colaboratory platform was utilized to run codes using python libraries for data preprocessing, cleaning, 
and exploration of data analysis. The necessary libraries such as pandas, numpy, matplotlib, and seaborn were imported, and the Colab 
notebook was connected to Google Drive. The dataset was then read and stored as a DataFrame. Data cleaning tasks such as handling 
missing values, dealing with outliers, and removing duplicates were performed. Descriptive analysis was conducted to calculate 
statistics such as the mean, median, mode, standard deviation, etc. Feature engineering techniques were applied to improve the 
performance of the predictive model. The dataset was split into training and testing sets, and a predictive model was constructed using 
machine learning models: linear regression, random forest, XGBoost, gradient boosting, AdaBoost, decision trees, Lasso, and ridge 
regression. The model was trained on the training set and evaluated on the testing set using Coefficient of Determination (R2), adjusted 
R2, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Normalized Root Mean Squared Error (NRMSE) to measure its 
accuracy. Finally, the model was saved for future use once its performance was deemed satisfactory. 

3. Results 

3.1. Variable characteristics 

The dataset consists of 172 individuals with a mean age of 50 ± 17 years, who received a mean of 2 ± 1 vaccine doses with mean 
number of weeks since the last vaccine dose is 18 ± 9. The mean anti-S IgG antibodies level (AU/mL) is 278 ± 70, with a mean number 
of months since kidney failure of 65 ± 60. Sixty-seven percent of the study sample was female (n = 118). According to this data, 
diabetes is the most frequent cause of renal failure (37%, n = 63). All patients included in this study were on hemodialysis three time 
per week. Most patient had no previous Covid19 infection, 137 observations which represent 80%. The majority (n = 160, 93%) of the 
patients have positive result for Anti IgG antibody. Pfizer were the most frequent as the first and second type of vaccine given to 
patients with 121 and 112 observations (70%, 65%) respectively. About half of patient did not get vaccine (n = 81, 47%). These results 
provide valuable information about the characteristics of the individuals in the dataset and can be used to identify patterns and re-
lationships between variables and in building a predictive model by identifying important predictor variables. 

Table 1 
Data collected for this study.  

Variable Name Description 

Age Age of the patient 
Sex Gender of the patient 
Cause_of__kidney_failure Cause of kidney failure 
Doses_of_vaccines Number of vaccine doses received by the patient 
Previous_Covid19_Infection Whether the patient has previously had a Covid-19 infection 
AU_mL The level of antibodies in the patient’s blood, measured in arbitrary units 
Anti_IgG_antibody_results Results of the Anti-IgG antibody test 
_1st_type Type of vaccine received for the first dose 
_2nd_type Type of vaccine received for the second dose 
_3rd_type Type of vaccine received for the third dose (if applicable) 
Months_since_kidney_failure Number of months since the patient experienced kidney failure 
Time_since_last_vaccine_dose_weeks Number of weeks since the patient received their last vaccine dose  
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3.2. Machine learning models 

3.2.1. Predicting anti-S IgG antibodies level (AU/mL) level 
The results provided are the evaluation metrics of eight different single machine learning models Table 2 that were trained to 

predict the target variable "AU_mL" using a dataset. Lasso model performed the best overall. The Lasso model has a MAE of 8.81, 
indicating that on average, the model’s predictions deviate by approximately 8.81 units. The RMSE for the Lasso model is 19.59, which 
implies that the model’s predictions deviate by approximately 19.59 units on average. The R2 value for the Lasso model is 0.93, 
signifying that the model accounts for 93% of the variance in the data. The adjusted R2 value for the Lasso model, which accounts for 
the number of predictors in the model, is 0.93, providing a more accurate representation of the model’s ability to explain the variance 
in the data. The NRMSE for the Lasso model is 0.26, providing a means to evaluate the model’s performance relative to other models 
with varying data scales. 

An ensemble model is a combination of multiple individual models, which are combined to improve the overall performance of the 
model. Table 3 shows that the best ensemble model is the one that includes Lasso model only. It has the lowest MAE and RMSE values, 
and the highest R2 and adjusted R2 values. It also has the lowest NRMSE, which means that it performs better than the other models in 
comparison to the data scale. 

3.2.2. Predicting duration of immunogenicity 
Same models used to predict duration of immunogenicity in weeks (Time_since_last_vaccine_dose_weeks). The results show that all the 

single models perform reasonably well, with R2 values ranging from 0.54 to 0.71. The Random Forest model has the highest R2 value of 
0.71 which indicates that the model has a good fit to the data. The Decision Tree model has the lowest R2 value of 0.54, indicating that 
it does not fit the data as well as the other models. 

In terms of MAE, all the models have relatively low MAE values, with the Random Forest model having the lowest value of 4.18, 
indicating that it makes the least amount of error in its predictions. The Decision Tree model has the highest MAE value of 4.85, 
indicating that it makes more errors in its predictions compared to other models. The RMSE and NRMSE values are similar across all 
models, indicating that the models have similar levels of precision. 

Overall, the model with the highest R2 and Adj_ R2 values is the Random Forest model. It has an R2 value of 0.71 and an Adj_R2 
value of 0.69, which indicates that it can explain 71% and 69% of the variance in the data, respectively. This means that it is the best 
model in predicting. Other metrics like MAE and RMSE are also relatively low for this model which is also a sign of good performance, 
Table 4. 

As shown in Table 5, the ensemble model that has the best performance is the one that includes all the eight models; Ridge, Lasso, 
Linear Regression, Random Forest, AdaBoost, Gradient Boosting, XGBoost and Decision Tree. It has the lowest MAE, the lowest RMSE, 
the highest R2 and the highest Adjusted R2, 3.91, 5.00, 0.73, 0.72 0.52 respectively. 

On the other hand, the individual models like Lasso, Linear Regression, and Random Forest Regressor are not performing as well as 
the ensemble models that include them. This suggests that the combination of multiple models can lead to better predictions, as it can 
leverage the strengths of each individual model. 

4. Discussion 

To the best of our knowledge, this is the first study to employ machine learning techniques for the prediction of anti-S IgG antibody 
levels and the duration of immunogenicity. The results of this study provide valuable insights into the characteristics of individuals 
with kidney failure who received COVID-19 vaccines and their immune response to the virus. The mean age of the study population 
was 50 years, and the majority of patients were female. The most common cause of kidney failure was diabetes. All patients were on 
hemodialysis three times per week, and the majority had no previous COVID-19 infection. Pfizer was the most frequently administered 
vaccine, with approximately half of patients not receiving any vaccine doses. 

The study also evaluated eight different machine learning models for predicting anti-S IgG antibodies levels in response to COVID- 
19 vaccines. The Lasso model performed the best overall, with MAE of 8.81, RMSE of 19.59, and R2 value of 0.93. The adjusted R2 value 
for the Lasso model was also 0.93, indicating that the model’s ability to explain the variance in the data was not affected by the number 
of predictors in the model. Additionally, the NRMSE value for the Lasso model was 0.26, suggesting that its performance was better 
than other models, even when data scales varied. 

Table 2 
Evaluation of the machine learning models.  

Model MAE RMSE R2 Adjusted R2 NRMSE 

Lasso 8.81 19.59 0.93 0.93 0.26 
Linear Regression 12.03 21.07 0.92 0.92 0.28 
Ridge 13.12 22.14 0.91 0.91 0.30 
Random Forest 12.17 29.82 0.84 0.83 0.40 
XGBoost 12.57 33.00 0.81 0.79 0.44 
Gradient Boosting 12.90 34.98 0.78 0.77 0.47 
AdaBoost 14.18 38.60 0.74 0.72 0.51 
Decision Tree 11.25 42.14 0.68 0.66 0.56  
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Furthermore, the study assessed an ensemble model consisting of multiple individual models combined to improve the overall 
performance. The results indicated that the best ensemble model included only the Lasso model. It had the lowest MAE and RMSE 
values and the highest R2 and adjusted R2 values, as well as the lowest NRMSE value, indicating its superior performance relative to 
other models. 

The results of this study show that predicting the duration of immunogenicity can be reasonably well achieved using various 
machine learning models. The R2 values range from 0.54 to 0.71, with the Random Forest model having the highest value of 0.71, 
indicating a good fit to the data. The Decision Tree model has the lowest R2 value of 0.54, which indicates that it does not fit the data as 
well as the other models. 

In terms of mean absolute error (MAE), all the models have relatively low values, with the Random Forest model having the lowest 
value of 4.18. This indicates that it makes the least amount of error in its predictions. The Decision Tree model has the highest MAE 
value of 4.85, indicating that it makes more errors in its predictions compared to other models. The RMSE and NRMSE values are 
similar across all models, indicating that the models have similar levels of precision. 

Overall, the Random Forest model is the best model in predicting the duration of immunogenicity, as it has the highest R2 and 

Table 3 
Evaluation of different ensemble models.  

Models MAE RMSE R2 Adjusted R2 NRMSE 

lasso 8.81 19.59 0.93 0.93 0.26 
lasso, linear_regression 9.81 19.91 0.93 0.92 0.27 
ridge, lasso 10.57 20.49 0.93 0.92 0.27 
ridge, lasso, linear_regression 10.88 20.52 0.93 0.92 0.27 
linear_regression 12.02 21.07 0.92 0.92 0.28 
ridge, lasso, linear_regression, random_forest 11.28 21.62 0.92 0.91 0.29 
lasso, linear_regression, random_forest 10.83 21.82 0.92 0.91 0.29 
ridge, lasso, linear_regression, random_forest, ada_boost 10.93 21.89 0.91 0.91 0.29 
ridge 13.12 22.14 0.91 0.91 0.30 
lasso, linear_regression, random_forest, ada_boost 10.64 22.67 0.91 0.90 0.30 
ridge, lasso, linear_regression, random_forest, ada_boost, gradient_boosting 10.90 23.31 0.90 0.90 0.31 
linear_regression, random_forest 12.23 24.59 0.89 0.89 0.33 
ridge, lasso, linear_regression, random_forest, ada_boost, gradient_boosting, xgboost 11.46 25.43 0.89 0.88 0.34 
lasso, linear_regression, random_forest, ada_boost, gradient_boosting, xgboost 11.10 25.44 0.89 0.88 0.34 
lasso, linear_regression, random_forest, ada_boost, gradient_boosting 11.52 26.06 0.88 0.87 0.35 
ridge, lasso, linear_regression, random_forest, ada_boost, gradient_boosting, xgboost, dt 11.43 26.69 0.87 0.86 0.36 
linear_regression, random_forest, ada_boost, gradient_boosting 12.21 27.81 0.86 0.85 0.37 
linear_regression, random_forest, ada_boost 12.52 28.20 0.86 0.85 0.38 
lasso, linear_regression, random_forest, ada_boost, gradient_boosting, xgboost, dt 11.97 28.90 0.85 0.84 0.39 
linear_regression, random_forest, ada_boost, gradient_boosting, xgboost, dt 11.39 29.04 0.85 0.84 0.39 
linear_regression, random_forest, ada_boost, gradient_boosting, xgboost 12.45 29.43 0.85 0.84 0.39 
random_forest, ada_boost, gradient_boosting, xgboost, dt 11.18 29.47 0.85 0.84 0.39 
random_forest, ada_boost 12.84 29.98 0.84 0.83 0.40 
Decision_Tree 8.12 32.93 0.81 0.79 0.44 
xgboost 12.57 33.00 0.81 0.79 0.44 
random_forest, ada_boost, gradient_boosting, xgboost 12.89 33.35 0.80 0.79 0.44 
random_forest 13.60 33.38 0.80 0.79 0.44 
random_forest, ada_boost, gradient_boosting 13.07 33.49 0.80 0.79 0.45 
gradient_boosting, xgboost 13.12 34.02 0.79 0.78 0.45 
gradient_boosting 13.13 34.20 0.79 0.78 0.46 
ada_boost, gradient_boosting, xgboost 12.49 34.22 0.79 0.78 0.46 
ada_boost, gradient_boosting 12.39 34.88 0.78 0.77 0.46 
ada_boost 14.29 37.14 0.75 0.74 0.50 
gradient_boosting, xgboost, Decision_Tree 13.51 37.51 0.75 0.73 0.50 
ada_boost, gradient_boosting, xgboost, Decision_Tree 13.60 37.58 0.75 0.73 0.50 
xgboost, Decision_Tree 13.80 40.48 0.71 0.69 0.54  

Table 4 
Evaluation of Machine Learning models.  

Model MAE RMSE R2 Adjusted R2 NRMSE 

Random Forest 4.18 5.25 0.71 0.69 0.54 
Ridge 4.12 5.30 0.70 0.68 0.55 
Linear Regression 4.12 5.39 0.69 0.67 0.56 
Gradient Boosting 4.27 5.52 0.68 0.65 0.57 
XGBoost 4.42 5.58 0.67 0.65 0.58 
Lasso 4.42 5.72 0.65 0.63 0.59 
AdaBoost 4.56 5.75 0.65 0.62 0.59 
Decision Tree 4.85 6.55 0.54 0.51 0.68  
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adjusted R2 values of 0.71 and 0.69, respectively. This means that it is able to explain 71% and 69% of the variance in the data, 
respectively. Other metrics such as MAE and RMSE are also relatively low for this model, which is a sign of good performance. 

Interestingly, the ensemble model that includes all eight models, i.e., Ridge, Lasso, Linear Regression, Random Forest, AdaBoost, 
Gradient Boosting, XGBoost, and Decision Tree, has the best performance with the lowest MAE, the lowest RMSE, the highest R2, and 
the highest adjusted R2 values of 3.91, 5.00, 0.73, and 0.72, respectively. This suggests that combining multiple models can lead to 
better predictions, leveraging the strengths of each individual model. 

This study has some limitations. Firstly, the study population only includes individuals with kidney failure who received COVID-19 
vaccines and were on hemodialysis three times per week. This may limit the generalizability of the findings to other populations with 
kidney failure who are not on hemodialysis or who received different vaccine types. Secondly, while the study evaluated multiple 
machine learning models, it only considered a limited number of predictors for immune response and duration of immunogenicity. 
Other potential predictors such as comorbidities, vaccination history, and genetic factors may influence the immune response to 
COVID-19 vaccines and were not included in the analysis. Thirdly, the study did not assess the clinical implications of the predicted 
antibody levels or duration of immunogenicity. It is unclear whether the predicted outcomes correlate with actual protection against 
COVID-19 infection or disease progression. Lastly, the study relied on self-reported vaccination status, which may be subject to recall 
bias or inaccurate reporting. Additionally, the study did not assess the frequency or severity of adverse events following vaccination. 

5. Conclusion 

Overall, the study’s findings suggest that the Lasso model is an effective tool for predicting anti-S IgG antibodies levels in response 
to COVID-19 vaccines in individuals with kidney failure. The results of this study suggest that machine learning models can predict the 
duration of immunogenicity, with the Random Forest model and the ensemble model being the most effective. The results also 
highlight the importance of evaluating multiple machines learning models and using ensemble models to improve overall perfor-
mance. In addition, these findings can be helpful in improving vaccination strategies and promoting public health. However, future 
research is needed to validate these models and extend their application to different populations and vaccine types and consider 
additional predictors that may impact immune response to COVID-19 vaccines. 

Table 5 
Evaluation of ensemble models.  

Ensemble_Models MAE RMSE R2 Adjusted R2 NRMSE 

Ridge, Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost, DecisionTree 3.91 5.00 0.73 0.72 0.52 
Ridge, Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost 4.03 5.05 0.73 0.71 0.52 
LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost, DecisionTree 3.98 5.09 0.72 0.71 0.53 
Ridge, Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting 4.06 5.10 0.72 0.70 0.53 
Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost 4.04 5.11 0.72 0.70 0.53 
Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost, DecisionTree 4.09 5.11 0.72 0.70 0.53 
LinearRegression, RandomForest 4.01 5.13 0.72 0.70 0.53 
LinearRegression, RandomForest, AdaBoost, GradientBoosting 4.05 5.13 0.72 0.70 0.53 
RandomForest, AdaBoost, GradientBoosting, XGBoost, DecisionTree 3.99 5.15 0.72 0.70 0.53 
Lasso, LinearRegression, RandomForest 4.09 5.15 0.72 0.70 0.53 
Lasso, LinearRegression, RandomForest, AdaBoost, GradientBoosting 4.08 5.15 0.72 0.70 0.53 
Ridge, Lasso, LinearRegression, RandomForest, AdaBoost 4.08 5.15 0.72 0.70 0.53 
Ridge, Lasso, LinearRegression, RandomForest 4.10 5.15 0.72 0.70 0.53 
LinearRegression, RandomForest, AdaBoost, GradientBoosting, XGBoost 4.08 5.18 0.71 0.69 0.53 
Lasso, LinearRegression, RandomForest, AdaBoost 4.10 5.19 0.71 0.69 0.54 
RandomForest 4.05 5.19 0.71 0.69 0.54 
LinearRegression, RandomForest, AdaBoost 4.07 5.20 0.71 0.69 0.54 
RandomForest, AdaBoost, GradientBoosting, XGBoost 4.12 5.27 0.70 0.68 0.54 
RandomForest, AdaBoost, GradientBoosting 4.09 5.28 0.70 0.68 0.54 
Ridge 4.12 5.30 0.70 0.68 0.55 
Ridge, Lasso, LinearRegression 4.18 5.32 0.70 0.68 0.55 
Ridge, Lasso 4.26 5.36 0.69 0.67 0.55 
Lasso, LinearRegression 4.22 5.37 0.69 0.67 0.55 
LinearRegression 4.12 5.39 0.69 0.67 0.56 
RandomForest, AdaBoost 4.15 5.41 0.69 0.67 0.56 
GradientBoosting 4.13 5.43 0.69 0.66 0.56 
GradientBoosting, XGBoost 4.22 5.46 0.68 0.66 0.56 
AdaBoost, GradientBoosting, XGBoost 4.24 5.47 0.68 0.66 0.56 
AdaBoost, GradientBoosting, XGBoost, DecisionTree 4.29 5.51 0.68 0.65 0.57 
AdaBoost, GradientBoosting 4.31 5.53 0.67 0.65 0.57 
XGBoos 4.42 5.58 0.67 0.65 0.58 
GradientBoosting, XGBoost, DecisionTree 4.36 5.62 0.66 0.64 0.58 
AdaBoost 4.45 5.69 0.66 0.63 0.59 
Lasso 4.42 5.72 0.65 0.63 0.59 
XGBoost, DecisionTree 4.58 5.80 0.64 0.62 0.60 
DecisionTree 5.02 6.66 0.53 0.50 0.69  
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immunity are impaired in end-stage-renal-disease patients treated with hemodialysis, peritoneal dialysis and kidney transplant recipients Immunized with 
BNT162b2 pfizer-BioNTech SARS-CoV-2 vaccine, Front. Immunol. 13 (2022) 832924. 

[5] J.J. Chen, T.H. Lee, Y.C. Tian, C.C. Lee, P.C. Fan, C.H. Chang, Immunogenicity rates after SARS-CoV-2 vaccination in people with end-stage kidney disease: a 
systematic review and meta-analysis, JAMA Netw. Open 4 (8) (2021) e2131749. 

[6] N. Babel, C. Hugo, T.H. Westhoff, Vaccination in patients with kidney failure: lessons from COVID-19, Nat. Rev. Nephrol. 18 (2022) 708–723. 
[7] R. Patel, M. Kaki, V.S. Potluri, P. Kahar, D. Khanna, A comprehensive review of SARS-CoV-2 vaccines: pfizer, Moderna & Johnson & Johnson, Hum. Vaccines 

Immunother. 18 (5) (2022) 1291–1298. 
[8] A.P.S. Munro, L. Janani, V. Cornelius, P.K. Aley, G. Babbage, D. Baxter, M. Bula, K. Cathie, K. Chatterjee, K. Dodd, et al., Safety and immunogenicity of seven 

COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, 
randomised, controlled, phase 2 trial, Lancet 398 (10287) (2021) 2258–2276. 

[9] M. Dekervel, N. Henry, M. Torreggiani, L.M. Pouteau, J.P. Imiela, C. Mellaza, A.S. Garnier, A. Dujardin, M. Asfar, A. Ducancelle, et al., Humoral response to a 
third injection of BNT162b2 vaccine in adults previously vaccinated with Pfizer-BioNTech COVID-19 mRNA vaccine, Lancet 397 (2021) 1335–1342. 

[10] K.Y. Ngiam, W. Khor, Big data and machine learning algorithms for health-care delivery, Lancet Oncol. 20 (5) (2019) e262–e273. 
[11] M.H. Stanfill, D.T. Marc, Health information management: implications of artificial intelligence on healthcare data and information management, Yearbook of 

medical informatics 28 (1) (2019) 56–64. 

S. Awad M Alqahtani et al.                                                                                                                                                                                         

http://refhub.elsevier.com/S2405-8440(24)03625-9/sref1
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref1
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref2
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref3
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref3
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref4
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref4
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref4
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref5
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref5
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref6
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref7
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref7
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref8
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref8
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref8
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref9
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref9
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref10
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref11
http://refhub.elsevier.com/S2405-8440(24)03625-9/sref11

	Predicting immunogenicity of COVID-19 vaccines in hemodialysis patients with renal disease
	1 Introduction
	2 Materials and methods
	3 Results
	3.1 Variable characteristics
	3.2 Machine learning models
	3.2.1 Predicting anti-S IgG antibodies level (AU/mL) level
	3.2.2 Predicting duration of immunogenicity


	4 Discussion
	5 Conclusion
	Funding
	Data availability statements
	CRediT authorship contribution statement
	Declaration of competing interest
	References


