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Abstract

Post-hemorrhagic hydrocephalus (PHH) is a severe complication of intraventricular

hemorrhage (IVH) in very preterm infants. PHH monitoring and treatment decisions

rely heavily on manual and subjective two-dimensional measurements of the ventri-

cles. Automatic and reliable three-dimensional (3D) measurements of the ventricles

may provide a more accurate assessment of PHH, and lead to improved monitoring

and treatment decisions. To accurately and efficiently obtain these 3D measure-

ments, automatic segmentation of the ventricles can be explored. However, this seg-

mentation is challenging due to the large ventricular anatomical shape variability in

preterm infants diagnosed with PHH. This study aims to (a) propose a Bayesian

U-Net method using 3D spatial concrete dropout for automatic brain segmentation

(with uncertainty assessment) of preterm infants with PHH; and (b) compare the

Bayesian method to three reference methods: DenseNet, U-Net, and ensemble learn-

ing using DenseNets and U-Nets. A total of 41 T2-weighted MRIs from 27 preterm

infants were manually segmented into lateral ventricles, external CSF, white and cor-

tical gray matter, brainstem, and cerebellum. These segmentations were used as gro-

und truth for model evaluation. All methods were trained and evaluated using 4-fold

cross-validation and segmentation endpoints, with additional uncertainty endpoints

for the Bayesian method. In the lateral ventricles, segmentation endpoint values for

the DenseNet, U-Net, ensemble learning, and Bayesian U-Net methods were mean

Dice score = 0.814 ± 0.213, 0.944 ± 0.041, 0.942 ± 0.042, and 0.948 ± 0.034

respectively. Uncertainty endpoint values for the Bayesian U-Net were mean

recall = 0.953 ± 0.037, mean negative predictive value = 0.998 ± 0.005, mean

accuracy = 0.906 ± 0.032, and mean AUC = 0.949 ± 0.031. To conclude, the Bayes-

ian U-Net showed the best segmentation results across all methods and provided

accurate uncertainty maps. This method may be used in clinical practice for auto-

matic brain segmentation of preterm infants with PHH, and lead to better PHH moni-

toring and more informed treatment decisions.

Received: 15 June 2021 Revised: 8 December 2021 Accepted: 11 December 2021

DOI: 10.1002/hbm.25762

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;43:1895–1916. wileyonlinelibrary.com/journal/hbm 1895

https://orcid.org/0000-0003-0336-6350
mailto:climpero@childrensnational.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


K E YWORD S

automatic brain segmentation, Bayesian deep learning, Monte Carlo dropout, post-
hemorrhagic hydrocephalus, preterm infants, uncertainty assessment

1 | INTRODUCTION

Post-hemorrhagic hydrocephalus (PHH) in very preterm infants is a

complication of intraventricular hemorrhage (IVH) characterized by an

accumulation of cerebrospinal fluid (CSF) and a progressive dilatation

of the ventricular system (El-Dib et al., 2020; Isaacs et al., 2019;

Robinson, 2012). PHH can raise intracranial pressure and lead to

death or severe neuromotor and neurocognitive impairments includ-

ing cerebral palsy, epilepsy, visual impairments, as well as language

and cognitive deficits (El-Dib et al., 2020; Gilard et al., 2018;

Robinson, 2012). Monitoring and treatment decisions (i.e., CSF diver-

sion and timing for intervention) of PHH rely heavily on subjective

and unreliable two-dimensional (2D) manual measurements of the

ventricular system (e.g., Evans ratio, ventricular index, anterior horn

width, etc.; El-Dib et al., 2020; Węgliñski & Fabijañska, 2012). Impreci-

sion of these 2D measurements may lead to misidentification of

infants requiring CSF diversion, delay neurosurgical interventions, and

worse neurodevelopmental outcomes (El-Dib et al., 2020). Automatic

three-dimensional (3D) measurements of the ventricular system and

surrounding brain tissues (CSF, white and cortical gray matter, cere-

bellum, and brainstem) may provide a more accurate method for mon-

itoring PHH and enable better informed treatment decisions (Ambarki

et al., 2010; Bradley, Safar, Hurtado, Ord, & Alksne, 2004; Gontard,

Pizarro, Sanz-Peña, Lubián L�opez, & Benavente-Fernández, 2021;

Kishimoto, Fenster, Lee, & de Ribaupierre, 2018; Qiu et al., 2017;

Węgliñski & Fabijañska, 2012). To obtain these quantitative 3D brain

measurements accurately and efficiently, automatic segmentation is

needed (as manual segmentation is time-consuming and cumber-

some). However, this segmentation task is challenging due to the large

variability in the shape of the ventricles of preterm infants diagnosed

with PHH.

Automatic brain segmentation in preterm infants with PHH has

been investigated in a limited number of studies (Gontard et al., 2021;

Qiu et al., 2015, 2017; Tabrizi et al., 2018; Węgliñski &

Fabijañska, 2012). Tabrizi et al. (2018) proposed fuzzy 2D c-mean and

active contour algorithms to segment the lateral ventricles of preterm

infants with PHH on 2D ultrasound imaging. Unfortunately, these

algorithms were applied only on one 2D slice per subject (not taking

into account the entire lateral ventricular volume) and used computa-

tionally costly handcrafted features (i.e., features manually designed

by an engineer; Khene et al., 2018; Nanni, Ghidoni, &

Brahnam, 2017). Węgliñski and Fabijañska (2012) proposed a 2D

graph-based algorithm to segment the ventricular system of infants

with PHH on CT imaging. This algorithm was trained on a small cohort

(15 subjects) and required manual initialization, and thus was not fully

automatic. Moreover, the segmentation performance of the algorithm

was not quantitatively evaluated. Qiu et al. (2015, 2017) used atlas-

based and level set algorithms to segment the ventricular system of

preterm infants suffering from PHH on 3D ultrasound and MR imag-

ing. Unfortunately, these algorithms relied on several computationally

costly and difficult deformable registrations. Moreover, they were

trained and evaluated on small cohorts: including 14 subjects with

PHH for the ultrasound study and 7 subjects with PHH for the MRI

study. Gontard et al. 2021 used a 2D CNN deep learning method

(DLM; Barateau et al., 2020; Boulanger et al., 2021; Largent

et al., 2019; Largent et al., 2021; LeCun, Bengio, & Hinton, 2015;

LeCun, Kavukcuoglu, & Farabet, 2010; Rigaud et al., 2021) to segment

the lateral ventricles of preterm infants with PHH on 3D ultrasound

imaging. This method was semi-automatic (i.e., manual placement of a

bounding box was required), trained and evaluated on a small cohort

(10 subjects), and did not consider 3D contextual information of the

images. These reported studies were focused on segmenting only the

ventricular system and not the surrounding brain tissues. However,

segmentations of the surrounding brain tissues may aid in understand-

ing the compressive and vascular effects of PHH (du Plessis, 1998;

Maertzdorf, Vles, Beuls, Mulder, & Blanco, 2002; Robinson, 2012).

Although MR imaging can provide more accurate 3D measurements

than ultrasound and CT imaging due to better soft-tissue contrast

(Glenn & Barkovich, 2006; Largent et al., 2020; Qiu et al., 2015), only

one study (Qiu et al., 2015) has investigated (on a small cohort) MRI-

based automatic brain segmentation of PHH in preterm infants. In

addition, none of the methods presented in these studies provided an

assessment of their uncertainty (i.e., values indicating whether the

models are certain or not about their segmentation predictions).

Uncertainty assessment nevertheless could allow efficient and accu-

rate identification, and refinement of failed brain segmentations

(DeVries & Taylor, 2018), and thus may help clinical decisions.

Bayesian DLMs using Monte Carlo dropout (Gal &

Ghahramani, 2016; Gal, Hron, & Kendall, 2017) may be used to accu-

rately segment the preterm infant brains and assess model uncer-

tainty. These methods have shown outstanding performance in a

variety of applications such as reinforcement learning (Lütjens, Ever-

ett, & How, 2019; Okada & Taniguchi, 2020), autonomous driving

(McAllister et al., 2017; Michelmore et al., 2020), and image synthesis

(Hemsley et al., 2020; Miok, Nguyen-Doan, Zaharie, & Robnik-

Šikonja, 2019). However, their performance for automatic brain seg-

mentation in preterm infants with PHH on MR imaging is unknown.

Therefore, this study aimed to (a) propose and evaluate a 3D Bayesian

U-Net method using 3D spatial concrete dropout for automatic brain

MRI segmentation in preterm infants with PHH; (b) compare the per-

formance of the Bayesian U-Net method to three reference methods

(DenseNet, U-Net, and ensemble learning using several DenseNets

and U-Nets); and (c) assess and evaluate the uncertainty of the Bayes-

ian U-Net method.
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2 | MATERIALS AND METHODS

This study was approved by the institutional review board (IRB) of

Children's National Hospital, Washington, DC. Informed

written consents were obtained from the legal guardians of all

participants.

2.1 | Participants

Twenty-seven preterm infants diagnosed with PHH, and Papile IVH

grades 2–4, were included in our study. These infants were enrolled in

a prospective longitudinal study characterizing brain injury in preterm

infants weighing less than 1,500 grams at birth. Gestational age

(mean ± SD) and weight (mean ± SD) of the preterm infants at birth

were 26.75 ± 2.99 weeks and 965.00 ± 477.13 grams, respectively.

The demographics of the cohort are detailed in Table 1.

2.2 | Data acquisition and preprocessing

The preterm infants had a total of 41 brain MRI studies that were per-

formed on a 1.5 T MRI scanner (GE Healthcare, Discovery MR450,

Milwaukee, WI) or a 3 T MRI scanner (GE Healthcare, Discovery

MR750, Milwaukee, WI). On the 1.5 T scanner, 16 multiplanar T2-

weighted single-shot fast-spin-echo 2D images were acquired with

the following sequence parameters: TE = 160 ms; TR = 700–

1,100 ms; flip angle= 90�; slice thickness= 2 mm; field-of-view= 10–

12 � 10–12 cm; and acquisition matrix = 192 � 128. After 3D

reconstruction (Kainz et al., 2015), the resolution and voxel size of the

reconstructed images were 153–200 � 168–240 � 168–240 voxel

and 0.5 � 0.5 � 0.5 mm, respectively. On the 3 T MRI scanner, 25 T2-

weighted 3D images were acquired with a Cube sequence and the fol-

lowing parameters: TE = 64.7–84.1 ms; TR = 2,500 ms; flip

angle = 90�; field-of-view = 13–16 � 12–15.6 � 13–16 cm; and

acquisition matrix = 160 � 160. The resolution and voxel size of the

obtained 3D images were 256 � 120–156 � 256 voxels and 0.508–

0.625 � 1 � 0.508–0.625 mm, respectively.

To reduce graphics processing unit (GPU) memory usage and

training time of the DLMs, the T2-weighted MRIs were resampled to

the same dimension (i.e., a resolution = 256 � 128 � 256 voxels with

a voxel size = 0.264–0.625 � 0.656–1.219 � 0.328–0.625 mm). To

correct MRI non-uniformity and normalize the MRI contrast, the res-

ampled images were preprocessed using an N4 bias field correction

algorithm (Tustison et al., 2010) (maximum number of iterations = 4;

number of control points = 4; pyramid level = 2; number of histogram

bins = 200) and histogram matching (number of histogram

bins = 1,024; number of match points = 15; threshold at mean inten-

sity to exclude voxels belong to the MRI background). Further, manual

segmentations of the lateral ventricles, the external CSF, the white

and cortical gray matter, the cerebellum, and the brainstem were per-

formed by a biomedical engineer highly trained in fetal and neonatal

MRI segmentation. These manual segmentations served as ground

truth during training and evaluation of the DLMs (the non-brain areas

of the MRIs were not removed as preprocessing).

2.3 | DLMs for brain segmentation in preterm
infants with post-hemorrhagic hydrocephalus

A 3D Bayesian U-Net was proposed to automatically segment the

brains of preterm infants with PHH. This Bayesian method was com-

pared to three reference methods: 3D Dense-Net (Bui, Shin, &

Moon, 2017), 3D U-Net (Ronneberger, Fischer, & Brox, 2015), and

ensemble learning using several 3D DenseNets and 3D U-Nets. For all

DLMs, the entire cohort (41 scans) was iteratively split into training

(30 scans) and validation (10 and 11 scans) subsets using a 4-fold

cross-validation. Repeated scans from the same subject were included

in the same subset to avoid data leakage.

2.3.1 | 3D DenseNet

The architecture of the 3D DenseNet was identical to the one pro-

posed by Bui et al. (Bui et al., 2017; Wang et al., 2019). This architec-

ture included feature extraction and up-sampling steps. The feature

extraction step was composed of three convolutional layers (kernel

size = 3 � 3 � 3, stride = 1) followed by batch normalization and

parametric rectified linear unit (PReLu) activation function, and four

dense blocks followed by transition block. Each dense block contained

eight batch normalizations, PReLu activation functions, convolutional

layers (kernel sizes = 1 � 1 � 1 and 3 � 3 � 3, stride = 1, growth

TABLE 1 Demographics of the subjects

Demographics

Gestational age (at birth) 26.75 ± 2.99 weeks

Birth weight 965.00

± 477.13 grams

Post-conceptual age (at MRI scan) 36.83 ± 4.09 weeks

IVH grade Grade 2 = 10 scans

Grade 3 = 9 scans

Grade 4 = 22 scans

Cerebellar hemorrhage 27 scans

Shunt insertion (before scanning) 1 scan

Ventricular access devices insertion (before

scanning)

8 scans

Porencephaly 5 scans

Polymicrogyria 2 scans

Callosal hypogenesis 2 scans

Periventricular leukomalacia 2 scans

Cervical cord syrinx 2 scans

Punctate hemorrhage 3 scans

Note: Gestational age, birth weight, and postconceptual age are presented

as mean ± SD.
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rate = 16). Each transition block contained two convolutional layers

(kernel size = 1 � 1 � 1, strides = 1 and 2, theta = 0.5). The up-

sampling step was composed of four transposed convolutional layers

(kernel size = 2 � 2 � 2, stride = 2) applied after each dense block.

These transposed convolutional layers were concatenated. Then, a

convolutional layer (kernel size = 1 � 1 � 1, stride = 1) and a softmax

activation function were applied on the resulting concatenated layer

to obtain a probability segmentation map.

The DenseNet architecture used a relative small number of net-

work parameters (Table 2). However, unlike the U-Net methods

presented below, the computational complexity of the DenseNet

architecture does not heavily depend on its number of network

parameters. The computational complexity of the DenseNet

depends also on the number of skip connections performed inside

each dense block and the growing rate considered (i.e., the among

of GPU memory required to stock the convolutional layers present

in the dense blocks after their multiple duplications and

concatenations).

2.3.2 | 3D U-Net

The architecture of the 3D U-Net was decomposed into two parts

called encoding and decoding (Figure 1). The encoding part aimed to

extract multi-scale features from the input images. It consisted of four

convolutional blocks each containing two convolutional layers (kernel

size = 3 � 3 � 3, stride = 1, and kernel number per block = 64,

128, 256, 512, respectively), a batch normalization, and a PReLu acti-

vation function. To allow computation of the multi-scale features, the

outputs of the first three convolutional blocks were down-sampled

using a convolutional layer (kernel size = 2 � 2 � 2, and stride = 2).

The decoding part aimed to gradually construct a probability segmen-

tation map from the multi-scale features extracted in the encoding

part. The architecture of the decoding part mirrored the encoding part

architecture, except that the convolutional layers used for feature

down-sampling were replaced by transposed convolutional layers for

feature up-sampling. At the end of the decoding part, a convolutional

layer (kernel size = 1 � 1 � 1, kernel number = 7) and a softmax acti-

vation function were used to obtain the final probability

segmentation map.

2.3.3 | Ensemble learning using several 3D
DenseNets and 3D U-Nets

Ensemble learning methods aim to independently train several

machine learning models and to combine the models' predictions to

obtain accurate and robust results. The machine learning model used

to build our ensemble learning method were two 3D DenseNets and

two 3D U-Nets. The architectures of these deep learning networks

were identical to those of the previously described 3D DenseNet and

3D U-Net. To combine the predictions of the 3D DenseNets and 3D

U-Nets, their probability segmentation maps were averaged per voxel.

2.3.4 | 3D Bayesian U-Net

Bayesian neural networks (BNNs) are stochastic artificial neural networks

trained using Bayesian inference (Hoffman, Blei, Wang, & Paisley, 2013;

MacKay, 1992; Paisley, Blei, & Jordan, 2012). BNNs integrate prior beliefs

about the network weights and assess neural network uncertainty. For

this purpose, prior distributions are placed over the network weights and

stochastic predictions are performed using posterior inference. Unfortu-

nately, Bayesian inference with neural networks is intractable and ipso

facto highly challenging to apply in several scientific fields (e.g., medical

image processing, autonomous driving, reinforcement learning). To

address this issue without reducing network complexity and performance,

Gal et al. approximated BNNs using a Monte Carlo Dropout algorithm

(Gal & Ghahramani, 2016). In this method, dropout (Srivastava, Hinton,

Krizhevsky, Sutskever, & Salakhutdinov, 2014) was placed over each

weighted layer (therefore simulating a Bernoulli prior distribution) and

enabled at testing time to allow generation of T stochastic predictions

per testing data. Then, the mean and the variance of the stochastic

predictions were considered as the model expectation (the final pre-

diction) and the model uncertainty.

3D Bayesian U-Net using 3D spatial dropout

In our study, Monte Carlo dropout was used to automatically segment

the lateral ventricles and surrounding brain tissues of our subjects and

to assess model uncertainty (i.e., uncertainty map). For this purpose,

3D spatial dropout was placed over the last convolutional layer of the

third, fourth, and fifth convolutional blocks of the previously

described 3D U-Net. Then, the modified neural network (Figure 1)

was trained. Further, the 3D spatial dropouts were enabled at testing

time and T stochastic forward passes were performed through the

trained network to obtain the model expectation (final segmentation)

and the uncertainty map of each subject.

The model expectation was defined as:

Ε¼ 1
T

XT
t¼1

Pt

where Pt represents the probability segmentation map obtained at the

tth forward pass through the network, and T represents the total num-

ber of stochastic forward passes.

TABLE 2 Total number of parameters for each deep learning
method

Deep learning methods Number of parameters

DenseNet Network = 30,617,887

U-Net Network = 111,693,063

Ensemble learning using several

DenseNets and U-Nets

Network = 284,623,164

Bayesian U-Net using 3D spatial dropout

(p = 0.1)

Network = 111,698,695

Stochastic pass = 6

Bayesian U-Net using 3D spatial concrete

dropout

Network = 111,698,702

Stochastic pass = 6
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The uncertainty map was defined as the entropy of the probabil-

ity segmentation maps:

U¼�
X
i

1
T

XT
t¼1

Pt,i

 !
log

1
T

XT
t¼1

Pt,i

 !

where Pt,i represents the probability segmentation map for the

volume-of-interest i at the tth forward pass through the network, and

T represents the total number of stochastic forward passes.

A manual grid search was conducted to find the 3D spatial drop-

out parameter p value producing the most accurate segmentations

and uncertainty maps. For this purpose, the 3D Bayesian U-Net was

trained several times with distinct p values: 0.1, 0.2, 0.3, 0.4 and 0.5.

Then, the obtained segmentations and uncertainty maps were com-

pared. During the training of the network, p was fixed to the same

value in all convolutional blocks.

3D Bayesian U-Net using 3D spatial concrete dropout

The manual grid search described previously was computationally

expensive and did not consider all possible p values. Thus, alterna-

tively, we implemented a 3D Bayesian U-Net method using 3D spatial

concrete dropout that directly optimized p during training of the

neural network. This Bayesian method is an extension for 3D con-

volutional layers of the Monte Carlo concrete dropout method pro-

posed by Gal et al. (2017). The architecture of this method used as

backbone the previously described U-Net. In this architecture, 3D

spatial concrete dropout was placed over the last convolutional layer

of all convolutional blocks.

Let ω¼ Wlf gLl¼1 a set of weight matrices of a Bayesian neural net-

work, L the number of layers, P ωð Þ the prior of the neural network,

and θ¼ plf gLl¼1 a set of dropout parameters, Gal et al. interpreted

dropout as an approximate distribution qθ ωð Þ of P ωð Þ. Then, they used

the Kullback–Leibler divergence between qθ ωð Þ and P ωð Þ as a penali-

zation term in the loss function of the neural network to ensure that

qθ ωð Þ does not deviate too far from P ωð Þ. This penalized loss function

was defined as follows:

bLMC θð Þ¼� 1
M

X
i � S

log p yijfω xið Þð Þþ 1
M
KL qθ ωð Þ P ωð Þkð Þ

where θ is the parameter to optimize, M is the number of data points,

S is a random set of data point indexes, xi and fω xið Þ are the input and

output of the neural network, yi is the true prediction of xi, and KL is

the Kullback–Leibler divergence.

F IGURE 1 Architecture of the Bayesian U-Net method using 3D spatial dropout. All investigated Bayesian deep learning methods used a 3D
U-Net as backnone. This 3D U-Net was considered as a reference method. The architecture of the 3D U-Net differs from those of the Bayesian
methods by not using dropout techniques in its convolutional blocks
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To allow optimization of θ through gradient descent, Gal et al.

proposed to compute the derivative of the penalized loss function

using a stochastic backpropagation (Kingma, Salimans, &

Welling, 2015; Rezende, Mohamed, & Wierstra, 2014; Titsias &

Lázaro-Gredilla, 2014). This backpropagation method required that

the distribution at hand can be reparametrized in the form of g θ,εð Þ
where θ is the distribution's parameter and ε is a random variable not

depending on θ: Unfortunatly, the dropout's discrete Bernoulli distri-

bution could not be expressed in this form. To address this issue, Gal

et al. replaced the dropout's discrete Bernoulli distribution by its con-

tinuous relaxation called concrete distribution (Jang, Gu, &

Poole, 2017; Maddison, Mnih, & Teh, 2017). In our Bayesian method,

the concrete distribution was used to entirely mask some 3D feature

maps of the network (3D spatial concrete dropout) instead of sparsely

masking their voxels as it was originally done by Gal et al.

2.4 | Network training and parameters

The DLMs were trained using 3D patches (size = 64 � 64 � 64, stride

of sliding window = 14) extracted from the MRIs and the manual seg-

mentations. The Adam algorithm (Kingma & Ba, 2014) was used to

optimize the DLM parameters. The parameters of the Adam algorithm

were: learning rate ¼1�10�3, β1 ¼0:9, and β2 ¼0:9: The binary

cross-entropy was used as loss function. The DLM batch sizes were

equal to 6, and the number of epochs of the DLMs was equal to

100 (with 400 gradient descent steps per epoch). For all Bayesian U-

Net methods, the total number of stochastic forward passes was set

to 6 to obtain a computational time suitable for clinical practice. For

the Bayesian U-Net using 3D spatial concrete dropout, the weight

and spatial dropout regularizers were set to 1e�6 and 1e�5. During the

training of the DLMs, on-the-fly data augmentation (translation by �5

to +5mm per axis, rotation by �5� to +5� per axis, vertical flip, and

generation of synthetic MRI motion artifacts (Pérez-García, Sparks, &

Ourselin, 2021)) was conducted to make them more robust to over-

fitting. During testing of the DLMs, the probability segmentation maps

obtained from neighbor patches were averaged. Then, majority votes

were applied on the average patches to get the segmented patches.

All DLMs were implemented on an Nvidia A100 PCIE 40GB GPU card

using Python 3.6.0 and Keras (Chollet, 2015). The training computa-

tional times (per fold) of the DenseNet, U-Net, ensemble learning

using several DenseNets and U-Nets, Bayesian U-Net using 3D spatial

dropout (p = 0.1), and Bayesian U-Net using 3D spatial concrete drop-

out were 2.46, 2.73, 10.38, 2.77, and 3.06hr, respectively. Table 2

summarized the total number of parameters used by each DLM.

2.5 | Evaluation of the DLMs

2.5.1 | Segmentation endpoints

To evaluate the performance of the proposed DLMs, the manual and

DLM segmentations of each volumes-of-interest were compared. For

this comparison, endpoints such as Dice score, 95th percentile of the

Hausdorff distance (95th HD), average symmetric surface distance

(ASSD), absolute and relative volume differences were considered.

Dice score was defined as:

Dice score Segm,Segdð Þ¼2� Segm\Segdð Þ
Segmj jþ Segdj j

95th percentile of the Hausdorff distance was defined as:

95thHD Segm,Segdð Þ¼95thpercentile

 
8 voxelm � Segm inf

voxeld � Segd
dist

voxelm,voxeldð Þ, 8 voxeld � Segd inf
voxelm � Segm

dist voxeld,voxelmð Þ
!

Average symmetric surface distance was defined as:

ASSD Segm,Segdð Þ¼ 1
Surfmj jþ Surfmj j�

 X
vertexm � Surfm

inf
vertexd � Surfd

dist vertexm,vertexdð Þþ
X

vertexd � Surfd

inf
vertexm � Surfm

dist vertexd,vertexmð Þ
!

Absolute volume difference was defined as:

Absolute volume difference Volm,Voldð Þ¼ Volm�Voldj j

Relative volume difference was defined as:

Relative volume difference Volm,Voldð Þ¼ Volm�Voldj j
Volmj j

where Segm and Segd are the manual and DLM segmentations, Surfm

and Surfd are the surfaces of the manual and DLM segmentations, dist

is the Euclidian distance, and Volm,Vold are the volume of the manual

and DLM segmentations.

2.5.2 | Uncertainty endpoints

To evaluate and compare the uncertainty maps provided by the

Bayesian U-Net methods:

1. Binary error maps between the manual and Bayesian U-Net seg-

mentations were computed and used as ground truth. Error map

value = 1 represents voxels where the manual and Bayesian U-

Net segmentations were distinct, and error map value = 0 repre-

sents voxels where the manual and Bayesian U-Net segmentations

were in agreement.

2. Uncertainty maps were normalized between 0 and 1 (per segmen-

tation method).

3. Normalized uncertainty maps were binarized by thresholding, and

they were compared to their corresponding error maps using
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endpoints such as recall, negative predictive value (NPV), accuracy,

and area under the receiving operating characteristic curve (AUC)

(Mobiny et al., 2021).

Normalization of the uncertainty maps was performed using the fol-

lowing formula:

Normalized Ukð Þ¼ Uk�Uminð Þ
Umax�Uminð Þ

where Uk is the uncertainty map of a given subject for method k, and

Umax and Umin are the maximum and minimum values of the uncer-

tainty maps across the entire cohort for method k. In our experiments,

Umin was set to 0 as the uncertain map values (corresponding to

entropy values) cannot be lower than 0.

The threshold values used to binarize the uncertainty maps were

determined using the geometric mean metric. This metric was

defined as:

gmean Uk,ið Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
recall Uk,i,Ekð Þ� 1�FPR Uk,i ,Ekð Þð Þ

q

where Uk, i and Ek are the binarized uncertainty and error maps of a

given subject for method k, i� ⟦0;1⟧ is the threshold value used to

binarize Uk, i, and FPR is the false positive rate.

The argmax
i

gmean Uk, ið Þ allows finding of an optimal threshold

iopt that balance recall Uk,Ekð Þ and FPR Uk,Ekð Þ of a given subject. The

optimal thresholds of all subjects were calculated using argmax
i

gmean

and average over the entire cohort per method (values of i tested to

estimate iopt ranged between 0 and 1 with a step = 0.01). Then, the

obtained average thresholds were used to binarize the uncertainty

maps of all subjects (per method) and to compute the uncertainty end-

point values.

Recall represents the probability that the model is uncertain

about its prediction given its prediction is incorrect. It was defined as:

recall¼P uncetainjincorrectð Þ¼P uncertain, incorrectð Þ
P incorrectð Þ ¼ tp

tpþ fnð Þ

FPR was defined as:

FPR¼ fp
fpþ tnð Þ

NPV represents the probability that the model prediction is correct

given the model is certain about its prediction. It was defined as:

NPV¼P correctjcertainð Þ¼ P correct, certainð Þ
P certainð Þ ¼ tn

tnþ fnð Þ

Accuracy is the ratio of the number of voxels where the uncertainty

and error maps were in agreement over the total number of voxels. It

was defined as:

Accuracy¼ tpþ tn
tpþ fpþ tnþ fn

where tp is the number of true positives, fp is the number of false pos-

itives, fn is the number of false negatives, and tn is the number of true

negatives.

AUC is the area under the receiving operating characteristic curve

computed from recall and FPR.

2.5.3 | Stability of the segmentation and
uncertainty results of the Bayesian U-Net using 3D
spatial dropout and Bayesian U-Net using 3D spatial
concrete dropout

The 4-fold cross-validation performed with the Bayesian U-Net using

3D spatial dropout (p = 0.1) and Bayesian U-Net using 3D spatial con-

crete dropout was repeated three times to quantify the stability of

the results and stochastic biases of these methods. The means and

SDs of the segmentation and uncertainty endpoint values across the

repeated cross-validations were compared (per method and volume-

of-interest).

2.5.4 | Robustness to challenging subjects

Cumulative histograms of the Dice scores of the external CSF and lat-

eral ventricles were computed to identify subjects with failed segmen-

tations (Dice scores values < 0.75). The number of subjects with failed

segmentations for the DenseNet, U-Net, ensemble learning using sev-

eral DenseNets and U-Nets, Bayesian U-Net using 3D spatial dropout

(p = 0.1), and Bayesian U-Net using 3D spatial concrete dropout were

compared to determine the most robust method.

2.6 | Statistical analysis

Paired Wilcoxon tests were used to (a) compare the segmentation

endpoint values of the Bayesian U-Net using 3D spatial dropout

(p = 0.1) and Bayesian U-Net using 3D spatial concrete dropout to

those of the other Bayesian U-Net methods; (b) compare the uncer-

tainty endpoint values of the Bayesian U-Net using 3D spatial drop-

out (p = 0.1) and Bayesian U-Net using 3D spatial concrete dropout

to those of the other Bayesian U-Net methods; (3) compare the seg-

mentation endpoint values of the Bayesian U-Net using 3D spatial

dropout (p = 0.1) and Bayesian U-Net using 3D spatial concrete drop-

out to those of the DenseNet, U-Net, and ensemble learning using

several DenseNets and U-Nets. The endpoint values were considered

significantly different when the p-values of the Wilcoxon tests were

less than 0.05.

Friedman tests were used to compare the segmentation and

uncertainty endpoint value distributions across the three repeated

cross-validations of the Bayesian U-Net using 3D spatial dropout
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(p = 0.1) and Bayesian U-Net using 3D spatial concrete dropout. The

distributions were considered significantly different when the p-

values of the Friedman tests were less than 0.05.

3 | RESULTS

3.1 | Optimization of the Bayesian U-Net using 3D
spatial dropout through manual grid search

Table 3. shows the mean segmentation endpoint values of all Bayes-

ian U-Net methods and volumes-of-interest. Overall, the Bayesian U-

Net using 3D spatial dropout with p = 0.1 provided significantly

higher Dice score values and lowest 95th HD, ASSD, absolute and rel-

ative volume difference values than other Bayesian U-Net methods

using 3D spatial dropout. The Bayesian U-Net using 3D spatial drop-

out with p = 0.5 provided the lowest Dice score values and the

highest 95th HD, and ASSD values. Table 4 shows the mean uncer-

tainty endpoint values of the Bayesian U-Net methods. All methods

provided high uncertainty endpoint values (which demonstrates good

concordance between the uncertainty maps and their corresponding

error maps). Overall, the accuracy and AUC values of the Bayesian

U-Net using 3D spatial dropout with p = 0.1 were significantly higher

than those of the other Bayesian U-Net methods using 3D spatial

dropout. Figure 2 shows the segmentations and uncertainty maps of

one subject for all Bayesian U-Nets using 3D spatial dropout. Visual

inspection of these images showed qualitative differences across the

Bayesian U-Net segmentations. The Bayesian U-Net using 3D spatial

dropout with p = 0.1 produced the segmentation closest to the man-

ual segmentation. All the Bayesian U-Net uncertainty maps accurately

highlighted areas where the segmentation failed. The hotspots

(i.e., highly mislabeled areas) on these uncertainty maps were mainly

localized in the inferior medial temporal regions, the inferior part of

the brainstem, the cerebellum, and the hippocampal areas. The uncer-

tainty map of the Bayesian U-Net using 3D spatial dropout with

p = 0.1 showed fewer hotspots than those of the other Bayesian

methods using 3D spatial dropout.

3.2 | Comparison between the Bayesian U-Net
using 3D spatial dropout (p = 0.1) and the Bayesian
U-Net using 3D spatial concrete dropout

In the lateral ventricles and external CSF, the Bayesian U-Net using

3D spatial concrete dropout provided higher Dice score values and

lower 95th HD, absolute and relative volume difference values than

the Bayesian U-Net using 3D spatial dropout with p = 0.1 (Table 3).

Conversely, the Bayesian U-Net using 3D spatial dropout with

p = 0.1 showed higher Dice score values and lower 95th HD, ASSD,

absolute and relative volume difference values than the Bayesian U-

Net using 3D spatial concrete dropout in the white matter, cortical

gray matter, and brainstem. The Bayesian U-Net using 3D spatial con-

crete dropout and Bayesian U-Net using 3D spatial dropout with

p = 0.1 presented comparable uncertainty endpoint values (Table 4).

For the subject in Figure 2, the uncertainty map of the Bayesian U-

Net using 3D spatial concrete dropout showed hotspots in similar

locations to the one of the Bayesian U-Net using 3D spatial dropout

with p = 0.1. Table 5 shows the spatial dropout parameter p values

optimized through the Bayesian U-Net using 3D spatial concrete

dropout. These optimized p values were noticeably close to zero in

the convolutional blocks 1, 2, 6, and 7 (those extracting low semantic

information) and ranged between 0.007 and 0.363 in the con-

volutional blocks 3, 4, 5 (those extracting high semantic information).

Table 6. shows the segmentation endpoint values of the three

repeated 4-fold cross-validations performed with the Bayesian U-Net

using 3D spatial dropout with p = 0.1 and the Bayesian U-Net using

3D spatial concrete dropout. For both methods, the standard devia-

tions (stochastic biases) of the segmentation endpoint values across

the repeated cross-validations were low (which indicates overall sta-

ble segmentation results). The distributions of the segmentation end-

point values (per method and volume-of-interest) were not

significantly different (except in the lateral ventricles for the Bayesian

U-Net using 3D spatial concrete dropout). Table 7 shows the uncer-

tainty endpoint values of the three repeated 4-fold cross-validations

performed with the Bayesian U-Net using 3D spatial dropout with

p = 0.1 and the Bayesian U-Net using 3D spatial concrete dropout.

The standard deviations (stochastic biases) of the uncertainty end-

point values across the repeated cross-validations were low for both

methods. The distributions of the uncertainty endpoint values (per

method and volume-of-interest) were not significantly different

(except for the AUC).

3.3 | Comparison between the DenseNet, U-Net,
ensemble learning using several DenseNets and U-
Nets, Bayesian U-Net using 3D spatial dropout
(p = 0.1), and Bayesian U-Net using 3D spatial
concrete dropout

Table 8 shows the segmentation endpoint values of the DenseNet, U-

Net, ensemble learning using several DenseNets and U-Nets, Bayes-

ian U-Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net

using 3D spatial concrete dropout for each volume-of-interest. Over-

all, the Bayesian U-Net methods provided higher Dice score values

and lower 95th HD, ASSD, absolute and relative volume difference

values than the DenseNet, U-Net, and ensemble learning using sev-

eral DenseNets and U-Nets. These values were significantly different

than those of the DenseNet in each volumes-of-interest and those of

the ensemble learning using several DenseNets and U-Nets in the lat-

eral ventricles. The DenseNet provided the lowest Dice score values

and highest 95th HD, ASSD, absolute, and relative volume difference

values. Figure 3 shows the DenseNet, U-Net, Bayesian U-Net using

3D spatial dropout (p = 0.1), Bayesian U-Net using 3D spatial con-

crete dropout segmentations, and the Bayesian U-Net uncertainty

maps of one subject. The Bayesian U-Net, U-Net, and ensemble learn-

ing using several Dense-Nets and U-Nets segmentations were in close
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TABLE 3 Segmentation endpoint values for all Bayesian U-Net methods and volumes-of-interest

Lateral ventricles External CSF White matter

Cortical gray

matter Cerebellum Brainstem

Dice score (ratio)

Bayesian U-Net using 3D

spatial concrete dropout

0.948 (± 0.034) 0.823 (± 0.114) 0.900* (± 0.054) 0.840* (± 0.085) 0.907 (± 0.061) 0.900* (± 0.033)

Bayesian U-Net using 3D

spatial dropout (p = 0.1)

0.942 (± 0.052) 0.820 (± 0.112) 0.901 (± 0.053) 0.846 (± 0.080) 0.904 (± 0.061) 0.906 (± 0.033)

Bayesian U-Net using 3D

spatial dropout (p = 0.2)

0.946 (± 0.411) 0.818 (± 0.115) 0.896* (± 0.058) 0.839* (± 0.087) 0.910 (± 0.057) 0.902* (± 0.037)

Bayesian U-Net using 3D

spatial dropout (p = 0.3)

0.911+ (± 0.132) 0.819+ (± 0.112) 0.893*+ (± 0.057) 0.835* (± 0.085) 0.897+ (± 0.074) 0.898 (± 0.042)

Bayesian U-Net using 3D

spatial dropout (p = 0.4)

0.935*+ (± 0.061) 0.821 (± 0.113) 0.893*+ (± 0.058) 0.831* (± 0.097) 0.900 (± 0.075) 0.901* (± 0.036)

Bayesian U-Net using 3D

spatial dropout (p = 0.5)

0.922*+ (± 0.105) 0.814+ (± 0.119) 0.892*+ (± 0.057) 0.832* (± 0.090) 0.892* (± 0.091) 0.899* (± 0.037)

95th Hausdorff distance (mm)

Bayesian U-Net using 3D

spatial concrete dropout

1.357 (± 2.131) 1.973 (± 1.849) 1.226 (± 0.849) 1.130* (± 0.841) 2.365 (± 5.064) 2.087 (± 3.868)

Bayesian U-Net using 3D

spatial dropout (p = 0.1)

3.108 (± 8.631) 2.837 (± 4.839) 1.193 (± 0.769) 1.076 (± 0.768) 1.658 (± 0.836) 2.001 (± 3.904)

Bayesian U-Net using 3D

spatial dropout (p = 0.2)

2.961 (± 8.540) 2.964 (± 5.118) 1.240* (± 0.748) 1.147* (± 0.878) 2.598 (± 5.489) 2.565* (± 4.975)

Bayesian U-Net using 3D

spatial dropout (p = 0.3)

4.835*+ (± 10.280) 2.053 (± 1.935) 1.278*+ (± 0.774) 1.133* (± 0.827) 1.759 (± 1.047) 2.133* (± 3.963)

Bayesian U-Net using 3D

spatial dropout (p = 0.4)

3.120+ (± 8.187) 3.097 (± 6.048) 1.261*+ (± 0.761) 1.161* (± 0.848) 1.762 (± 1.359) 2.058 (± 3.955)

Bayesian U-Net using 3D

spatial dropout (p = 0.5)

4.694*+ (± 11.853) 3.361 (± 6.162) 1.315*+ (± 0.747) 1.223* (± 0.906) 1.886*+ (± 1.142) 2.150* (± 3.965)

Average symmetric surface distance (mm)

Bayesian U-Net using 3D

spatial concrete dropout

0.371 (± 0.302) 0.458 (± 0.390) 0.346 (± 0.194) 0.293* (± 0.162) 0.651 (± 0.613) 0.507* (± 0.395)

Bayesian U-Net using 3D

spatial dropout (p = 0.1)

0.336+ (± 1.372) 0.194 (± 0.502) 0.249 (± 0.201) 0.203 (± 0.225) 0.394 (± 0.270) 0.442 (± 0.334)

Bayesian U-Net using 3D

spatial dropout (p = 0.2)

0.482 (± 0.882) 0.526 (± 0.557) 0.373* (± 0.215) 0.327* (± 0.201) 0.676 (± 0.742) 0.487* (± 0.400)

Bayesian U-Net using 3D

spatial dropout (p = 0.3)

0.790 (± 1.271) 0.461 (± 0.377) 0.369*+ (± 0.201) 0.318*+ (± 0.175) 0.574 (± 0.332) 0.460 (± 0.344)

Bayesian U-Net using 3D

spatial dropout (p = 0.4)

0.537+ (± 0.827) 0.554 (± 0.674) 0.378*+ (± 0.207) 0.322*+ (± 0.184) 0.594 (± 0.437) 0.500* (± 0.385)

Bayesian U-Net using 3D

spatial dropout (p = 0.5)

1.04*+ (± 2.615) 0.594 (± 0.770) 0.395*+ (± 0.221) 0.368*+ (± 0.287) 0.631* (± 0.457) 0.530* (± 0.480)

Absolute volume difference (cm3)

Bayesian U-Net using 3D

spatial concrete dropout

1.594 (± 1.893) 6.562 (± 6.473) 7.917 (± 7.955) 6.785 (± 6.389) 0.894 (± 1.158) 0.410* (± 0.353)

Bayesian U-Net using 3D

spatial dropout (p = 0.1)

1.691 (± 2.001) 8.507+ (± 7.952) 7.211 (± 8.616) 5.907 (± 6.714) 1.088+ (± 1.191) 0.262 (± 0.268)

Bayesian U-Net using 3D

spatial dropout (p = 0.2)

1.503 (± 1.839) 8.858+ (± 8.916) 9.280* (± 11.135) 7.893* (± 9.265) 0.930 (± 1.084) 0.317* (± 0.269)

Bayesian U-Net using 3D

spatial dropout (p = 0.3)

3.179 (± 6.103) 8.131+ (± 8.429) 8.946* (± 9.209) 7.204 (± 6.858) 1.313*+ (± 1.488) 0.402* (± 0.441)

Bayesian U-Net using 3D

spatial dropout (p = 0.4)

2.382*+ (± 2.430) 8.118+ (± 7.560) 9.857*+ (± 11.123) 7.858* (± 9.294) 1.057 (± 1.456) 0.342 (± 0.331)

Bayesian U-Net using 3D

spatial dropout (p = 0.5)

2.490*+ (± 2.927) 8.826+ (± 8.002) 9.425* (± 11.384) 7.748* (± 9.213) 1.291*+ (± 1.516) 0.328 (± 0.333)

(Continues)
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agreement with the manual segmentation (except a few discrepancies

indicated by the red arrows in Figure 3). Conversely, the DenseNet

segmentation presented noticeable mislabeling in the prefrontal white

matter, the anterior cingulate, the lateral ventricles, and part of the

cerebellum. The Bayesian U-Net uncertainty maps accurately

highlighted the areas where their corresponding segmentations were

distinct from the manual segmentation. The hotspots of these uncer-

tainty maps were mostly localized in the inferior medial temporal area,

the brainstem, the borders of the lateral ventricles, the periventricular

area, and the superior frontal and prefrontal gray matter. The predic-

tion computational times (per subject) of the DenseNet, U-Net,

ensemble learning using several DenseNets and U-Nets, Bayesian

U-Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net using

3D spatial concrete dropout were 0.35, 0.38, 1.45, 2.39, and 2.79 min,

respectively.

3.4 | DenseNet, U-Net, ensemble learning using
several DenseNets and U-Nets, Bayesian U-Net using
3D spatial dropout (p = 0.1), and Bayesian U-Net using
3D spatial concrete dropout robustness to worst cases

Figures 4 and 5 show the Dice score cumulative histograms computed

in the external CSF and lateral ventricles for the DenseNet, U-Net,

ensemble learning using several DenseNets and U-Nets, Bayesian U-

Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net using 3D

TABLE 3 (Continued)

Lateral ventricles External CSF White matter

Cortical gray

matter Cerebellum Brainstem

Relative volume difference (ratio)

Bayesian U-Net using 3D

spatial concrete dropout

0.038 (± 0.047) 0.106 (± 0.115) 0.068 (± 0.062) 0.071* (± 0.057) 0.077 (± 0.090) 0.090* (± 0.077)

Bayesian U-Net using 3D

spatial dropout (p = 0.1)

0.046 (± 0.065) 0.130 (± 0.121) 0.062+ (± 0.070) 0.061 (± 0.059) 0.098+ (± 0.105) 0.056 (± 0.060)

Bayesian U-Net using 3D

spatial dropout (p = 0.2)

0.035 (± 0.036) 0.135 (± 0.137) 0.080*+ (± 0.087) 0.081* (± 0.085) 0.078 (± 0.083) 0.070* (± 0.060)

Bayesian U-Net using 3D

spatial dropout (p = 0.3)

0.176 (± 0.496) 0.121 (± 0.131) 0.077* (± 0.073) 0.074* (± 0.059) 0.114+ (± 0.123) 0.082* (± 0.080)

Bayesian U-Net using 3D

spatial dropout (p = 0.4)

0.066*+ (± 0.091) 0.128+ (± 0.135) 0.086*+ (± 0.091) 0.083* (± 0.089) 0.089 (± 0.112) 0.070 (± 0.058)

Bayesian U-Net using 3D

spatial dropout (p = 0.5)

0.157* (± 0.313) 0.147+ (± 0.163) 0.083* (± 0.098) 0.080* (± 0.085) 0.115+ (± 0.140) 0.068 (± 0.064)

Note: Values of the segmentation endpoints are presented as mean ± standard deviation (over the entire cohort). Highest Dice score values and lowest

95th Hausdorff distance, average symmetric surface distance, absolute and relative volume difference values are shown in bold. p represents the value of

the dropout parameter used in the Bayesian U-Net methods. Wilcoxon tests were used to compare the segmentation endpoint values of the Bayesian U-

Net using 3D spatial dropout with p = 0.1 to those of the other Bayesian U-Net methods (alternative hypothesis was set to “greater” for the Dice score

and “smaller” for the other endpoints). Significant differences (p-values < 0.05) are displayed with (*). Wilcoxon tests were also used to compare the

segmentation endpoint values of the Bayesian U-Net using 3D spatial concrete dropout to those of the other Bayesian U-Net methods (alternative

hypothesis was set to “greater” for the Dice score and “smaller” for the other endpoints). Significant differences (p-values < 0.05) are displayed with (+).

TABLE 4 Uncertainty endpoint values for all Bayesian U-Net methods

Recall NPV Accuracy AUC

Bayesian U-Net using 3D spatial concrete dropout 0.953 (± 0.037) 0.998 (± 0.005) 0.906* (± 0.032) 0.949 (± 0.031)

Bayesian U-Net using 3D spatial dropout (p = 0.1) 0.953 (± 0.032) 0.998 (± 0.004) 0.908 (± 0.030) 0.941+ (± 0.026)

Bayesian U-Net using 3D spatial dropout (p = 0.2) 0.951 (± 0.038) 0.998 (± 0.005) 0.906* (± 0.029) 0.900*+ (± 0.048)

Bayesian U-Net using 3D spatial dropout (p = 0.3) 0.955 (± 0.034) 0.999 (± 0.005) 0.903* (± 0.029) 0.914*+ (± 0.056)

Bayesian U-Net using 3D spatial dropout (p = 0.4) 0.956 (± 0.033) 0.998 (± 0.004) 0.905* (± 0.025) 0.956 (± 0.020)

Bayesian U-Net using 3D spatial dropout (p = 0.5) 0.955 (± 0.031) 0.998 (± 0.004) 0.903* (± 0.029) 0.917*+ (± 0.049)

Note: Values of the uncertainty endpoints are presented as mean ± SD (over the entire cohort). Highest values are shown in bold. p represents the value of

the dropout parameter used in the Bayesian U-Net methods. Wilcoxon tests were used to compare the uncertainty endpoint values of the Bayesian U-Net

using 3D spatial dropout with p = 0.1 to those of the other Bayesian U-Net methods (alternative hypothesis was set to “greater” for all endpoints).
Significant differences (p-values < 0.05) are displayed with (*). Wilcoxon tests were also used to compare the uncertainty endpoint values of the Bayesian

U-Net using 3D spatial concrete dropout to those of the other Bayesian U-Net methods (alternative hypothesis was set to “greater” for all endpoints).
Significant differences (p-values < 0.05) are displayed with (+).

1904 LARGENT ET AL.



F IGURE 2 Example of the segmentations and uncertainty maps of one subject for all Bayesian U-Net methods. The selected subject was the
one with the highest AUC values (uncertainty endpoint) for the Bayesian U-Net using 3D spatial dropout (p = 0.1) and the Bayesian U-Net using
3D spatial concrete dropout. The AUC values of this subject for the Bayesian U-Net using 3D spatial concrete dropout and the Bayesian U-Net
using 3D spatial dropout with p = 0.1, 0.2, 0.3, 0.4, and 0.5 were equal to 0.980, 0.975, 0.964, 0.975, 0.977, and 0.965. Uncertainty voxels <
threshold indicate where the model is certain about this prediction. Uncertainty voxels > threshold indicate where the model is uncertain about
this prediction
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TABLE 5 Values of the spatial dropout parameter p optimized through the Bayesian U-Net using 3D spatial concrete dropout for each cross-
validation fold

Fold 1 Fold 2 Fold 3 Fold 4

Value of p in convolutional block 1 0.000 0.000 0.000 0.000

Value of p in convolutional block 2 0.000 0.000 0.002 0.000

Value of p in convolutional block 3 0.153 0.158 0.158 0.027

Value of p in convolutional block 4 0.304 0.254 0.270 0.363

Value of p in convolutional block 5 0.046 0.047 0.106 0.007

Value of p in convolutional block 6 0.000 0.000 0.000 0.000

Value of p in convolutional block 7 0.000 0.000 0.000 0.000

TABLE 6 Stability of the segmentation results of the Bayesian U-Net using 3D spatial dropout (p = 0.1) and Bayesian U-Net using 3D spatial
concrete dropout

Lateral

ventricles External CSF White matter

Cortical gray

matter Cerebellum Brainstem

Dice score (ratio)

Bayesian U-Net using 3D spatial

dropout 1 (p = 0.1)

0.945 (± 0.039) 0.814 (± 0.122) 0.898 (± 0.056) 0.838 (± 0.089) 0.886 (± 0.108) 0.897 (± 0.050)

Bayesian U-Net using 3D spatial

dropout 2 (p = 0.1)

0.942 (± 0.052) 0.820 (± 0.112) 0.901 (± 0.053) 0.846 (± 0.080) 0.904 (± 0.061) 0.906 (± 0.033)

Bayesian U-Net using 3D spatial

dropout 3 (p = 0.1)

0.948 (± 0.034) 0.821 (± 0.112) 0.899 (± 0.058) 0.844 (± 0.087) 0.905 (± 0.061) 0.905 (± 0.032)

Bayesian U-Net using 3D spatial
dropout (p = 0.1) mean

0.945 (± 0.003) 0.818 (± 0.004) 0.899 (± 0.002) 0.843 (± 0.004) 0.898 (± 0.011) 0.902 (± 0.005)

Bayesian U-Net using 3D spatial

concrete dropout 1

0.948 (± 0.034) 0.823 (± 0.114) 0.900 (± 0.054) 0.840 (± 0.085) 0.907 (± 0.061) 0.900 (± 0.033)

Bayesian U-Net using 3D spatial

concrete dropout 2

0.946 (± 0.036) 0.819 (± 0.114) 0.898 (± 0.059) 0.836 (± 0.086) 0.905 (± 0.068) 0.901 (± 0.031)

Bayesian U-Net using 3D spatial

concrete dropout 3

0.942 (± 0.035) 0.819 (± 0.109) 0.895 (± 0.057) 0.838 (± 0.084) 0.908 (± 0.048) 0.900 (± 0.038)

Bayesian U-Net using 3D spatial
concrete dropout mean

0.945* (± 0.003) 0.820 (± 0.002) 0.898 (± 0.003) 0.838 (± 0.002) 0.907 (± 0.002) 0.900 (± 0.001)

95th Hausdorff distance (mm)

Bayesian U-Net using 3D spatial

dropout 1 (p = 0.1)

2.620 (± 6.575) 3.267 (± 6.181) 1.198 (± 0.737) 1.606 (± 3.168) 3.891 (± 8.214) 2.720 (± 5.435)

Bayesian U-Net using 3D spatial

dropout 2 (p = 0.1)

3.108 (± 8.631) 2.837 (± 4.839) 1.193 (± 0.769) 1.076 (± 0.768) 1.658 (± 0.836) 2.001 (± 3.904)

Bayesian U-Net using 3D spatial

dropout 3 (p = 0.1)

1.096 (± 0.808) 2.027 (± 1.859) 1.200 (± 0.796) 1.079 (± 0.778) 1.698 (± 0.971) 2.068 (± 3.949)

Bayesian U-Net using 3D spatial

dropout (p = 0.1) mean

2.275* (± 1.050) 2.710 (± 0.630) 1.197 (± 0.004) 1.254* (± 0.305) 2.416 (± 1.278) 2.263 (± 0.398)

Bayesian U-Net using 3D spatial

concrete dropout 1

1.357 (± 2.131) 1.973 (± 1.849) 1.226 (± 0.849) 1.130 (± 0.841) 2.365 (± 5.064) 2.087 (± 3.868)

Bayesian U-Net using 3D spatial

concrete dropout 2

1.197 (± 1.099) 3.010 (± 5.446) 1.233 (± 0.729) 1.115 (± 0.885) 3.086 (± 7.235) 2.130 (± 3.879)

Bayesian U-Net using 3D spatial

concrete dropout 3

2.575 (± 6.150) 2.927 (± 5.277) 1.238 (± 0.794) 1.123 (± 0.822) 3.183 (± 7.561) 2.084 (± 4.059)

Bayesian U-Net using 3D spatial
concrete dropout mean

1.710* (± 0.754) 2.637* (± 0.576) 1.232 (± 0.006) 1.123 (± 0.008) 2.878 (± 0.447) 2.100 (± 0.026)

Average symmetric surface distance (mm)

Bayesian U-Net using 3D spatial

dropout 1 (p = 0.1)

0.429 (± 0.519) 0.595 (± 0.759) 0.374 (± 0.222) 0.375 (± 0.346) 1.092 (± 1.992) 0.540 (± 0.469)
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TABLE 6 (Continued)

Lateral

ventricles External CSF White matter

Cortical gray

matter Cerebellum Brainstem

Bayesian U-Net using 3D spatial

dropout 2 (p = 0.1)

0.336 (± 1.372) 0.194 (± 0.502) 0.249 (± 0.201) 0.203 (± 0.225) 0.394 (± 0.270) 0.442 (± 0.334)

Bayesian U-Net using 3D spatial

dropout 3 (p = 0.1)

0.326 (± 0.198) 0.459 (± 0.365) 0.341 (± 0.206) 0.289 (± 0.158) 0.559 (± 0.304) 0.447 (± 0.317)

Bayesian U-Net using 3D spatial
dropout (p = 0.1) mean

0.363* (± 0.057) 0.416 (± 0.204) 0.321 (± 0.065) 0.289* (± 0.086) 0.682 (± 0.365) 0.476 (± 0.055)

Bayesian U-Net using 3D spatial

concrete dropout 1

0.371 (± 0.302) 0.458 (± 0.390) 0.346 (± 0.194) 0.293 (± 0.162) 0.651 (± 0.613) 0.507 (± 0.395)

Bayesian U-Net using 3D spatial

concrete dropout 2

0.369 (± 0.309) 0.545 (± 0.623) 0.373 (± 0.216) 0.326 (± 0.216) 0.728 (± 1.101) 0.513 (± 0.472)

Bayesian U-Net using 3D spatial

concrete dropout 3

0.476 (± 0.538) 0.502 (± 0.508) 0.354 (± 0.192) 0.322 (± 0.173) 0.686 (± 0.786) 0.486 (± 0.366)

Bayesian U-Net using 3D spatial
concrete dropout mean

0.405* (± 0.061) 0.502 (± 0.044) 0.358 (± 0.014) 0.314 (± 0.018) 0.688 (± 0.039) 0.502 (± 0.014)

Absolute volume difference (cm3)

Bayesian U-Net using 3D spatial

dropout 1 (p = 0.1)

1.594 (± 1.869) 9.604 (± 9.014) 8.258 (± 9.174) 6.559 (± 8.675) 0.937 (± 0.960) 0.338 (± 0.290)

Bayesian U-Net using 3D spatial

dropout 2 (p = 0.1)

1.691 (± 2.001) 8.507 (± 7.952) 7.211 (± 8.616) 5.907 (± 6.714) 1.088 (± 1.191) 0.262 (± 0.268)

Bayesian U-Net using 3D spatial

dropout 3 (p = 0.1)

1.596 (± 1.714) 8.612 (± 8.671) 7.505 (± 10.196) 5.754 (± 7.874) 1.167 (± 1.333) 0.364 (± 0.325)

Bayesian U-Net using 3D spatial
dropout (p = 0.1) mean

1.627 (± 0.055) 8.908 (± 0.605) 7.658 (± 0.540) 6.073 (± 0.428) 1.064 (± 0.117) 0.321* (± 0.053)

Bayesian U-Net using 3D spatial

concrete dropout 1

1.594 (± 1.893) 6.562 (± 6.473) 7.917 (± 7.955) 6.785 (± 6.389) 0.894 (± 1.158) 0.410 (± 0.353)

Bayesian U-Net using 3D spatial

concrete dropout 2

1.592 (± 2.234) 7.697 (± 7.328) 9.639 (± 12.120) 8.399 (± 10.332) 0.915 (± 0.907) 0.372 (± 0.325)

Bayesian U-Net using 3D spatial

concrete dropout 3

2.722 (± 3.390) 8.331 (± 8.189) 7.847 (± 10.029) 6.348 (± 8.180) 0.951 (± 0.964) 0.440 (± 0.442)

Bayesian U-Net using 3D spatial
concrete dropout mean

1.969* (± 0.652) 7.530 (± 0.892) 8.468 (± 1.015) 7.177 (± 1.080) 0.920 (± 0.029) 0.407 (± 0.034)

Relative volume difference (ratio)

Bayesian U-Net using 3D spatial

dropout 1 (p = 0.1)

0.038 (± 0.037) 0.153 (± 0.167) 0.073 (± 0.072) 0.069 (± 0.079) 0.091 (± 0.116) 0.075 (± 0.078)

Bayesian U-Net using 3D spatial

dropout 2 (p = 0.1)

0.046 (± 0.065) 0.130 (± 0.121) 0.062 (± 0.070) 0.061 (± 0.059) 0.098 (± 0.105) 0.056 (± 0.060)

Bayesian U-Net using 3D spatial

dropout 3 (p = 0.1)

0.038 (± 0.035) 0.132 (± 0.132) 0.066 (± 0.082) 0.063 (± 0.074) 0.103 (± 0.112) 0.077 (± 0.067)

Bayesian U-Net using 3D spatial

dropout (p = 0.1) mean

0.041 (± 0.005) 0.138 (± 0.013) 0.067 (± 0.005) 0.063 (± 0.004) 0.097 (± 0.006) 0.069* (± 0.012)

Bayesian U-Net using 3D spatial

concrete dropout 1

0.038 (± 0.047) 0.106 (± 0.115) 0.068 (± 0.062) 0.071 (± 0.057) 0.077 (± 0.090) 0.090 (± 0.077)

Bayesian U-Net using 3D spatial

concrete dropout 2

0.039 (± 0.043) 0.122 (± 0.127) 0.082 (± 0.096) 0.084 (± 0.090) 0.077 (± 0.062) 0.078 (± 0.059)

Bayesian U-Net using 3D spatial

concrete dropout 3

0.046 (± 0.038) 0.134 (± 0.137) 0.068 (± 0.072) 0.064 (± 0.073) 0.077 (± 0.068) 0.092 (± 0.092)

Bayesian U-Net using 3D spatial
concrete dropout mean

0.041* (± 0.004) 0.121 (± 0.014) 0.072 (± 0.008) 0.073 (± 0.010) 0.308 (± 0.400) 0.087 (± 0.008)

Note: Three repeated 4-fold cross-validations were conducted on each Bayesian U-Net method. The obtained segmentation endpoint values are presented

as mean ± SD (over the entire cohort) for each cross-validation. Highest Dice score values and lowest 95th Hausdorff distance, average symmetric surface

distance, absolute and relative volume difference values are shown in bold. Friedman tests were used to compare the distributions of the segmentation

endpoint values obtained at each cross-validation (per Bayesian U-Net method). Significant differences (p-values < 0.05) are displayed with (*).

LARGENT ET AL. 1907



spatial concrete dropout. The numbers of subjects with Dice scores

values inferior to 0.75 were lower for the Bayesian U-Net using 3D spa-

tial concrete dropout compared to the other methods. Visual inspections

conducted on these challenging subjects showed that the main differ-

ences between their manual and predicted segmentations were mainly

localized in the peri/intraventricular area (i.e., areas close to the brain

injury and dilated ventricles), the brainstem, and the cerebellum.

Figure 6 shows the segmentations provided by the DenseNet, U-Net,

ensemble learning using several DenseNets and U-Nets, Bayesian U-

Net using 3D spatial dropout (p = 0.1), Bayesian U-Net using 3D spatial

concrete dropout, and the Bayesian U-Nets’ uncertainty maps of one

subject with Dice score values inferior to 0.75 in the external CSF. For

this subject, the differences between the manual and deep learning seg-

mentations were localized in the periventricular areas, within the lateral

ventricles, the brainstem, and the cerebellum. The uncertainty map of

the Bayesian U-Net using 3D spatial concrete dropout accurately

highlighted the areas where its’ corresponding segmentation was dis-

tinct from the manual segmentation.

4 | DISCUSSION

In this study, we proposed a 3D Bayesian U-Net using 3D spatial con-

crete dropout for brain segmentation and uncertainty assessment in

preterm infants suffering from post-hemorrhagic hydrocephalus (PHH).

This Bayesian method provided accurate segmentations and uncertainty

maps, compared favorably with reference methods such as DenseNet,

U-Net, and ensemble learning using several DenseNets and U-Nets, and

had a computational time suitable for clinical practice.

The manual grid search through the Bayesian U-Net using 3D spa-

tial dropout showed that the best value for the spatial dropout parame-

ter is p = 0.1, which is consistent with values reported in the adult

brain segmentation literature (Jungo, Meier, Ermis, Herrmann, &

Reyes, 2018; Roy, Conjeti, Navab, & Wachinger, 2018; Roy, Conjeti,

Navab, & Wachinger, 2019). We observed quantitative and qualitative

differences across the segmentation results of the Bayesian U-Nets

using 3D spatial dropout. The Bayesian U-Net using 3D spatial dropout

with p = 0.1 provided the outputs closest to the manual segmentation,

whereas the results from the Bayesian U-Net using 3D spatial dropout

with p = 0.5 were the furthest from the ground truth. These observa-

tions can be explained by the fact that the Bayesian U-Net using 3D

spatial dropout is an efficient ensemble learning method combining

results of several U-Nets where p controls the depth of these networks

(and de facto their accuracy and generalization). The uncertainty maps

of all Bayesian U-Nets using spatial dropout accurately highlighted mis-

segmented areas. The uncertainty maps of the Bayesian U-Net using

3D spatial dropout with p = 0.1 showed fewer hotspots compared to

other Bayesian methods using 3D spatial dropout.

The manual grid search through the Bayesian U-Net using 3D

spatial dropout was computationally expensive and did not explore all

possible values of p (as p was fixed to the same value in the third,

fourth, and fifth convolutional blocks). Due to this fact, we

implemented a 3D spatial concrete dropout method that optimizes

p directly during training (through gradient descent for all con-

volutional blocks) and compared results of this method to those of the

Bayesian U-Net using 3D spatial dropout (p = 0.1). We found that the

Bayesian U-Net using 3D spatial concrete dropout provided compara-

ble segmentation and uncertainty results than the Bayesian U-Net

using 3D spatial dropout method (p = 0.1). Both of these Bayesian

methods presented stable and consistent segmentation and uncer-

tainty results (i.e., with low stochastic biases across the repeated

cross-validations). The Bayesian U-Net using 3D spatial concrete

dropout appeared nevertheless more robust to challenging subjects

than the Bayesian U-Net using 3D spatial dropout method (p = 0.1).

We also found that the dropout parameters of the 3D spatial concrete

dropout method were noticeably superior to zero only in the third,

fourth, and fifth convolutional blocks. This finding suggests that the

uncertainty related to the network weights is mainly localized in the

features extracting high semantic information.

We compared the performance of the Bayesian U-Net using 3D

spatial concrete dropout to those of a DenseNet (which showed

excellent segmentation results in healthy newborn brains; Bui

TABLE 7 Stability of the uncertainty results of the Bayesian U-Net using 3D spatial dropout (p = 0.1) and Bayesian U-Net using 3D spatial
concrete dropout

Recall NPV Accuracy AUC

Bayesian U-Net using 3D spatial dropout 1 (p = 0.1) 0.956 (± 0.033) 0.998 (± 0.004) 0.906 (± 0.032) 0.906 (± 0.064)

Bayesian U-Net using 3D spatial dropout 2 (p = 0.1) 0.953 (± 0.032) 0.998 (± 0.004) 0.908 (± 0.030) 0.941 (± 0.026)

Bayesian U-Net using 3D spatial dropout 3 (p = 0.1) 0.950 (± 0.034) 0.998 (± 0.004) 0.909 (± 0.032) 0.925 (± 0.033)

Bayesian U-Net using 3D spatial dropout (p = 0.1) mean 0.953 (± 0.003) 0.998 (± 0.000) 0.908 (± 0.001) 0.924* (± 0.018)

Bayesian U-Net using 3D spatial concrete dropout 1 0.953 (± 0.037) 0.998 (± 0.005) 0.906 (± 0.032) 0.949 (± 0.031)

Bayesian U-Net using 3D spatial concrete dropout 2 0.956 (± 0.034) 0.998 (± 0.005) 0.905 (± 0.024) 0.893 (± 0.090)

Bayesian U-Net using 3D spatial concrete dropout 3 0.950 (± 0.037) 0.998 (± 0.005) 0.902 (± 0.043) 0.912 (± 0.079)

Bayesian U-Net using 3D spatial concrete dropout mean 0.953 (± 0.003) 0.998* (± 0.000) 0.902 (± 0.002) 0.912* (± 0.028)

Note: Three repeated 4-fold cross-validations were conducted on each Bayesian U-Net method. The obtained uncertainty endpoint values are presented

as mean ± SD (over the entire cohort). Highest values are shown in bold. Friedman tests were used to compare the distributions of the uncertainty

endpoint values obtained at each cross-validation (per Bayesian U-Net method). Significant differences (p-values <0.05) are displayed with (*).
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et al., 2017; Wang et al., 2019), a U-Net, and an ensemble learning

method using several DenseNets and U-Nets. We found that our

Bayesian method provided better segmentation results in the lateral

ventricles and external CSF than the DenseNet, U-Net, and ensemble

learning method using several DenseNets and U-Nets (with competi-

tive segmentation results in other volumes-of-interest). Our Bayesian

F IGURE 3 Example of the MRI, the segmentations, and the uncertainty map of one subject for the DenseNet, U-Net, ensemble learning
using several DenseNets and U-Nets, Bayesian U-Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net using 3D spatial concrete dropout.
The dice score values of the lateral ventricles of the subject were 0.898, 0.977, 0.980, 0.982, 0.984 for the DenseNet, U-Net, ensemble learning
using several Dense-Nets and U-Nets, Bayesian U-Net using 3D spatial dropout p = 0.1, and Bayesian U-Net using 3D spatial concrete dropout.
Uncertainty voxels < threshold indicate where the model is certain about this prediction. Uncertainty voxels > threshold indicate where the model
is uncertain about this prediction
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method also showed higher robustness to challenging patients than

those methods. This superiority in performance can be explained by

the fact that (a) the Bayesian method combines the predictions of

several highly accurate U-Nets as final segmentation result, unlike the

DenseNet and U-Net that outputs only one segmentation prediction;

(b) the Bayesian method considered six segmentation predictions to

F IGURE 4 Cumulative histograms of the Dice score of the external CSF for the DenseNet, U-Net, ensemble learning using several
DenseNets and U-Nets, Bayesian U-Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net using 3D spatial concrete dropout. The dashed
lines indicate the number of subjects with Dice score of the external CSF and lateral ventricles inferior to 0.75
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create its final prediction, unlike the ensemble learning method

using several DenseNets and U-Nets which used four segmentation

predictions. We also found that our Bayesian method has a higher

prediction computational time than the DenseNet, U-Net, ensemble

learning method using several DenseNets and U-Nets. However,

this computational time (2.79 min) was drastically lower than that

F IGURE 5 Cumulative histograms of the Dice score of the lateral ventricles for the DenseNet, U-Net, ensemble learning using several
DenseNets and U-Nets, Bayesian U-Net using 3D spatial dropout (p = 0.1), and Bayesian U-Net using 3D spatial concrete dropout. The dashed
lines indicate the number of subjects with Dice score of the external CSF and lateral ventricles inferior to 0.75

1912 LARGENT ET AL.



needed for manual segmentation (which takes at least 1 hr); and

adequate since monitoring and making treatment decisions for PHH

do not require real-time segmentation. In clinical applications where

real-time segmentation would have been needed, the Monte Carlo

simulation used in the Bayesian method could have been

implemented in parallel on the GPU card to decrease its

F IGURE 6 Example of a subject with Dice score of the external CSF inferior to 0.75. The dice score values of the external CSF of the subject
were 0.572, 0.649, 0.652, 0.642, and 0.665 for the DenseNet, U-Net, ensemble learning using several DenseNets and U-Nets, Bayesian U-Net
using 3D spatial dropout with p = 0.1, and Bayesian U-Net using 3D spatial concrete dropout. Uncertainty voxels < threshold indicate where the
model is certain about this prediction. Uncertainty voxels > threshold indicate where the model is uncertain about this prediction
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computational time. The Bayesian U-Net has the advantage over

the DenseNet and U-Net of providing an assessment of its uncer-

tainty. This uncertainty assessment could allow automatic and accu-

rate identification and refinement of errors in the predicted tissue

segmentations, and thus increase clinicians' confidence in the seg-

mentation algorithm results (Appendix). The Bayesian method has

the advantage over the ensemble learning method using several

DenseNets and U-Nets to provide a considerably lower training

computational time and require fewer network parameters. The

Bayesian method required the training of one model whereas the

ensemble learning method using several DenseNets and U-Nets

required the independent training of four models.

A review of the existing literature on automatic brain segmentation

of preterm infants with PHH shows there is a paucity of studies (Gontard

et al., 2021; Qiu et al., 2015, 2017; Tabrizi et al., 2018). Tabrizi et al. (2018)

reported for the lateral ventricles a mean Dice score equal to 0.800 from

2D ultrasound scans of 60 preterm infants with PHH. Qiu et al. reported

for the lateral ventricles a mean Dice score and mean absolute surface

distance equal to 0.767 and 1.000 from 3D ultrasound scans of 14 pre-

term infants with PHH (Qiu et al., 2017), and equal to 0.914 and 2.00

from MRI scans of 7 preterm infants with PHH (Qiu et al., 2015). Gontard

et al. (2021) reported for the lateral ventricle a mean Dice score of 0.800

from 3D ultrasound scans of 10 preterm infants with PHH. Our Bayesian

U-Net using 3D spatial concrete dropout showed better performance

(with mean Dice score = 0.948 (± 0.034) and mean ASSD = 0.371

(± 0.302), for the lateral ventricles) than methods proposed in previous

studies. Our method has the advantage of performing the segmentation

of the lateral ventricles and surrounding brain tissues at the same time,

unlike previous studies that were focused on segmenting only the ventri-

cles. Our method was trained and evaluated on a larger MRI cohort

(including subjects with PHH) compared to Qiu et al. (2015). Additionally,

our method provided an assessment of its uncertainty, that has not been

previously carried out.

Our study has some limitations. First, our Bayesian U-Net using 3D

spatial concrete dropout was trained on images acquired from two MRI

scanners without external validation on images acquired from another

MRI scanner, limiting the generalizability of this method across different

MRI platforms. Second, we did not evaluate the performance of our

Bayesian U-Net across the two MRI scanners. Third, we did not provide

single uncertainty values for each volume-of-interest but an uncertainty

map. For clinical practice, it may be interesting to provide these single

values in addition to the uncertainty map. Finally, we did not demon-

strate that the concrete and Bernoulli distributions used for dropout

computation are the most suitable for representing the network param-

eter distributions. Additional investigations are therefore needed and

will be part of future work.

5 | CONCLUSION

Bayesian U-Net using 3D spatial concrete dropout provided accurate

brain segmentation results and uncertainty assessment in preterm

infants diagnosed with PHH. Bayesian U-Net using 3D spatial concrete

dropout compared favorably with reference methods such as Den-

seNet, U-Net, and ensemble learning method using several DenseNets

and U-Nets. This method could potentially be incorporated in clinical

practice to support more accurate and informed diagnosis, monitoring,

and treatment decisions for PHH in preterm infants.
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APPENDIX

Guideline for localization of mis-segmented areas with

uncertainty maps

The uncertainty maps facilitate the localization of mislabeled brain tis-

sues. Without the uncertainty maps, this localization is time-consum-

ing, cumbersome, and require very high expertise in anatomy. As

currently presented, the uncertainty map is a visualization tool, but

nonetheless a tool that could help clinicians focus on problematic

regions quickly and provide a quantitative estimate of the segmenta-

tion error across the brain.

We propose the operational guidelines below on how to best uti-

lize the uncertainty map to localize mis-segmented areas:

• Apply the method on given preterm brain MRIs to obtain their seg-

mentations and uncertainty maps.

• Binarize the uncertainty maps using the threshold indicated in the

study (0.06). Voxels of the binarized uncertainty maps equal to

1 stand for mis-segmented areas, and voxels of the binarized

uncertainty maps equal to 0 stand for well-segmented areas.

• Confirm via visual inspections the mis-segmented areas shown by

the binarized uncertainty maps.

• Manually refine the segmentations where mis-segmented areas

were found.
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