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Abstract

Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens,
some of which can cause disease in humans. To date, the features of insects’ innate immune defenses against viruses have
mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against
different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released
whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA
interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body
compartments. We have further addressed the impact of the mosquito’s endogenous microbial flora on virus infection. Our
findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-
responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the
mosquito’s natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation
of the Toll immune pathway.

Citation: Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathog 4(7): e1000098. doi:10.1371/
journal.ppat.1000098

Editor: David S. Schneider, Stanford University, United States of America

Received February 15, 2008; Accepted June 6, 2008; Published July 4, 2008

Copyright: � 2008 Xi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the National Institutes of Health/National Institute for Allergy and Infectious Disease 1R01AI061576-01A1, RO1
AI059492, the United Nations Development Program/World Bank/World Health Organization Special Program for Research and Training in Tropical Diseases, the
Ellison Medical Foundation, the Johns Hopkins School of Public Health, and the Johns Hopkins Malaria Research Institute. ZX was supported by a Johns Hopkins
Malaria Research Institute postdoctoral fellowship.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gdimopou@jhsph.edu

¤ Current address: Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America

Introduction

The dengue viruses, whose geographic distribution resembles

that of malaria, has become the most important arboviral

pathogen in recent years because of its increasing incidence in

the tropics and subtropics as well as its high morbidity and

mortality. The public health impact of dengue is enormous, given

that 2.5 billion people live in dengue-endemic areas and are at

daily risk of infection [1]. The dengue viruses are single-stranded

positive RNA belonging to the family Flaviviridae, genus Flavivirus.

They are transmitted between humans primarily by the mosquito

Ae. aegypti and by Ae. albopictus as a secondary vector [2]. The four

closely related dengue serotypes are antigenically distinct, each

comprising several genotypes that exhibit differences in their

infection characteristics in both the mosquito vector and the

human host [3,4].

The extrinsic incubation period of dengue viruses in the

mosquito is 7–14 days and is dependent on the mosquito strain,

virus genotype, and environmental factors such as humidity and

temperature [5,6]. When the mosquito ingests a dengue-infected

blood meal, the virus first infects the midgut tissue, within which it

replicates to produce more virus particles. It then spreads through

the hemolymph to other tissues such as the trachea, fat body, and

salivary glands, where it is further propagated through replication.

Peak virus titers usually occur between 7 and 10 days post-

infection in the midgut and between 7 and 17 days in the

abdomen. Peak levels in the head and salivary gland occur later, at

about 12–18 days after feeding [7]. This extrinsic incubation time

varies for different virus-vector combinations, and the tropism of

the virus is dependent on the mosquito’s tissue- and cell-specific

susceptibility to different genotypes [5,7].

In arthropods, innate immunity plays an important role in

limiting pathogen infection, both through the production of

effector molecules such as antimicrobial peptides and through

phagocytosis and encapsulation, secretion of physical barriers, and

melanization [8]. Studies that were mainly conducted in the insect

model D. melanogaster have shown that arthropod immune

responses are largely regulated by two main pathways, the Toll

and immune deficiency (Imd) pathways [9,10].

Activation of the Toll pathway by microbes through pattern

recognition receptors (PRRs) leads to a cascade of events that

result in the degradation of the negative regulator Cactus,

translocation to the nucleus of transcription factors such as Dif,

and a rapid increase in antimicrobial compounds and other

effectors [10–12]. The Imd pathway is involved in the defense

against Gram-negative bacteria, and upon activation it follows a

cascade of events similar to those in the Toll pathway, involving

putative degradation of its negative regulator Caspar, translocation

of the transcription factor Relish to the nucleus, and the

production of effectors and antimicrobial compounds [13,14]. In

contrast to the relatively well-characterized Toll and Imd

pathways, less is known about the Janus kinase signal transducers
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and activators of transcription (JAK/STAT) pathway, which

comprises multiple factors and has been linked to immune

responses in the fruit fly [15,16]. Comparative genomics analyses

have shown a striking degree of conservation of these immune

signaling pathways in D. melanogaster, Anopheles gambiae and Ae.

aegypti; in contrast, the upstream pattern recognition receptors and

the downstream effectors have differentiated quite significantly

among the three species, probably as a result of different microbial

exposures [17].

The Rel family transcription factors, Dif and Relish in

Drosophila or their corresponding Rel1 and Rel2 in mosquitoes,

can be studied through RNA interference (RNAi)-mediated

silencing of the negative regulators Cactus and Caspar, respec-

tively [11,13,14]. This approach allows a transient simulation, to

at least a partial degree, of the Toll and Imd pathways in the

absence of a microbial elicitor. The activation of these pathways

can be monitored through the transcriptional activation of some of

the signal cascade factors, such as the up-regulation of the Rel

family transcription factors and down-regulation of the negative

regulator Cactus or Caspar for the Toll or Imd pathway,

respectively [11,13,14].

At present, relatively little is known about the anti-viral defense

systems in insects. In D. melanogaster, the RNAi-mediated defenses

appear to be key players in the defense against a broad range of

viruses [18,19], while some of the classical innate immune

pathways such as the Toll and JAK-STAT pathways have also

been implicated in limiting virus infection [20,21]. Specifically, D.

melanogaster has been shown to use its RNAi machinery and the

Toll pathway to limit Drosophila6virus infection (a member of the

Dicistroviridae) [19,21], and it uses its RNAi machinery and the

JAK-Stat pathway to limit Drosophila C virus infection (a member

of the Birnavirus family) [20,22]. Another study has demonstrated

the involvement of the D. melanogaster RNAi machinery in the

defense against two diverse animal viruses: a flock house virus and

a cricket paralysis virus [18]. With all the above knowledge,

however, the molecular mechanisms that govern their activation

after infection and their role in virus clearance are unknown. Links

between the RNAi machinery and the innate immune signaling

pathways have yet not been identified [18,23].

Similarly, limited knowledge on the antiviral response in

mosquitoes is available. In Ae. aegypti, Sindbis virus (Alphavirus;

Togaviridae) infection has been shown to induce the Toll pathway-

related Rel1 transcription factor and three transcripts of the

ubiquitin-ligase pathway genes, which are known regulators of

NFkB-like proteins [24]. The RNAi machinery has also been

linked to the anti-dengue defense in Ae. aegypti [25] and anti-

O’nyong-nyong virus (Alphavirus; Togaviridae) in An. gambiae [26]. In

addition, the O’nyong-nyong virus has been shown to induce 18

genes in A. gambiae, including a 70-kDa heat shock protein factor

that later was shown to influence the virus’s ability to propagate in

the vector [27].

The recently available Ae. aegypti genome sequence [28], in

combination with high-throughput gene expression and reverse

genetic methodology, have provided unprecedented opportunities

to study the mosquito’s responses and defenses against dengue

virus infection. Here, we report the global transcriptional response

of Ae. aegypti to the infection of dengue virus serotype 2 (DENV-2),

and show that DENV-2 induces a set of genes corresponding to

the Toll and JAK-STAT pathways. Activation of the Toll and Imd

pathways in Ae. aegypti through RNAi-mediated silencing of Cactus

and Caspar caused a reduction in dengue virus infection level that

appeared to be controlled primarily by the Toll pathway.

Repression of the Toll pathway through MYD88 gene silencing

resulted in higher dengue virus infection levels. We also present

compelling evidence for an inhibitory effect of the mosquito’s

natural microbiota on virus infection and discuss the implications

of these findings and the potential role of the mosquito’s microbial

exposure and innate immune system in modulating dengue virus

transmission.

Results

Global transcriptome responses to dengue infection at
10 days after an infected blood meal

We first assessed the physiological response of the Ae. aegypti

mosquito to systemic dengue infection at the gene-specific level in

the midgut and remaining carcass by using a genome-wide

transcriptional profiling approach. A comparison of the transcript

abundance in the two body compartments of mosquitoes that were

fed 10 days earlier on dengue-infected blood or naı̈ve blood

revealed broad responses to virus infection that entailed a variety

of physiological systems (Fig 1). The carcass displayed a

significantly larger number of regulated genes (240 up-regulated

and 192 down-regulated) than did the smaller midgut tissue (28

up-regulated and 35 down-regulated). The magnitude of the gene

regulation, as measured by the -fold change in transcript

abundance, was also greater in the carcass, suggesting that tissues

in the carcass are at this stage of infection more actively engaged in

the response to infection, while the midgut tissue may have

reached a steady-state/balance in its interaction with the virus

(Tables S1 and S2). A fairly large proportion (33.5%) of the genes

displayed a similar expression profile in the midgut and the carcass

(Tables 1, S1, and S2). The most striking infection-responsive gene

regulation was observed for genes with putative functions related

to the mosquito’s innate immune system; these genes represented

34.5% in the midgut and 27.5% in the carcass of all the regulated

genes with predicted functions (Fig. 1). Other major functional

gene groups that were affected by virus infection included

metabolism, oxidoreductive processes, and stress responsive

systems, and are discussed in greater detail in Text S1.

Immune responses to dengue infection
The 53 and 18 putative immune genes that were regulated by

virus infection in the carcass and midgut tissues, respectively, were

associated with a variety of immune functions such as PRRs,

signaling modulation and transduction, effector systems, and

apoptosis (Table 1). The functional group representations of the

infection-responsive genes and their direction of regulation in the

carcass and midgut tissues were quite similar, suggesting that the

Author Summary

The Aedes aegypti mosquito is largely responsible for the
transmission of dengue viruses that cause disease in
humans. The virus is taken up with an infected blood meal
from which it will first infect the mosquito gut tissue. From
the gut it will migrate to other parts of the mosquito,
including the salivary glands, from where it can be
transmitted to another human upon a second blood meal.
In this study we show that the mosquito utilizes its innate
immune system to control dengue virus infection.
Infection with the virus will result in the activation of
mosquito immune responses that are mainly controlled by
the Toll pathway. These responses entail antiviral activities
that limit infection with the virus. We also show that the
mosquito’s natural microbial flora play a role in modulat-
ing the dengue virus infection, possibly through the
stimulation of the mosquito’s immune system.

The Aedes Toll Pathway Controls Dengue Infection
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anti-viral responses involved the same types of defense mecha-

nisms in these two compartments. For example, specific genes that

displayed a similar pattern of regulation were lysozyme C (LYSC,

AAEL015404), gambicin (AAEL004522), Ikkg (AAEL012510) and

the Gram-negative binding protein A2 (GNBPA2, AAEL000652).

A closer investigation of immune gene regulation using in silico

comparative genomics analysis [17] revealed a striking bias toward

genes putatively linked with the Toll immune signaling pathway

(Fig. 2) as well as the JAK-STAT pathway. Activation of the Toll

pathway in the carcass was supported by the up-regulation of

Spaetzle (Spz), Toll, and Rel1A, and the down-regulation of the

negative regulator Cactus. Three members of the Gram-negative

bacteria-binding protein (GNBP) family were up-regulated,

together with a clip-domain serine protease (CLIP), while the

other two CLIPs were down-regulated; several antimicrobial

effector molecules were up-regulated, including the defensins

(DEFs), cecropins (CECs) and a lysozyme (LYSC). Only one

predicted gene of the Imd immune signaling pathway, Ikkg, was

down-regulated. One of the key components of the JAK-STAT

pathway, Domeless (Dome), was induced upon dengue virus

infection as well as three other genes (AAEL009645, AAEL009822

and AAEL000393) which have JAK-STAT pathway related

orthologs in D. melanogaster [29]. Six members of the thio-ester

containing protein (TEPs) gene family were also regulated by

dengue infection, while TEP1 has been demonstrated to be a

down-stream effector molecule of JAK-STAT pathway in D.

melanogaster [30].

To establish further evidence that dengue infection activates the

Toll immune signaling pathway, we designed experiments to assess

the relationships between dengue infection-responsive gene

regulation and Rel1- and Rel2-controlled gene regulation.

Previous studies in D. melanogaster and An. gambiae have shown that

the Rel1 and Rel2 transcription factors can be activated by

depleting their negative regulators Cactus and Caspar, respectively

[13,14,31]. To confirm that the Toll and Imd pathway had been

activated, we depleted Cactus and Caspar using RNAi silencing

and assayed the expression of the antimicrobial peptide genes DEF

and CEC in gene-silenced mosquitoes and non-silenced controls

(Fig. 3A). Gene silencing of either Cactus or Caspar induced the

expression of these two genes. To link this activation to the Rel1

and Rel2 transcription factors, we performed double-knockdown

assays in which both Cactus and Rel1 or Caspar and Rel2 were

targeted simultaneously with RNAi and compared the effect of this

double silencing on antimicrobial peptide gene expression to that

of silencing the negative regulators alone. The double-knockdown

treatments either compromised (in the case of Cactus and Rel1) or

completely reversed (in the case of Caspar and Rel2) the effect

induced by single-knockdown of Cactus or Caspar, respectively,

indicating that these negative regulators could be used to activate

these two transcription factors (Fig. 3A). The quantitative

differences in the levels of de-activation of the Rel1- and Rel2-

controlled transcription that were produced with this double-

knockdown approach most likely reflect differences in the

efficiency and kinetics of the RNAi-mediated depletion of different

proteins.

We then determined the gene repertoires that were regulated by

the Rel1 and Rel2 transcription factors, using a microarray-based

approach in which we compared the transcript abundance in the

Cactus and Caspar gene-silenced mosquitoes to that in GFP

dsRNA-treated control mosquitoes. Our results indicated that

differential gene regulation in the Cactus-depleted mosquitoes

showed a strong bias toward the Toll pathway. For instance, we

observed the up-regulation of Rel1 (AAEL007696), multiple Toll

receptors (AAEL007619, AAEL000057, AAEL007613), Spätzle

ligands (AAEL013434, AAEL008596), Gram-negative binding

proteins (AAEL007626 and AAEL003889), and the antimicrobial

peptides DEFD, CECA, D, E & G (AAEL003857, AAEL000627,

AAEL000598, AAEL000611, AAEL015515). In total, Cactus

gene silencing resulted in the up-regulation of 460 and down-

regulation of 1423 genes belonging to different functional classes,

with a predominant representation by immune genes (13.7% of all

genes with predicted functions). The regulation of a variety of

other functional gene groups by Rel1 is indicative of the multiple

functional roles of the Toll pathway, including its contributions to

immunity and development [32].

Differential gene regulation in Caspar-depleted mosquitoes was

much less pronounced, with only 35 genes being induced and 137

being repressed. Those induced by Caspar silencing included

TEP13 and the antimicrobial peptides DEFE and gambicin

(AAEL004522 and AAEL003849). Rel1 and Rel2 are most likely

regulating additional genes that were not detected because of the

limited sensitivity of microarray-based gene expression assays.

A comparison of the dengue infection-responsive gene reper-

toire to that of Cactus gene-silenced mosquitoes showed a

significant overlap, with 41% (18 of 44) of the immune genes

being up-regulated by both the virus infection and Cactus gene

silencing (Fig. 3B). In contrast, only 9% (4 of 44) of the dengue-

regulated immune genes were also regulated in Caspar gene-

silenced mosquitoes (Fig. 3B). Hierarchical clustering of genes that

Figure 1. Functional classification of differentially expressed
genes in the dengue-infected midgut and carcass at 10 days
after blood meal. The graph shows the functional class distributions
in real numbers of genes that are regulated by virus infection (+
indicate induced and – indicate repressed). The virus infection
responsive gene expression data are presented in Tables S1 and S2.
Functional group abbreviations: IMM, immunity; R/S/M, redox, stress
and mitochondrion; CSR, chemosensory reception; DIG, blood and
sugar food digestive; PRT, proteolysis; C/S, cytoskeletal and structural;
TRP, transport; R/T/T, replication, transcription, and translation; MET,
metabolism; DIV, diverse functions; UNK, unknown functions.
doi:10.1371/journal.ppat.1000098.g001

The Aedes Toll Pathway Controls Dengue Infection
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Table 1. Differentially expressed putative immune genes in the dengue-infected midgut and carcass and their overlap with those
of Cactus- and Caspar-silenced mosquitoes.

Gene ID Gene Name No Function group Logfold

Carcass Midgut dsCact dsCaspar

AAEL000709 CACT 62 Toll 20.842 20.084 0.515 0.074

AAEL007696 REL1A 64 Toll 0.924 20.096 1.005 0.157

AAEL001929 SPZ5 63 Toll 1.61 0.037 0.034 0.106

AAEL003507 TOLL1B 66 Toll 0.947 0.014 0.08

AAEL013441 TOLL9A 65 Toll 1.189 20.036 20.054 0.149

AAEL004223 CECB 5 Effector 0.544 0.81 20.148 0.61

AAEL015515 CECG 6 Effector 1.052 0.131 1.394 22.992

AAEL003832 DEFC 9 Effecttor 21.81 0.143 0.95 21.665

AAEL003857 DEFD 8 Effector 20.127 1.076 0.999 21.962

AAEL003849 DEFE 7 Effector 0.824 0.053 20.811 1.697

AAEL004522 GAM 10 Effector 0.851 1.118 21.406 0.85

AAEL015404 LYSC 11 Effector 1.007 0.935 1.105 0.082

AAEL006702 FREP 31 Pattern Recognition Receptor 1.143 0.031 20.333 20.009

AAEL006699 FREP 32 Pattern Recognition Receptor 21.129 21.297 0.016

AAEL006704 FREP 33 Pattern Recognition Receptor 0.073 20.896 21.128 0.313

AAEL000652 GNBPA2 28 Pattern Recognition Receptor 0.805 0.928 0.041 20.025

AAEL009178 GNBPB4 30 Pattern Recognition Receptor 0.92 20.126 20.065 0.061

AAEL007064 GNBPB6 29 Pattern Recognition Receptor 0.886 0.088 0.118 21.077

AAEL003325 ML 34 Pattern Recognition Receptor 20.949 0.85 0.05 0.083

AAEL009531 ML 35 Pattern Recognition Receptor 1.427 20.072 0.031 20.83

AAEL006854 ML 36 Pattern Recognition Receptor 0.031 1.143 0.263 0.219

AAEL014989 PGPPLD, putative 38 Pattern Recognition Receptor 2.11 0.101 20.155 20.113

AAEL011608 PGRPLD 37 Pattern Recognition Receptor 1.962 0.011 20.098 20.099

AAEL012267 TEP13 41 Pattern Recognition Receptor 1.325 0.084 0.112 0.8

AAEL014755 TEP15 42 Pattern Recognition Receptor 1.19 20.023 1.628 0.168

AAEL001794 TEP20 40 Pattern Recognition Receptor 0.896 0.191 1.518 0.313

AAEL000087 TEP22 39 Pattern Recognition Receptor 1.819 0.084 1.896 0.317

Aaeg:N19306 TEP24 44 Pattern Recognition Receptor 0.8943

Aaeg:N18111 TEP25 43 Pattern Recognition Receptor 1.2427

AAEL003253 CLIPB13B 45 Signal Modulation 1.038 0.209 1.638 0.003

AAEL005093 CLIPB46 48 Signal Modulation 20.913 1.121 0.344

AAEL005064 CLIPB5 46 Signal Modulation 20.852 0.059 1.548 0.315

AAEL007593 CLIPC2 47 Signal Modulation 20.815 0.15 1.379 0.155

AAEL014390 CTL 52 Signal Modulation 0.986 0.162 0.942 0.188

AAEL003119 CTL6 49 Signal Modulation 0.85 0.018 0.12 20.009

AAEL011619 CTLGA8 51 Signal Modulation 0.986 0.085 1.129 0.281

AAEL011455 CTLMA12 50 Signal Modulation 1.095 0.134 2.473 0.216

AAEL000256 SCRB9 53 Signal Modulation 1.036 0.203 0.223 0.023

AAEL014079 SRPN1 59 Signal Modulation 0.915 20.017 0.995 20.027

AAEL007765 SRPN10A 61 Signal Modulation 0.166 20.963 0.841 20.009

AAEL014078 SRPN2 58 Signal Modulation 0.884 20.048 22.026

AAEL002730 SRPN21 54 Signal Modulation 1.426 0.128 0.41 0.148

AAEL002715 SRPN22 60 Signal Modulation 0.12 1.244 0.062 0.166

AAEL013936 SRPN4A 57 Signal Modulation 1.35 0.041 1.426 0.156

AAEL013934 SRPN4D 56 Signal Modulation 1.343 0.217 0.91 0.259

AAEL008364 SRPN9 55 Signal Modulation 20.951 20.031 1.275 0.169

AAEL000393 Suppressors of cytokine signalling 13 JAK-STAT 0.909 0.058 0.186 0.103

AAEL009645 Hypothetical protein 14 JAK-STAT 20.846 20.584 0.427 20.012

The Aedes Toll Pathway Controls Dengue Infection
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were differentially expressed in at least two of the three situations

(Cactus silencing, Caspar silencing, and dengue infection) revealed

a close relationship between Cactus silencing- and dengue

infection-related regulation (Fig. 3C). In particular, expression

cluster V, which is highly enriched with immune genes, was

affected by both the Cactus silencing and dengue infection

treatments. Differential gene expression in Cactus-silenced and

dengue-infected mosquitoes showed a strong correlation with

regard to both the direction and magnitude of the regulation of

this expression cluster (Fig. 3C, Cluster V).

Further dissection of the expression cluster V defined three

main groups: Toll pathway-, JAK-STAT pathway-, and signal

modulation- related genes. The signal modulation cascade genes

included four C-type lectins (CTLs) and six serine protease

inhibitors (SRPNs). A plausible hypothesis is that both the Toll and

JAK-STAT pathways may be regulated at least in part by the

same signal modulation cascade that includes serine proteases and

serpins. Consistent to this hypothesis, evidences suggest that the

JAK-STAT pathway could be indirectly activated by the Toll

cascade in D. melanogaster [30]. Interestingly, genes in this cluster

showed similar regulation for the midgut and carcass and for

Cactus-silenced mosquitoes, although the magnitude of the

regulation was smaller in the midgut, further supporting the

notion of a similar type of antiviral defense in the gut and carcass

tissues. Expression cluster III was characterized by a repression of

seven oxidative defense enzyme genes in both Cactus-silenced and

dengue-infected mosquitoes (Fig3C, Cluster III). The genes that

showed different profiles for Cactus silencing and dengue infection

are listed in the remaining clusters (Fig 3C, Cluster I, II and IV).

Several putative apoptotic genes, such as caspases, were also

regulated by dengue infection. Similar results have also been

observed in D. melanogaster in response to Drosophila C virus

infection [20], suggesting a potential connection between virus

infection and apoptosis.

The Toll pathway is involved in the anti-dengue defense
The prominent activation of the Toll pathway (Rel1)-regulated

genes in response to dengue infection strongly suggested that this

pathway is involved in the mosquito’s anti-dengue defense. To

investigate this hypothesis, we tested the effect of both Cactus and

Caspar gene silencing on virus infection in the midgut and carcass

at 7 days after an infectious blood meal. This cactus gene silencing

reduced the extent of dengue infection in the midgut by 4.0-fold

(P,0.05), while Caspar gene silencing had no effect on viral

infection when compared to the GFP dsRNA control (Fig. 4). The

lower viral loads in the midguts of mosquitoes treated with Cactus

dsRNA were also confirmed by IFA assay (Fig. 4). To provide

further evidence for Toll pathway implication in controlling

dengue virus infection, we assessed whether loss of Toll pathway

activation will lead to an increase in virus load. The Toll pathway

was inactivated by silencing the MYD88 factor prior to dengue

virus titer determination [33]. This resulted in an increase of the

virus load by 2.7 times compared to the GFP dsRNA control

(P,0.001). Infection levels in the carcass tissue were generally very

low for all treatment groups, and there were no significant

differences between groups. These results point to a significant role

for the Toll pathway in the anti-dengue defense in the midgut

tissue and they are similar to those reported for D. melanogaster, in

which the Toll pathway, but not the Imd pathway, has been

shown to be involved in limiting X-virus infection. Together with

the gene expression data discussed above, our results suggest that

the infection of mosquitoes with dengue virus induces the Toll

pathway, which then exerts an anti-dengue effect.

Gene ID Gene Name No Function group Logfold

Carcass Midgut dsCact dsCaspar

AAEL009822 Metabotropic glutamate receptor 15 JAK-STAT 1.405 0.185 20.086 0.028

AAEL012471 DOME 16 JAK-STAT 1.078 20.06 1.561 20.868

AAEL012510 IKK2 12 Imd 20.912 21.042 0.043 20.034

AAEL003439 CASPS18 1 Apoptosis 0.803 0.017 20.821 20.094

AAEL012143 CASPS7 2 Apoptosis 20.854 0.014 20.068 20.034

AAEL011562 CASPL2 3 Apoptosis 20.606 20.839 0.183 0.076

AAEL014658 CASPS20 4 Apoptosis 20.898 20.064 0.019

Aaeg:N41501 CAT1A 17 Oxidative defense enzymes 20.84617

AAEL004386 HPX8C 18 Oxidative defense enzymes 21.106 20.031 21.745 0.049

AAEL004388 HPX8A 19 Oxidative defense enzymes 21.685 0.047 22.054 0.094

AAEL004390 HPX8B 20 Oxidative defense enzymes 21.034 0.063 21.357 0.268

AAEL000274 CuSOD3, putative 21 Oxidative defense enzymes 20.911 20.119 21.184 0.078

AAEL006271 CuSOD2 22 Oxidative defense enzymes 20.841 20.006 21.099 20.001

AAEL009436 SOD-Cu-Zn 23 Oxidative defense enzymes 20.955 20.473 0.173 0.148

AAEL011498 CuSOD3 24 Oxidative defense enzymes 20.9 20.16 21.205 0.079

AAEL004112 TPX2 25 Oxidative defense enzymes 21.433 20.265 20.84 0.06

AAEL014548 TPX3 26 Oxidative defense enzymes 20.893 0.021 20.17 20.041

AAEL002309 TPX4 27 Oxidative defense enzymes 20.301 21.486 0.13 0.153

Dengue-infected midguts and carcasses were dissected and collected from the mosquitoes at 10 day after the blood meal. Injection of dsRNA of Cactus and Caspar into
mosquitoes was conducted at 2 days post-emergence, and samples were collected for microarray analysis at 4 days after injection.
doi:10.1371/journal.ppat.1000098.t001

Table 1. Cont.
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The mosquito’s endogenous bacterial flora influences
dengue infection

The mosquito’s innate immune system is mainly involved in the

defense against microbes, including control of the mosquito’s

natural bacterial flora [34], which have also been shown to

influence the mosquito’s susceptibility to pathogens such as

malaria [35,36] and are responsible for a certain level of basal

level activation of immune signaling pathways (Dimopoulos lab,

unpublished data). In order to assess the potential influence of the

endogenous bacterial flora of Ae. aegypti on the mosquito’s immune

gene expression and susceptibility to dengue virus infection, we

compared transcription and infection levels between normal septic

mosquitoes and mosquitoes from which the bacterial flora had

been eliminated through antibiotic treatment (Fig. 5). The virus

titer in the midguts of antibiotic-treated mosquitoes was two times

higher than that in the non-treated mosquitoes at 7 days PBM

(Fig. 5C and 5D).

This antiviral effect could reflect either a direct interaction

between the bacteria and the virus in the midgut lumen or an

indirect effect involving a bacteria-elicited basal level of immune

activation. To investigate whether the endogenous bacteria flora

had the capacity to activate genes regulated by the Toll pathway,

we compared the expression levels of 11 selected immune genes,

including several antimicrobial peptide genes, in septic and

antibiotic-treated aseptic mosquitoes. This analysis showed an

elevated expression of several immune marker genes, including the

Toll pathway-regulated antimicrobial peptide genes defensin,

cecropin, attacin, and gambicin, in the septic mosquitoes,

suggesting that the endogenous bacterial flora were stimulating

immune gene expression (Fig. 5B). In order to determine whether

the midgut bacteria could exert a direct effect on the virus in the

midgut lumen, we assayed virus viability after a 3 hrs incubation in

the lumenal blood meals of septic and antibiotic-treated aseptic

mosquitoes. In a parallel assay, we assessed the loss of virus

viability after 4 hrs incubation in vitro with the enriched bacteria

derived from mosquito midguts. These assays did not show any

influence of the bacteria on virus viability (Figure S1), suggesting

that the effect of the mosquito’s endogenous bacterial flora on

dengue virus infection was indirect and likely to be mediated by

the mosquito’s innate immune system.

Discussion

In order to dissect the Ae. aegypti mosquito responses to dengue

virus infection, we have determined the changes in the midgut and

carcass transcriptomes that occur upon systemic virus infection at

10 days after an infectious blood meal. These responses involved a

variety of functional gene classes, indicating a significant impact of

virus infection on mosquito physiology. The broader and stronger

response in the carcass is probably related to the late stage of

infection when the virus has reached its peak level in the tissues of

this compartment; at the same time, infection of the midgut is

declining. This analysis revealed a strong bias in the transcrip-

tional response toward genes that have been linked to the Toll

immune pathway, and to a lesser extent the JAK-STAT immune

pathway, whereas genes putatively linked to the Imd immune

pathway seemed to be largely unaffected. A more detailed

comparison of the dengue virus infection-responsive transcriptome

and the putative Rel1- and Rel2-regulated transcriptomes further

corroborated this finding.

The activation of the Toll immune signaling pathway by dengue

infection is strongly supported by the up-regulation of Rel1 and

several of its upstream putative PRRs and its downstream

antimicrobial peptides (Fig. 2). Up-regulation of the Ae. aegypti

Rel1 (DR081921) has also been observed in response to Sindbis

virus infection in a previous study [24], suggesting that these

viruses may induce similar responses. In D. melanogaster, infection

with either the Drosophila6virus or E. coli has been shown to induce

the same antimicrobial peptide genes, suggesting that these two

diverse classes of pathogen can activate the same immune response

pathway [21]. Infection of D. melanogaster with the Drosophila C virus

also resulted in the up-regulation of several putative Toll pathway-

related genes, such as Spätzle, Dorsal, the immune induced

molecule 2, CG16836, PGRP-SA, a GNBP-like molecule encoded

by CG12780, Drosomycin, and nine other putative antimicrobial

peptides [20]. Both PGRP-SA and GNBPs have been linked to the

Toll immune signaling pathway; a D. melanogaster GNBP functions

as a co-receptor for Gram-positive bacteria and is involved in Toll

immune pathway activation. It will be interesting to elucidate the

Figure 2. Regulation of putative Toll signaling pathway genes
by dengue virus infection. Red color indicates infection responsive
up-regulation and green color indicate infection responsive down-
regulation. Non-colored gene boxes indicate lack of infection respon-
sive regulation. The pathway was built with GenMapp software based
on the immunogenomics prediction by Waterhouse et al 2007.
doi:10.1371/journal.ppat.1000098.g002

The Aedes Toll Pathway Controls Dengue Infection

PLoS Pathogens | www.plospathogens.org 6 July 2008 | Volume 4 | Issue 7 | e1000098



functional significance of the observed GNBP induction in

response to dengue infection in Ae. aegypti. For instance, the

GNBPs might function as receptors that interact with the virus or

cellular debris released during virus particle release, either

activating an immune response or directly neutralizing the virus

particles.

Activation of Toll pathway-controlled Rel1 transcription factors

through the RNAi-mediated depletion of Cactus resulted in

suppression of the viral infection in the midgut, while activation of

the Imd pathway-controlled Rel2, mediated through Caspar

depletion, had no effect on infection. Although Rel1 over-

expressing transgenic mosquitoes have been developed, we chose

to use this RNAi-based approach to activate these factors in order

to achieve systemic pathway activation and enrichment of immune

factors prior to infection. The Rel1 transgenes are under the

control of a blood meal-induced fatbody-specific promoter that

only activates transcription at around 12 to 20 h after a blood

meal in a very specific tissue compartment, which may not be the

main destination for the dengue virus (A. Raikhel, personal

communication) [31].

The lack of an apparent link between the Imd pathway and the

anti-dengue defense at 7 to 10 days after an infectious blood meal

does not, however, exclude the possibility that this pathway is

involved in the anti-viral response at some other stage of infection

or in a specific tissue or cell type. However, our results are

consistent with the previous report that the Toll pathway, but not

the Imd pathway, in D. melanogaster is involved in the defense

against the Drosophila X virus [21]. The anti-dengue effect of the

Toll pathway is likely to be stronger than the four-fold change that

we obtained through Cactus gene silencing, given that RNAi-

mediated depletion of proteins is known to be incomplete and

transient in many cases.

Our gene expression data also pointed to an activation of the

less characterized JAK-STAT pathway, which has been shown to

be activated in response to Drosophila C virus infection in D.

melanogaster, where it is involved in limiting viral infection but,

while required, is not sufficient to mount a potent antiviral

response [20]. These findings may suggest that an effective anti-

viral response in insects requires the activation of more than one

complementary defense system.

Figure 3. Comparative analysis of the dengue virus infection-responsive and Rel1 and Rel2 regulated transcriptomes. A. Expression
analysis of defensin (DEF), cecropin (CEC), Cactus (CAC), and Rel1 in Cactus, and Cactus and Rel1 depleted mosquitoes (upper panel) and in Caspar,
and Caspar and Rel2 depleted mosquitoes. Bar represents standard error. B. Venn diagram showing uniquely and commonly regulated genes in
dengue infected and Cactus and Caspar depleted mosquitoes. C. Cluster analysis of 131 genes that were regulated in at least two of four treatments:
dengue-infected midgut and carcass, and whole mosquitoes upon Cactus (CAC(-)) or Caspar (CSP(-)) depletion. The expression data of immune
genes, indicated by the number beside the panel are presented in Table 1, and all genes presented in the hierarchical cluster matrix are listed in Table
S6. The primary data for the real-time qPCR assays are presented in Table S3.
doi:10.1371/journal.ppat.1000098.g003
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Two types of anti-viral defense have been proposed to operate

in D. melanogaster: an inducible response that involves the activation

of immune signaling pathways and an intrinsic defense system

based on RNAi [23]. Our analysis of dengue infection-responsive

gene expression did not identify any RNAi-related genes,

consistent with the previous findings regarding D. melanogaster

responses to Drosophila C virus infection [20]. Components of the

RNAi defense systems are likely to be constitutively expressed and

do therefore not require further transcriptional induction upon

viral challenge. Alternatively, the virus may actively suppress

transcription of such transcripts as a defense modulating

mechanism.

A major role of immune signaling pathways in insects is to

protect the organism against the continuous exposure to

opportunistic microbes as well as controlling the natural

microbiota, such as the gut flora. Several studies have shown the

importance of the host microbiota in inducing a basal level of

immune activity that enhances the insect’s resistance to pathogens.

For instance, antibiotic treatment of An. gambiae mosquitoes

significantly reduces the microbial midgut flora, resulting in a

decreased expression of immune genes and an increased

susceptibility to Plasmodium infection [35,36]. Moreover, Plasmodi-

um development has recently been shown to be significantly

influenced by the mosquito’s basal level immunity rather than an

infection-stimulated induction of immune genes [13]. In addition,

the An. gambiae genes implicated in the defense against Plasmodium

have also been shown to play a role in its anti-bacterial defense

[34]. In Culex. bitaeniorhynchus, tetracycline treatment resulted in an

increased susceptibility to the Japanese encephalitis virus [37].

Similarly, we have observed that aseptic Ae. aegypti were less

resistant to dengue virus, and they expressed lower levels of certain

immune genes that are also controlled by the Toll pathway.

These findings suggest that it is plausible to hypothesize that the

mosquito’s endogenous microbiota and natural microbial expo-

sure stimulate a certain level of immune gene expression through

the activation of the Toll pathway which, in turn, mediates

antiviral activity. Alternatively, the microbiota could affect viral

infection in a more direct way by altering the biochemical

environment of the midgut or by directly interacting with the virus

particles. However, the latter is not supported by our preliminary

data on virus-bacteria interaction, while a possibility still exist that

the bacteria hinder virus interaction with the midgut epithelium

(Figure S1). Regardless of their biological basis, however, our

results suggest that the microbial exposure in nature is likely to

play an important role in modulating the mosquito’s anti-viral

defense system and its level of resistance to infection. The ability of

the Toll immune pathway to suppress dengue infection suggests

that it regulates one or several anti-viral effector molecules that

remain to be discovered. The level of functional overlap that was

observed between anti-bacterial and anti-Plasmodium effector genes

in A. gambiae is unlikely to occur between the anti-microbial and

anti-dengue defense systems because of the drastically difference in

surface molecules and life style between virus particles and

bacteria or parasites; nevertheless, the defenses appear to be

regulated by the same immune signaling pathways. Finally, it is

unlikely that the presence of low levels of antibiotics in the

mosquito hemolymph contributed directly to changes in gene

expression or increased virus infection. Antibiotic treatment has

for instance no effect on virus propagation in the C6/36 cell line,

and experiments in sterile A. gambiae mosquito cell lines have not

shown any direct effects of antibiotic treatment on immune gene

expression (Dimopoulos lab, unpublished data).

In summary, the results presented here show that the Toll

pathway is involved in controlling dengue virus infection in Ae.

aegypti. Dengue infection can activate this pathway, which in turn

induces a mechanism that suppresses the virus infection.

Consistent with this observation, a low basal immunity in aseptic

mosquitoes is correlated with a high virus infection level. Our

results provide support for future experiments to dissect the

biological network involved in the defense against dengue virus

infection in Ae. aegypti. For example, it will be interesting to study

the potential links between the Toll, JAK-STAT and RNAi

pathways and their relevant contribution to the resistance of

dengue infection in mosquitoes. In addition, how the virus is

recognized to activate the Toll pathway and what are the

downstream anti-viral effector molecules are important questions

to be answered. In the present study, we have utilized a specific

New Guinea genotype of the DENV-2 serotype that is known to

Figure 4. Rel1 regulate anti-dengue activity. Dengue virus loads in the midguts of Cactus, Caspar and MyD88 depleted mosquitoes, and GFP
dsRNA treated control mosquitoes. A. Virus titers were measured by plaque assay in C6/36 cell. *, P,0.05, ***, P,0.001, in Student’s t-test comparing
to GFP control. B. Virus load is assayed through indirect immunofluorescence assay (IFA) in infected midguts. Error bar represents standard error.
doi:10.1371/journal.ppat.1000098.g004
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be highly virulent. It will be interesting to assess the potential

similarities and differences in the response of the mosquito to

different dengue virus serotypes and genotypes that are known to

differ in their virulence and tropism. Conversely, a comparison of

mosquito strains with different susceptibilities to a particular virus

genotype may also further our understanding of this complex

vector-pathogen system.

In summary, we demonstrate a significant role of the Toll

pathway in regulating resistance to dengue virus in Ae. aegypti, as

indicated by an infection-responsive regulation and functional

assessment of several Toll pathway-associated genes. We have also

shown that the mosquito’s natural microbiota play a role in

modulating the dengue virus infection, possibly through basal-level

stimulation of the mosquito’s antiviral immune system.

Materials and Methods

Mosquito rearing and cell culture maintenance
Ae. aegypti mosquitoes of the Rockefeller/UGAL strain were

maintained on sugar solution at 27uC and 95% humidity with a

12-hr light/dark cycle according to standard rearing procedures.

The Ae. albopictus cell line C6/36 was grown in minimal essential

medium (MEM) with 10% heat inactivated FBS, 1% L-glutamine,

and 1% non-essential amino acids at 32uC with 5% CO2.

DENV-2 infections
The New Guinea C strain of DENV-2 was propagated in C6/

36 cells according to standard conditions [38]: In brief, 0.5 ml

aliquots of virus stock were used to infect 75-cm2 flasks of C6/36

cells at 80% confluency with a multiplicity of infection (MOI) of

3.5 virus particles/cell. Infected cells were incubated for 5–7 days.

Cells were harvested with a cell scraper and lysed to release the

virus particles by repeated freezing and thawing in dry CO2 and a

37uC water bath. The virus suspension was mixed 1:1 with

commercial human blood. A flask with uninfected C6/36 cells

were maintained under similar conditions and used to create the

noninfectious blood meal that served as our control. The blood

meal was maintained at 37uC for 30 min prior to feeding 3- to 4-

day-old mosquitoes (http://www.jove.com/index/Details.stp?ID

= 220). Primary PFU data are presented in Table S4.

Mosquito dissections
For microarray assays, mosquitoes at 10 days after blood meal

were dissected to collect the midguts and carcass in RNALater,

with 10 to 15 individuals in a single replicate. Three or four

replicate biological assays were performed. Total RNA was

extracted using the RNeasy kit (QIAGEN), and RNA concentra-

tions were measured using Nanodrop; for virus titer measurement,

mosquitoes at 7 days after blood meal were briefly washed in 70%

ethanol, then rinsed in sterile distilled water. The midgut and

carcass were dissected in sterile PBS and transferred separately to

microcentrifuge tubes containing 150 ml of MEM, then homog-

enized with a Kontes pellet pestle motor in a sterile environment.

Microarray assays
Transcription assays were conducted and analyzed as reported

previously with a full genome Agilent-based microarray platform

[28,34] In brief, 2–3 mg total RNA was used for probe synthesis of

cy3- and cy5-labeled dCTP. Hybridizations were conducted with

an Agilent Technologies In Situ Hybridization kit at 60uC
according to the manufacturer’s instructions. Hybridization

intensities were determined with an Axon GenePix 4200AL

scanner, and images were analyzed with Gene Pix software. The

expression data were processed and analyzed as described

previously [28]. In brief, the background-subtracted median

fluorescent values were normalized according to a LOWESS

normalization method, and Cy5/Cy3 ratios from replicate assays

were subjected to t-tests at a significance level of p,0.05 using

Figure 5. Elimination of the mosquito’s endogenous bacteria
reduces basal levels of immune gene expression and increases
the susceptibility to dengue virus infection. A. LB agar plates at
20 hours after plating homogenized and diluted septic gut (SG) and
whole mosquito (SW) from non-treated mosquitoes, and aseptic gut
(AG) and whole mosquito (AW) from antibiotic treated mosquitoes B.
fold change in the expression of selected immune genes in aseptic
mosquitoes compared to septic mosquitoes; C. virus infection levels in
aseptic and septic mosquitoes were measured and compared by plaque
assay in C6/36 cells * P,0.05 in Student’s t-test. D. Dengue virus
distribution and loads in septic and aseptic mosquito midguts assayed
through IFA. Error bar represents standard error. Primary data for the
real-time qPCR assays are presented in Table S2.
doi:10.1371/journal.ppat.1000098.g005
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TIGR MIDAS and MeV software. Expression data from all

replicate assays were averaged with the GEPAS microarray

preprocessing software prior to logarithm (base 2) transformation.

Self-self hybridizations have been used to determine the cut-off

value for the significance of gene regulation on these type of

microarrays to 0.8 in log2 scale, which corresponds to 1.74- fold

regulation. For genes with P,0.05, the average ratio was used as

the final fold change; for genes with P.0.05, the inconsistent

replicates (with distance to the median of replicate ratios large than

0.8) were removed, and only the value from a gene with at least

two replicates were further averaged. Toll and Imd signaling

pathways were built on the basis of a recent bioinformatics

prediction [17] with GeneMAPP2 software [39]. The latter was

also used for the generation of the expression datasets. The gene

database was created with the Ae. aegypti gene ontology by the

GeneMapp development team. Three independent biological

replicate assays were performed. Numeric microarray gene

expression data are presented in Tables S1 and S2.

Real-time qPCR assays
Real-time qPCR assays were conducted as previous described

[37]. Briefly, RNA samples were treated with Turbo DNase

(Ambion, Austin, Texas, United States) and reverse-transcribed

using Superscript III (Invitrogen, Carlsbad, California, United

States) with random hexamers. Real-time quantification was

performed using the QuantiTect SYBR Green PCR Kit (Qiagen)

and ABI Detection System ABI Prism 7000 (Applied Biosystems,

Foster City, California, United States). Three independent

biological replicates were conducted and all PCR reactions were

performed in triplicate. The ribosomal protein S7 gene was used

for normalization of cDNA templates. Primer sequences are listed

in Table S5. Numeric data for the real-time qPCR assays are

presented in Table S3.

Gene-silencing assays
RNA interference (RNAi)-based gene-silencing assays were

conducted according to standard methodology [34]: Approxi-

mately 69 gl dsRNAs (3 mg/ml) in water was injected into the

thorax of cold-anesthetized 4-day-old female mosquitoes using a

nano-injector as previously described (http://www.jove.com/

index/Details.stp?ID = 230). Three to four days after injection

and validation of gene-specific silencing, mosquitoes were fed on a

DENV-2-supplemented blood meal. Dissection of mosquito

midguts, thoraxes, and heads were done on the seventh day

PBM. Each tissue was homogenized separately in the same

medium as used for C6/36 cells (MEM) and used for virus

titration. Three independent biological replicate assays were

performed for each gene. The following primers were used for

the synthesis of Cactus, Caspar and MyD88 dsRNA using the T7

megascript kit (Ambion): Cactus_F: TAATACGACTCACTA-

TAGGG CGAGTCAACAGAACCCGAGCAG, Cactus_R: TA-

ATACGACTCACTATAGGG TGGCCCGTCAGCACCGAA-

AG, Caspar_F: TAATACGACTCACTATAGGG GGAAGCA-

GATCGAGCCAAGCAG, Caspar_R: TAATACGACTCAC-

TATAGGG GCATTGAGCCGCCTGGTGTC, MyD88_F:

TAATACGACTCACTATAGGGGGCGATTGGTGGTTGT-

TATT, MyD88_R: TAATACGACTCACTATAGGGTTGA-

GCGCATTGCTAACATC,

DENV-2 virus titration
Virus titers in the tissue homogenates were measured as previously

reported (http://www.jove.com/index/Details.stp?ID = 220): The

virus-containing homogenates were serially diluted and inoculated

into C6/36 cells in 24-well plates. After incubation for 5 days at

32uC and 5% CO2, the plates were assayed for plaque formation by

peroxidase immunostaining, using mouse hyperimmune ascitic fluid

(MHIAF, specific for DENV-2) and a goat anti-mouse HRP

conjugate as the primary and secondary antibody, respectively.

Numeric PFU data are presented in Table S3.

Mosquito antibiotic treatment
After pupation, mosquitoes were transferred to a sterile cage

and provided a sterile 10% sucrose solution with 15 mg/ml

gentamicin, 10 units penicillin, and 10 mg streptomycin as a sugar

source. The removal of microbes was confirmed by colony-

forming unit assays prior to blood-feeding and after a surface

sterilization that involved vortexing in 70% ethanol and

subsequent rinsing in double-distilled sterile H2O. Each entire

mosquito was then homogenized in 100 ml autoclaved PBS and

plated on LB-agar, and the plates were checked for presence of

bacterial growth at 48 h post-inoculation.

Indirect immunofluorescence assays
These assays were performed according to a modification of a

previously established method [40]. The midguts from 7-day-old

mosquitoes were dissected in 1.0% paraformaldehyde in PBS.

After a 1-h incubation in 50 ml of 4.0% paraformaldehyde in a 96-

well plate, the midguts were washed three times with 100 ml PBS

for 1 min each; 100 ml of 10% goat serum was then added to the

antibody dilution buffer (0.1% TritonX-100 and 0.2% BSA in

PBS) and incubated overnight. The midguts were then incubated

with FITC-conjugated monoclonal antibody 2H2 at 37uC for 1 h.

The midguts were washed twice with PBS at room temperature for

1 h and then stained with Evans blue counter-stain (diluted 1:

100), placed onto slides, and covered with Bartel B 1029-45B

mounting medium and a coverslip. Preparations were examined

under a Nikon fluorescence microscope.

Accession numbers
The Entrez Gene ID for genes and proteins mentioned in the text

are 5565922 (Cactus), 5569526 (REL1A), 5578608 (Caspar),

5569427 (REL2), 5579094 (DEF), 5579377 (CEC), 5578028

(Attacin), 5565542 (Diptericin), 5579192 (GNBPB1), 5564897

(PGRGLC), 5564993 (Gambicin), 5569574 (MyD88), 5579458

(LYSC), 5576410 (Ikkg), 5565422 (GNBPA2), 5580019

(AAEL009645), 5572476 (AAEL009822), 5576330 (AAEL000393),

5576380 (DOME), 5573010 (SPZ5), 5578273 (TOLL1B), 5577966

(TOLL9A), 5576030 (TEP13), 5565197 (TEP15), 5572428 (TEP20).

5563609 (TEP22), 5568254 (FREP), 5577659 (CLIPB13B).

Supporting Information

Figure S1 A. The bacteria flora in the mosquito lumen does not

influence the viability of the dengue virus. Seven days old

antibiotic treated aseptic or non-treated septic mosquitoes were

fed with the same mixture of DENV-2 and blood. Two hour after

the blood meal, midguts were dissected and their content was

immediately diluted with 100 ul sterile PBS. Three replicates of

five guts each were collected. After a brief homogenization and

centrifugation, the supernatants were used to determine the virus

titer with the standard plaque assay. B. In vitro exposure of dengue

virus to midgut bacteria does not affect the virus viability.

Incubation of the dengue virus with either sterile PBS, bacteria

exposed supernatant or a bacteria suspension did not result in any

significant difference in virus viability. Ten midguts from seven

days old septic female mosquitoes were dissected and homoge-

nized in 100 ul sterile PBS prior to plating on a LB agar plate for

bacterial growth. Bacteria colonies were washed off the plate with
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PBS and collected into a 1.5 ml tube. After a 10 minutes

centrifugation at 1,500 g the bacteria-free supernatant and the

bacteria pellet were collected. The bacteria pellet was re-

suspended into PBS to get the bacteria solution. Then, equal

amount of virus were incubated for 3 hrs at room temperature

with the bacteria, the bacteria free supernatant and the sterile PBS

prior to titer determination with plaques assay. Three replicates

were performed for each treatment.

Found at: doi:10.1371/journal.ppat.1000098.s001 (0.07 MB JPG)

Table S1 The functional groups of the total 432 genes that were

regulated by DENV-2 infection in the mosquito carcass at ten days

after an infected blood meal, compared to that of non-infected

blood fed control mosquitoes. Functional group abbreviations:

IMM, immunity; RED/STE, redox and oxidoreductive stress;

CSR, chemosensory reception; DIG, blood and sugar food

digestive; PROT, proteolysis; CYT/STR, cytoskeletal and

structural; TRP, transport; R/T/T, replication, transcription,

and translation; MET, metabolism; DIV, diverse functions; UNK,

unknown functions.

Found at: doi:10.1371/journal.ppat.1000098.s002 (0.38 MB

DOC)

Table S2 The functional groups of the total 63 genes that were

regulated by DENV-2 infection in the mosquito midgut at ten days

after an infected blood meal, compared to that of non-infected blood

fed control mosquitoes. Functional group abbreviations: IMM,

immunity; RED/STE, redox and oxidoreductive stress; CSR,

chemosensory reception; DIG, blood and sugar food digestive;

PROT, proteolysis; CYT/STR, cytoskeletal and structural; TRP,

transport; R/T/T, replication, transcription, and translation; MET,

metabolism; DIV, diverse functions; UNK, unknown functions.

Found at: doi:10.1371/journal.ppat.1000098.s003 (0.08 MB

DOC)

Table S3 Averaged data from three biological replicate real time

qPCR assays of the expression of defensin, cecropin, Cactus, and

Rel1in Cactus, and Cactus & Rel1 depleted mosquitoes (A) and in

Caspar, and Caspar & Rel2 depleted mosquitoes (B). C. Fold

change in the expression of selected immune genes in aseptic

mosquitoes compared to septic mosquitoes. S.E., standard error.

Found at: doi:10.1371/journal.ppat.1000098.s004 (0.06 MB

DOC)

Table S4 A. Averaged data from three independent biological

replicate plaque assays of the virus titer in the midguts of the

Cactus, Caspar, MYD88 and GFP dsRNA treated mosquitoes. B.

Results from three independent biological replicate plaque assays

of the virus titer in the midgut of antibiotic treated aseptic and

non-treated septic mosquitoes. S.E., standard error; S, significant;

NS, Non-significant.

Found at: doi:10.1371/journal.ppat.1000098.s005 (0.04 MB

DOC)

Table S5 The prime sequences used for the real-time qPCR

assays.

Found at: doi:10.1371/journal.ppat.1000098.s006 (0.04 MB

DOC)

Table S6 The expression data of all the genes that are shown in

the hierarchical cluster matrix (Fig. 3C).

Found at: doi:10.1371/journal.ppat.1000098.s007 (0.30 MB

DOC)

Text S1 This section refers to other dengue infection responsive

genes.

Found at: doi:10.1371/journal.ppat.1000098.s008 (0.05 MB

DOC)
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