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Abstract: The use of home-based image sensors for biological and environmental monitoring provides
novel insight into health and development but it is difficult to evaluate people during their normal
activities in their home. Therefore, we developed a low-cost infrared (IR) technology-based motion,
location, temperature and thermal environment detection system that can be used non-invasively for
long-term studies in the home environment. We tested this technology along with the associated
analysis algorithm to visualize the effects of parental care and thermal environment on developmental
state change in a non-human primate model, the common marmoset (Callithrix jacchus). To validate
this system, we first compared it to a manual analysis technique and we then assessed the development
of circadian rhythms in common marmosets from postnatal day 15–45. The semi-automatically
tracked biological indices of locomotion velocity (BV) and body surface temperature (BT) and the
potential psychological index of place preference toward the door (BD), showed age-dependent shifts
in circadian phase patterns. Although environmental variables appeared to affect circadian rhythm
development, principal component analysis and signal superimposing imaging methods revealed a
novel phasic pattern of BD-BT correlation day/night switching in animals older than postnatal day
38 (approximately equivalent to one year of age in humans). The origin of this switch was related
to earlier development of body temperature (BT) rhythms and alteration of psychological behavior
rhythms (BD) around earlier feeding times. We propose that this cost-effective, inclusive sensing and
analytic technique has value for understanding developmental care conditions for which continual
home non-invasive monitoring would be beneficial and further suggest the potential to adapt this
technique for use in humans.

Keywords: infrared image sensor; life monitoring; primate model; common marmoset; infant
development; complex change of circadian rhythms; locomotion; body temperature; feeding influence
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1. Introduction

Recent improvements in image sensors enable us to use them for novel human detection [1,2].
A sensor with high sensitivity and resolution may have advanced possibilities but is also expensive and
requires a powerful signal-processing central processing unit (CPU). Alternatively, an inexpensive and
low resolution infrared image sensor life monitoring application requiring a lighter image processing
load, opens the possibility of longitudinal, home-based assessments of biological data that can inform
understanding of individual subjects health and developmental conditions. Thus, we focused on the
use of an uncooled thermoelectric infrared imaging sensor utilizing a thermopile focal plane array
detector that features a 48 × 47 grid (2256 elements) made of silicon wafer and connected to the central
processing unit of a computer by a serial peripheral interface. Because the sensing data unit was light
enough, due to the low pixel image resolution, we could use higher time resolution, 1 Hz, to acquire
data for one month, including both days and nights, in the home ambient condition. This allowed
us to seek novel functions in the data [3]. The infrared sensor had been utilized not only in industry
but also for human sensing [4]. Here we report our ability to acquire and process data on individual
animals’ biological conditions and surrounding environment utilizing our low-cost, low-resolution,
multiple index sensing system [5–9]. In particular, we focused on the infant neurodevelopmental
stage as a time period that would feature common phasic shifts in locomotion and temperature,
as well as in the proposed psychological index ‘place preference’. In addition to these index settings,
our sensing system considered estimated environmental effects of room temperature average and
gradient, and temperature and humidity outside the housing structure. Moreover, social environmental
effects associated with feeding were assessed. Output from our inclusive sensor system design allows
statistical analysis of developmental changes.

To find and validate valuable diagnostic functions and to secure longitudinal use of new sensor
application technologies in humans demands preclinical trials in adequate animal models to avoid any
risks both known and unknown.

Use of the common marmoset (Callithrix jacchus), a small New World monkey, as a biomedical
model has increased dramatically in recent years. This increase has been driven by many factors
including their phylogenetic proximity to humans, small size, high fecundity, rapid life history,
and similarity to humans in social structure, behavior, cognition, communication and functional brain
architecture, factors that make them a particularly good model of child health and human development.

Like other primates, marmosets recapitulate the core physiological properties and brain architecture
of humans [10] and share ~93% sequence identity with the human genome (Marmoset Genome
Sequencing Analysis Consortium, 2014). Common marmosets are reproductively competent by
~18 months of age, are monomorphic and reach an average adult body size of ~350–400 g by 2 years of
age and at 8 years of age they are considered old [11–13]. Common marmoset gestation is 150 days
and they generally produce twins or triplets every 5–6 months giving them among the highest fertility
of any anthropoid primate [12]. The regularity of twinning in this species enables study designs that
can effectively control for genetic and in utero contributions by using siblings in different study groups.
Common marmosets live in human-like social groups, in general a pair-bonded male and female with
their offspring, and cooperative care for offspring. This human-like social setting facilitates the study of
social learning across generations [14]. Further validating the marmoset model of human development
is their use of visual signals, including facial expression for communication [10,15] and their ability to
imitate [16] which has only been reported previously in humans and chimpanzees. These similarities
support the use of the common marmoset to model parenting and family effects on child development.
While we appreciate that captive common marmosets live in a different environment than their wild
counterparts, our subjects were born and bred in captivity over many generations and are adapted to
their captive living environments making them an ideal model for studies of human development.

While the benefits of the marmoset model are clear, there are challenges associated with the use of
this model. Of particular importance, behavioral assays routinely performed in popular animal models,
rodents, have not been validated for use in common marmosets. One such tool for the assessment of
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neurodevelopment is a non-invasive, longitudinal method to evaluate an individual’s interaction with
their social and physical environment through the monitoring of location and motion and associated
circadian rhythms while in the home environment. Such assessments are of particular value given the
relationship between early neurodevelopment and the development of circadian rhythms [17–20] with
lifelong and potentially generational mental health [21–23] perhaps through epigenetic programming
during the highly sensitive infant period [24–26].

In rodents, multiple methods are available for continuous monitoring of position and
locomotion (e.g., [27–30]); however, in primates such model studies for humans to date have
required instrumentation of animals [31] or could not be performed in the home environment [32].
Therefore, we developed a low-cost infrared (IR) technology-based location/motion, body surface
temperature and surrounding ambient temperature detection system and analysis algorithm that can
be used non-invasively for long-term studies of our primates in the home environment. We validated
the use of this system by assessing early infant development in common marmosets, specifically
the development of circadian rhythm, and propose the value of this technique for future studies
of development as well as other studies for which continual non-invasive monitoring would be
beneficial (e.g., neurodegenerative disease research). We further suggest the potential application of
this technology to studies of human development as the information garnered from this technique
may facilitate the development and implementation of programs designed to support healthy
development. Thus, finally we attempted to verify the multivariate correlation cascade associated with
developmental life events and environments on the complex biological circadian rhythm representation
in a time-age manner.

2. Materials and Methods

2.1. Animals

This study was carried out in accordance with the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the
animal ethics review committee at the Tokyo University of Agriculture and Technology, TUAT (20–21).
The studies described are all non-invasive and all efforts were made to minimize animal suffering.

Four common marmosets (Callithrix jacchus), two sets of twins (male/male and female/female),
were purchased from a breeder (CLEA, JAPAN) at postnatal day (P)6 (males) or P8 (females).
Upon arrival at Tokyo University of Agriculture and Technology and throughout the study period,
animals were singly housed in a ventilated wooden and opaque box (1.0 w × 1.2 h × 0.9 dm) with a
ceiling mounted IR thermal camera (TP-L0620EN, CHINO, JAPAN). For animals up to P31, an infantile
plastic environment with a soft floor (Keiyo, Japan) placed above a sheet heater (Kyokko, Japan) was
created within the home to regulate ambient temperature. At P31, when animals became able to
regulate their body temperature, the environment was replaced with a steel environment and the
sheet heater was removed. Experimenters’ parental handling was regarded as attachment care with
warm handling and calling each name and benevolent words. Caring notebooks confirmed all the
participants showed relax calling and affinity behaviors [21,33,34] to experimenters.

Marmosets were maintained on a 12:12 h lighting schedule with ambient temperature maintained
according to an age-dependent schedule (P8–P14: 34 ◦C; P15–31: 32 ◦C; P32–P45: 30 ◦C). Animals were
hand fed with a specified amount formula based on age, three times per day (morning, noon,
night) until P29, and then twice per day (morning, night) from P30–P45. Each feeding period took
approximately 30 min for gentle stimulus for defecation/urination and cleaning bodies with handling
parental care. Each animal’s home was recorded before and after each feeding period. IR thermal
camera recording was conducted continuously (except while animals were removed from the cage for
feeding given the expected temperature and motion changes associated with the caregiver’s handling
and feeding) from P15–P45 to assess animals’ location in the cage, motion and body temperature.
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2.2. Image Processing and Data Acquisition

The ceiling-mounted IR camera continuously acquired thermal images (48 × 47 = 2256 pixels)
of the floor and walls. Images were saved as csv files each second, and into directories each hour,
as controlled by the application software TP-L02 (CHINO, JAPAN). The angle of field of the sensor we
used was able to be selected as either 25 or 60 degrees depending on the specifications of the objective
lens used. We chose the wider field lens (60 degrees) so the entire cage was included in the field of view.
Our sensing technology was originally designed for automobiles and used filtered far-infrared light at
8 to 14 micrometers for thermally unique object detection with an accuracy of 0.5 ◦C and measurements
taken three times per second. In order to automatically detect the XY position of a marmoset body
we developed a new image-processing algorithm using Microsoft Visual C++ 2010 Express Edition
(Microsoft, Japan) and OpenCV 2.2. IR-determined temperatures at each pixel of each image were
converted into two-dimensional array variables. To adjust for growth, each day a square was manually
drawn around the marmoset while sleeping to determine the area of the standard body size (Sbase).
Background images were constructed by replacing the Sbase with the temperature of the surrounding
area and smoothing by 5 × 5 pixels.

Next, desired images were serially read and smoothed by 5 × 5 pixels following calculation of the
standard deviation (SD). The background image to be subtracted from an image of interest was chosen
based on the highest correlation coefficient (Rmax) with the desired image. In the image, by subtracting
the background from the desired image following standardization and smoothing by 5 × 5 pixels of
both images, a value less than zero in each pixel was regarded as zero and all the others were squared;
then, the maximum value (MAX) was determined. The number of values more than MAX/2 (N1) and
the area of the minimum square that could enclose all pixels more than MAX/2 (S1), the ratio of N1 to
S1 (NS1), and the ratio of the vertical to the horizontal side of the square (VHratio) were calculated.
Then, the images satisfying the following conditions were determined as parsable.

1. S1 < Sbase because the area of body size and the detected surface temperature increased
independently of the actual surface temperature when the marmoset approached the camera.

2. NS1 > 0.6 to discriminate a marmoset from other objects based on their shapes, because the
shape of a marmoset in the image was like a circle or ellipse (Figure 1), whereas those of other
heat-generating elements were diagonally slender.
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Figure 1. Example of common marmoset visible and thermal image.

3. Rmax > 0.3 because the correlation coefficient became low when the pattern of the background
was flat.

4. VHratio > 1/3 and <3 to distinguish a marmoset from a slender object, such as
heat-generating elements.

5. MAX > 1.5 because when the temperature difference between a marmoset and the surroundings
was too small, a false position was incorrectly detected as the marmoset’s position.
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6. SD < 1.5 because when a marmoset approached the thermal camera too closely, the standard
deviation became high due to the detection of increased temperature of the marmoset compared
to the surrounding.

Because the thermal distribution of heat-map images varied based on the “ON” and “OFF” status of
the heat generators, new background images were constantly generated from the parsable images. In the
parsable images, the central XY position of the area enclosed by a square (S1) and its change per second
were determined as the marmoset’s position and its biological locomotion velocity (BV), respectively.
The maximum temperature in the vicinity of the central XY position (X ± 1, Y ± 1 pixel) was determined
as the marmoset’s body-surface temperature (BT). The BV and BT were averaged every 30 min and
corrected as follows:

1. Correction of BV. For BV, the difference between the distance in pixels and the actual distance
depends on the distance between the camera and the marmoset. To normalize BV for changing
height size, BV determined in the smaller height (up to P31) was multiplied by 320/700 (the height
(mm) of the IR camera).

2. Correction of BT. We found preliminarily that the raw BT (BTraw) detected by the IR thermal
camera fluctuated depending on the temperature inside the cage (IT). To remove the increment or
decrement of the IT-dependent BTraw signals, the model formula below was used, and BTraw was
normalized individually:

BT = BTraw − α * (IT − ITave)

BT: the corrected body-surface temperature, ITave: the mean IT during the whole measurement
period, alpha: the slope from the regression of BTraw by IT.

2.3. Accuracy of the Developed Algorithm

To evaluate how precisely the XY position of a marmoset was detected by our image-processing
method, test images were prepared from the analyzed images. Directories containing csv files for 1 h
were numbered and a random number generator was used to select directories for analyses. The first
60 files in each selected directory were used for accuracy analysis. In total, 20 random numbers were
generated in each age stage (St1–St4) for each individual, yielding 19,200 images that were used for
the validation. Each image was visually inspected to determine if there was a marmoset present and if
the square (S1) enclosed the marmoset. If true, the XY position, BV and BT were automatically obtained
for each image. For all test images, the XY position at the center of the body, BV and BT were also
manually extracted by visual inspection (ImageJ, 1.410, NIH, Bethesda, MD, USA).

We defined and calculated results for three indices for true and false determination for our
image-processing method (Table 1). The algorithm invariably discriminated “no-marmoset images”
as non-parsable and could discriminate 86% of “marmoset images” as parsable, with the lowest at
St3 (74%). Almost 100% of parsable images were correctly parsable (Table 1). Approximately 14%
of the images that could be analyzed were removed from the data set due to environmental noise.
Linear regression comparing the automatic method we developed to manual data extraction confirmed
that the methods were analogous (R2 were close to one (Table 2)).

Table 1. Accuracy of the image-processing method.

Index All St1 St2 St3 St4

1 The ratio of non-parsable images in the
images in which there was no marmoset 1.000 1.000 1.000 1.000 1.000

2 The ratio of parsable images in the images in
which there was a marmoset 0.858 0.919 0.943 0.740 0.831

3 The ratio of correctly parsable images in all
the parsable images 0.998 0.998 0.996 1.000 0.999
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Table 2. Slope (alpha) and correlation coefficients (R2) from the regression of values extracted by
the image-processing method and manual analysis without intercept. (manual data) = alpha x
(automatic data).

All St1 St2 St3 St4

alpha

X 0.998 0.993 0.995 1.004 1.003
Y 1.020 1.027 1.033 1.010 1.011

BV 1.038 1.052 1.073 0.966 0.965
BT 0.999 0.999 0.999 1.001 0.999

R2

X 0.992 0.992 0.989 0.997 0.996
Y 0.987 0.990 0.976 0.991 0.995

BV 0.964 0.965 0.961 0.968 0.968
BT 0.935 0.919 0.911 0.962 0.966

Our results indicate that the image-processing algorithm we developed is both efficient and
accurate, with almost 100% ability to correctly parse parsable images and a strong correlation with
manual analysis techniques. These results further confirm that our image-processing method is reliable
throughout the age range we tested and independent of both BV and ambient thermal condition.

2.4. Acquisition of Environmental Variables

Temperature inside the cage (IT, ◦C) was defined as the average of the temperatures from the four
corners of the home cage. The accuracy of this measurement was evaluated by comparison between
IT and temperature simultaneously logged by another thermo-recorder (MD6000 series, CHINO,
JAPAN) every 5 min and averaged every 30 min. The two variables were highly correlated (R2 = 0.893)
confirming the validity of IT. As another index of ambient temperature, we defined the mean value
of the temperature in the two corners on the door-side of the cage minus the temperature in the two
corners opposite the door side as an indoor temperature gradient toward the door (ID, ◦C) per second.
IT and ID were averaged every 30 min.

Each animal’s home cage was enclosed and separated from the outside environment by four doors.
Temperature within the cages was maintained at 28 ◦C with circulating filtered air. While this was
designed to avoid the impact of outside air, the buildings outside temperature and humidity may have
further influenced the marmosets’ development due to the challenges of consistently controlling IT
(for example when either a room or cage door was opened even if the other three doors remained closed).
The infant stayed inside the enclosed space while feeding with the second to fourth doors closed.
To evaluate these potential effects, the outside temperature (OT) and relative humidity (OH) were
obtained from the website of the Meteorological Agency in Japan (http://www.data.jma.go.jp/obd/stats/
etrn/) every 30 min.

2.5. Definition of Biological Door Preference (BD)

Place preference has often been used as an estimate of motivation [35–39]. Here we defined
time spent near the door of the cage (biological door preference [29]) as an indication of the animals’
motivation to explore outside of the home environment. To determine BD at the preliminary screening
and to evaluate if a certain circadian periodicity emerged autonomously in double plots of the four
subjects when averaging the data, while the XY position would rather reveal the common oscillation
less in the individuals, we divided the floor of the home cage evenly into two areas: the door side and
the opposite side and determined time spent in each half of the cage. If more than 50% of the time
was spent on the door side of the cage this was considered as a preference for being near the door.
An additional binary variable (BD (0.99)) was defined as “1” if the animal spent any time on the door
side and “0” if the animal spent any time on the non-door side.

http://www.data.jma.go.jp/obd/stats/etrn/
http://www.data.jma.go.jp/obd/stats/etrn/
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2.6. Data Extraction for ‘Feeding’-Related Analysis

Data for specific periods were extracted to assess animals at times during the light period but
outside of feeding times as a strong estimate of its parental care effect and to compare information
from around feeding times to other times during the light period or dark period. For each animal, data
from 30-min blocks before and after each feeding period were identified as feeding. Additional 30-min
blocks outside of these periods were identified as other-time. For animals up to P30, these included
data for 30-min blocks both before and after the morning and evening feeding, and two successive
30-min blocks between both the morning and noon feeding (MN1, MN2), and noon and pm feeding
(NE1, NE2). For animals P30 and older, sampling times remained the same with the exception of the
elimination of the blocks before and after noon feeding as the noon feeding no longer occurred. For all
animals, nighttime data were averaged in 2-h blocks.

2.7. Statistical Analyses

2.7.1. Comparison between Light/Dark Periods and before/after Feeding

For multivariate analyses, data from animals throughout the developmental timeline (P15–45)
were divided into four age stages based upon the development of a circadian locomotor pattern.
Light-dark differences for each variable in each age stage were tested by two-way analysis of variance
(ANOVA) with post hoc Tukey’s honestly significant difference (HSD) with factors for light/dark period
and age stage or days of age. The response of each variable to feeding by age stage was similarly
analyzed by two-way ANOVA followed by Tukey’s HSD with factors age stage and before/after feeding.
Effect of feeding (before/after feeding) was also analyzed for each factor by a two-tailed, paired t-test.

Following our previously published methods (domestic chicks: [6,21,22,40–43]; common
marmosets [6–9,21,33,34] and humans [6,21,44,45]), we then used principal component analysis (PCA)
to infer the complex developmental mechanisms relating our obtained multiple variables including
behavioral, physiological, biomolecular and psychological factors. The light-dark or before-after
feeding differences of each principal component (PC) score were additionally analyzed by two-way
ANOVA followed by Tukey’s HSD, as described above.

2.7.2. Feeding-Dependent Explanatory/Response Variables

To compare the 4 age stages equally, the sample size at each stage was adjusted to six samples
spaced as far away from each other as possible (St1: P15–P20, St2: P25–30, St3: P33–38, St4: P40–45).
Before adopting the following approach of correlation model selection, we narrowed the number of
nighttime data points to be assessed using Pearson correlation coefficients based on the assumption
that nighttime memory formation [46,47] is affected by socio-emotional and physical experiences
related to feeding. Each B variable of any paired time between feeding times and the focal night was
explored, and the multivariate interactions considering the random effects among four marmosets
were comprehensively evaluated in each stage (“intra-stages”) and across stages (“inter-stages”)
based on linear mixed models (LMMs [48]) using R3.1.1 (The R Project for Statistical Computing,
http://www.r-project.org/), with lme4 and cAIC4 packages. For “intra-stage” analysis, one of the
B- variables before/after morning/evening feeding or at the focal night time was set as a response
variable (‘R’), and fewer than four variables in seven B- (BV, BT, BD), I- (IT, ID), and O- (OT, OH) variables
at the previous focal night times or before/after morning/evening feeding were set as explanatory
variables (‘E’). The combinations of selected explanatory variables were 7C1 + 7C2 +7C3 + 7C4 = 98 in
one-explanatory model conditions. Both the fixed and random effects of B- and I- variables among
4 marmosets were considered in the regressions below, whereas no random effects were set for
O-variables shared among them.

http://www.r-project.org/
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lmer(R~E1+(E1|ID))
lmer(R~E1+E2+(E1+E2|ID))
lmer(R~E1+E2+E3+(E1+E2+E3|ID))
lmer(R~E1+E2+E3+E4+(E1+E2+E3+E4|ID))

For “inter-stage” analyses, the same variables used as “intra-stage” in the earlier and later age
stage were set as ‘E’ and ‘R’, respectively, in a combination pair from St1–St4. In each paired-time
condition, the best fitting model was selected based on cAIC (the conditional Akaike information
criterion) [49]. To support the unstable estimation, models with the first to third lowest cAIC were
selected as long as they allowed a difference of less than 1% from the first minimum cAIC. Once any
absolute t value of these models was more than two, each of the estimated explanatory variables was
used for the start of the following negative/positive correlation pathway vector whose end was the
response. To specifically visualize responses to feeding, similar analyses were comparatively applied
for the other times, MN1, MN2, NE1 and NE2, to replace the data around feeding and the specific
explanatory response, which was set at each paired time to ‘feeding’ but not similar to the ‘other time’ at
the formula level. Alternatively, an individual vector level was targeted. In contrast, the ‘other time’ or
the ‘common’ points between ‘feeding’ and ‘other time’ specific vectors were independently collected.
For the following analyses, the types of linear regression models were divided into subgroups of B-, I-,
O-, BI, BO, IO, and BIO based on the combination of the explanatory variables. The ratios for each
subgroup were calculated according to the total number of possible explanatory variables, 1680 in
“intra-stages” and 7056 in “inter-stages” analyses. The ratios, except those left uncategorized, were
analyzed by Pearson’s chi-square test followed by residual analysis to identify the ratios that were
significantly different from all others.

The obtained pathways with the explanatory B-, I-, and O- variables as the start and response
B-variables as the end per time and stage were summed. Consequently, connected networks appeared
with convergence points (‘nodes’) by multiple pathways, which described not only the single relation
but also diversified networks via relay nodes, and allowed realization of complex functions according
to the effects of O- on B-indices or of B- on B-indices. For feeding-dependent pathways, any significant
explanatory variable must be present in the data set from either before or after feeding time.

3. Results and Discussion

3.1. Definition of Age Stages

Age was segregated into four stages based upon the development of a circadian locomotor pattern
as demonstrated by shifts in BV patterns (Figure 2A). P15–22 was defined as stage 1 (St1) during
which time locomotor pattern differences between the light and dark phase were minimal. In stage 2
(St2; P23–31) distinct light-dark differences in BV were detectable as expected in this diurnal species [33].
In stage 3 (St3; P32–38) there was an obvious elevation in light-phase BV with minimal dark-phase BV
and during stage 4 (St4; P39–45) light-phase BV was reduced and dark-phase BV remained minimal.
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Figure 2. Developmental shift of circadian rhythm in three biological (B-) and four environmental
(I-, O-) indices averaged in four infants and in terms of principal component scores. (A) Biological
locomotion velocity (BV) trend lines compared between light (L) and dark (D) phases from age stage St1
to St4; (B) 30-min-raster plots (48 h horizontally versus postnatal day vertically) with a size marker at
the bottom; overlaid raster plot of principal components PC4 (red), PC5 (green) and PC6 (blue). In C-I;
Light-dark statistical comparison per age stage for each variable. Error bars indicate standard error of
the mean (s.e.m.) * p < 0.05 by Tukey’s honestly significant difference (HSD) test following two-way
analysis of variance (ANOVA); (C) biological locomotion velocity (BV); (D) place preference toward the
door (BD) more than 99% (BD (0.99)); (E) body surface temperature (BT); (F) indoor temperature (IT);
(G) indoor temperature gradient toward door (ID); (H) outdoor temperature (OT); (I) outdoor humidity
(OH); (J–O) seven factor loadings of PC1–PC6. In (P–U) light-dark statistical comparison per age stage
for PC1–PC6. Error bars indicate s.e.m. * p < 0.05 by Tukey’s HSD test following two-way ANOVA.

3.2. Testing of the Developed Algorithm through Evaluation of Age-Dependent Shifts in Circadian Rhythms

All animals gained weight steadily throughout the study period (Figure 3) as appropriate, indicating
that stress was not likely induced by the measurement procedure. The data from one-Hertz-rate raw
IR images recorded over 30 days (P15–45) were post-processed, and trends in the biological (B-; BV,
BD, BT) and indoor environmental (I-; IT, ID) indices were automatically captured. We first visualized
the circadian rhythmicity of all seven variables (BV, BD, BT, IT, ID, OT, OH) by creating raster plots for
each individual animal and the average of the four individuals (Figure 2). Day-night differences in
each variable were evaluated to determine circadian rhythmicity (Figure 2).
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As noted above, circadian rhythm of BV developed over time and was used to define the age
stages used for analysis. BT, a physiological index, showed consistent circadian patterns in early age
stages but varied in the late stage (Figure 2E). This finding confirms results from previous reports
that diurnal body temperature rhythms emerge earlier than behavioral rhythms in primates and
rodents [19,50,51] and are affected by behavioral [52] and thermal conditions [53]. BD was generally
less phasic but BD (0.99) was more phasic (Figure 2D). Notably, nighttime BD (0.99) increased
from St1 to St3 and then decreased at St4. Considering the understanding of place preference in
experimental psychology [35–38], the BD age-dependent shifts could be interpreted as an index of
the infants’ emotional development evoked by socially interactive feeding. There was a minimal
relationship between BD and IT or ID (Figure 2F,G) suggesting a lack of preference based on internal
environmental conditions. Both outdoor climate factors, OT (Figure 2H) and OH (Figure 2I), showed
clear circadian rhythms which might impact development of circadian rhythms in B-indices even
given the home cage temperature regulation. Consequently, we hypothesized that there was interplay
among the seven variables, and we performed PCA with a correlation matrix to explore B-variables’
circadian interplay under weaker environmental influences.

In order to assess relationships among the seven variables, we performed a principal component
analysis (PCA) with a correlation matrix to explore B-variables’ circadian interplay under weaker
environmental influences. In seven acquired principal components (PC), the contribution rates were
similar from PC1 (0.213) to PC6 (0.104) (Table 3). The factor loadings showed higher environmental
influences in the PC1–3 (Figure 2J–L), and lower in the PC4–6 (Figure 2M–O). Thus, we visualized
environment-independent development by superimposing the raster plots of PC4–6 (Figure 2B).
This reconstruction identified novel circadian expression with age-dependent shifts, i.e., PC4 was
dominant but less day/night phasic in St1. PC4–6 was unclear at St2, and PC6 was high during
daytime in St3. Finally, significant alternate day-night rhythmicity emerged between PC4 and PC5
(Figure 2S–V).

Table 3. Contribution rates of principal component analysis (PCA) with seven variables.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Contribution Rate 0.213 0.174 0.163 0.143 0.132 0.104 0.072
Cumulative Contribution Ratio 0.213 0.386 0.550 0.692 0.824 0.928 1.000

3.3. Estimation of Developmental Cause and Effect Based on Socially Interactive Feeding

The identified circadian rhythms were presumably driven by both innate and environmental
factors including both the social and nutritive aspects of being hand-fed at a specific time each day.
To identify any causal relationships during the age stages, we explored the eight variables’ correlations
between two different time windows, i.e., before/after feeding or at night. The first comparison of
each 30-min variable before and after feeding was summarized (Figure 4). Moderate differences were
observed in the B- and O- indices, although only BD (0.99) at St2 in the evening was found to be
significant by two-way ANOVA and Tukey’s HSD (Figure 4C).
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Figure 4. Comparison of each 30-min variable average before and after feeding. All variables (A–H)
and PC scores characterized by factor loadings (I–N) are compared. * p < 0.05 by Tukey’s HSD test
following two-way ANOVA. ‡ p < 0.05 by paired t-test.

Next, the screening of feeding-dependent changes in B-variables in 2-h increments at night by
Pearson’s correlation coefficient showed that correlated hours seemed to be generally sequential and
continuous and were less correlated at midnight (Figure 5). Hence, to minimize the screening process,
we used five representative nighttime periods (3- (3 to 5 o’clock), 5-, 19-, 27-(next day 3 to 5 o’clock), 29-).
To analyze the relationships among before/after feeding and the five focal night periods, considering
multivariate interactions, each B response variable was regressed on all B-, I-, and O- variables by
use of linear mixed models (LMMs) [49] considering the random effects among the four individuals.
These intra- and inter-stage analyses were further compared with the complementary analyses of
day times other than feeding times and were categorized into three independent groups, ‘feeding,
‘other time’, and ‘common’ (Figure 6A–C,G–I). The obtained linear models were characterized by
the explanatory variable combinations as B, I, O, BI, BO, IO, BIO. In Figure 7A, B- types were higher
than other types in St1-3 but not St4, specifically in ‘feeding’, whereas O- types were more extensive
than I- types in the inter-stages of ‘feeding’ and ‘common’ (Figure 7A,C). These findings suggest that
longitudinally, but not acutely, climatic O- variables interacted with B- variables during feeding more
than other times.
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Figure 6. Correlation vectors among B-, I-, and O- variables of four age stages by linear mixed models 
(LMMs). Specific correlations to “feeding”, “other time” and “common” in the “intra-stage” analysis 
(A–C) and “inter-stage” analysis (G–I) based on LMMs followed by conditional Akaike information 
criterion (cAIC) to select the best fitting models are shown. Each vector indicates the relationship 
between an explanatory (earlier end in the time series) and response (later end in the time series) 
variable, and its color is categorized by the combination of the category of the variables, as shown at 
the bottom. Two or more vectors to one response variable from explanatory variables at same time 
and stage represent a complex explanation in one regression. The percentage of total explanatory 

Figure 5. Screening of feeding dependence at night in two-hour increments on the basis of B- variables.
Pearson correlation coefficients between the mean values 30 min before/after morning/evening feeding
and in 2-h increments at night for each variable. * p < 0.05. Red triangle indicates differences before
and after feeding in either ‘significant’ or ‘not significant’ results. A pair of graphs surrounded by a
gray square denote significant differences before and after feeding. Black underbars indicate the focal
night hours as determined by this screening.

Int. J. Environ. Res. Public Health 2020, 17, x 12 of 23 

 

 
Figure 5. Screening of feeding dependence at night in two-hour increments on the basis of B- 
variables. Pearson correlation coefficients between the mean values 30 min before/after 
morning/evening feeding and in 2-h increments at night for each variable. * p < 0.05. Red triangle 
indicates differences before and after feeding in either ‘significant’ or ‘not significant’ results. A pair 
of graphs surrounded by a gray square denote significant differences before and after feeding. Black 
underbars indicate the focal night hours as determined by this screening. 

 

Figure 6. Correlation vectors among B-, I-, and O- variables of four age stages by linear mixed models 
(LMMs). Specific correlations to “feeding”, “other time” and “common” in the “intra-stage” analysis 
(A–C) and “inter-stage” analysis (G–I) based on LMMs followed by conditional Akaike information 
criterion (cAIC) to select the best fitting models are shown. Each vector indicates the relationship 
between an explanatory (earlier end in the time series) and response (later end in the time series) 
variable, and its color is categorized by the combination of the category of the variables, as shown at 
the bottom. Two or more vectors to one response variable from explanatory variables at same time 
and stage represent a complex explanation in one regression. The percentage of total explanatory 

Figure 6. Correlation vectors among B-, I-, and O- variables of four age stages by linear mixed models
(LMMs). Specific correlations to “feeding”, “other time” and “common” in the “intra-stage” analysis
(A–C) and “inter-stage” analysis (G–I) based on LMMs followed by conditional Akaike information
criterion (cAIC) to select the best fitting models are shown. Each vector indicates the relationship
between an explanatory (earlier end in the time series) and response (later end in the time series)
variable, and its color is categorized by the combination of the category of the variables, as shown at
the bottom. Two or more vectors to one response variable from explanatory variables at same time and
stage represent a complex explanation in one regression. The percentage of total explanatory variables’
number per single B-, I-, and O- indices or a combination of them are shown in each specific correlation
pattern (D–F, J–L). * p < 0.05 by residual analysis following Pearson’s chi-square test.
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before or after feeding, was represented as a vector over four stages (Figure 8). All vectors were 
connected to one another via any of the variables and times and were translatable as one complex 
developmental mechanism (Figure 8). Referring to B- explanatory and response variable numbers at 
each time point (Figure 8) or the presence/absence of a significant variable as ‘start’, ‘hub’, or ‘end’ 
(Figure 9, top table), the original start was estimated around feeding primarily in St1 and partially in 
St2. It was followed by the appearance of many ‘hub’ variables’ during St2–3; then, ‘end’ sequentially 
appeared in St4. Compared to other variables, the ‘end’ of BT significance uniquely disappeared 
during the late evening and night of St4 (Figure 9, black arrow), which might have contributed to the 
PCA-deduced circadian phases in St4 (Figure 2B). 

Figure 7. Correlated B-, I-, and O- variable ratios per intra- or inter-stage analysis by LMMs between
two time points of feeding / other, day and night. In each specific condition of feeding (A), other day
time (B), or common to both (C), pie charts represent the ratio of selected regression-model types,
categorized as a single or combined contribution of significant B-, I-, O- variables based on LMMs
followed by cAIC in “intra-stage” analysis in each age stage. The right bottom box represents each
analyzed stage combination layout of the accumulated bars.

3.4. Feeding-Dependent B- Developmental Pathways of Intra- and Inter-Stages with Autonomic B- or
Climatic O- Explanatory Variables

We explored how feeding-dependent B- development might explain the complex circadian shifts
of PC4–6 (Figure 2B) by the B- or O- variables during the previous stage, as described in Figure 7.
First, a pair of B-specific explanatory (start) and response (end) variables, which were present either
before or after feeding, was represented as a vector over four stages (Figure 8). All vectors were
connected to one another via any of the variables and times and were translatable as one complex
developmental mechanism (Figure 8). Referring to B- explanatory and response variable numbers at
each time point (Figure 8) or the presence/absence of a significant variable as ‘start’, ‘hub’, or ‘end’
(Figure 9, top table), the original start was estimated around feeding primarily in St1 and partially
in St2. It was followed by the appearance of many ‘hub’ variables’ during St2–3; then, ‘end’ sequentially
appeared in St4. Compared to other variables, the ‘end’ of BT significance uniquely disappeared
during the late evening and night of St4 (Figure 9, black arrow), which might have contributed to the
PCA-deduced circadian phases in St4 (Figure 2B).

We further visualized which times might be described as nodes that influenced or were influenced
by multiple factors in the intra-/inter-stage pathways by LMMs focusing on B (Figure 10(A2–A4,A6–A8))
and O- (Figure 10(A1,A5), Figure 11(1–5)) variables. O-variables showed the dominant number of
projected pathways around feeding in St1, such as influential starts, diversified to multiple times over
the age stages (Figure 11(4,5)). The maximum explanatory nodes (MENs) of BV (Figure 10(A6)) and
BD (Figure 10(A7)) appeared at the time before feeding in St1. BV projected pathways to BT or BV
at night in all age stages (Figure 10(A6)). BD directly and extensively influenced St4 (Figure 10(A7)),
and BT MENs appeared after feeding at a different stage, St2 (Figure 10(A8)). This finding suggests
that BT MENs might influence the following diversified pathways with a delay.

All of the maximum response nodes (MRNs; Figure 10(A1–A4), Figure 11 (1,2,3)) appeared
around feeding in St4, irrespective of the explanatory variables. Regarding BV, a typical circadian
variable, the MRNs after evening feeding in St4 were primarily pathways from St3 over day-night
(Figure 10(A2)), which indicates that BV might be affected by the previous week. BD MRNs after
morning feeding in St4 were explained by certain effects from St2 and St1 but not St3 with BT and BD
factors (Figure 10(A3)). BT MRN after morning feeding in St4 may be explained by B-variables over
age stages in nighttime but not daytime (Figure 10(A4)).
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Figure 8. Feeding-dependent pathways of B-variables by LMMs. Age-stage and focal time are 
arranged horizontally in the time series. (A). Light yellow and light blue horizontal bars indicate 
positive and negative correlation vectors between explanatory (left side of the bars: start) and 
response (right side of the bars: end) variables, respectively. (B). The heat maps represent the summed 
number (color gradation) of positive or negative BV (V, blue), BD (D, red) and BT (T, green) as 
explanatory (upper) or response (lower) variables per focal time in each age-stage. 

Figure 8. Feeding-dependent pathways of B-variables by LMMs. Age-stage and focal time are arranged
horizontally in the time series. (A). Light yellow and light blue horizontal bars indicate positive and
negative correlation vectors between explanatory (left side of the bars: start) and response (right side
of the bars: end) variables, respectively. (B). The heat maps represent the summed number (color
gradation) of positive or negative BV (V, blue), BD (D, red) and BT (T, green) as explanatory (upper) or
response (lower) variables per focal time in each age-stage.
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“E”) variables. Gray squares indicate the maximum response node (MRN) or maximum explanatory 
node (MEN) in each variable (see also Figures 10 and 11). Same variables separately arranged are 
connected with one another with colored curves. The start points at St1 or St2 are marked by V1–V6, 
D1–D5 and T1–T4. 
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influenced by multiple factors in the intra-/inter-stage pathways by LMMs focusing on B (Figure 
10(A2–A4,A6–A8)) and O- (Figure 10(A1,A5), Figure 11(1–5)) variables. O-variables showed the 
dominant number of projected pathways around feeding in St1, such as influential starts, diversified 

Figure 9. Connections of the feeding-dependent pathways depicted in Figure 8. The horizontal bars are
the same as in Figure 8 re-arranged. The top table shows any presence of significant start (explanatory, “S”),
hub-like relays (both explanatory and response, filled circle), or end (response, “E”) variables. Gray squares
indicate the maximum response node (MRN) or maximum explanatory node (MEN) in each variable
(see also Figures 10 and 11). Same variables separately arranged are connected with one another with
colored curves. The start points at St1 or St2 are marked by V1–V6, D1–D5 and T1–T4.
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(b) and after (a) morning (M) and evening (E) feeding (pink arrow-head), 19–20 (19-) p.m., 27–28 (27-
), 29–30 (29-) a.m.) are shown as circles, which estimate the effects of the variables. The effects as 
responses and explanatory variables are estimated by the regression of BV, BD or BT on arbitrary O- 
(1) or B- indices (2–4) and the regression of arbitrary B- indices on OT (5), BV, BD or BT (6–8; see also 
Figure 11). The maximum response nodes (MRNs) and maximum explanatory nodes (MENs) are 
marked by gray squares. (B) Overlaid 30-min-raster plot of BV (blue), BD (red) and BT (green; left 
side, 2–3) or PC4 (red), PC5 (green) and PC6 (blue; right side, 5–6), are displayed separately for each 
age stage. Significant light-dark differences in each day are shown as their own-colored squares on 
the left side (1), (4) of the raster plots (p < 0.05 (lighter colors) and p < 0.1 (darker colors) by Tukey’s 
HSD test following two-way ANOVA). The BV MRNs pathways regressed on O- indices (B2), “O to 
BV” (A1)), BV regressed on B- indices (B3), “B to BV” (A2)), BD regressed on B- indices (B5), “B to 

Figure 10. Feeding-dependent positive/negative pathways determined by LMMs on gradient or unique
circadian development, on the basis of B(biological)-indices. (A) The numbers of explanatory or
response variables (“nodes”) in each time point (horizontal axis; 3–4 (3-) and 5–6 (5-) a.m., before (b)
and after (a) morning (M) and evening (E) feeding (pink arrow-head), 19–20 (19-) p.m., 27–28 (27-),
29–30 (29-) a.m.) are shown as circles, which estimate the effects of the variables. The effects as responses
and explanatory variables are estimated by the regression of BV, BD or BT on arbitrary O- (1) or B-
indices (2–4) and the regression of arbitrary B- indices on OT (5), BV, BD or BT (6–8; see also Figure 11).
The maximum response nodes (MRNs) and maximum explanatory nodes (MENs) are marked by
gray squares. (B) Overlaid 30-min-raster plot of BV (blue), BD (red) and BT (green; left side, 2–3) or
PC4 (red), PC5 (green) and PC6 (blue; right side, 5–6), are displayed separately for each age stage.
Significant light-dark differences in each day are shown as their own-colored squares on the left side (1),
(4) of the raster plots (p < 0.05 (lighter colors) and p < 0.1 (darker colors) by Tukey’s HSD test following
two-way ANOVA). The BV MRNs pathways regressed on O- indices (B2), “O to BV” (A1)), BV regressed
on B- indices (B3), “B to BV” (A2)), BD regressed on B- indices (B5), “B to BD” (A3)), and BT regressed
on B- indices (B6), “B to BT” (A4)) extracted by LMMs followed by cAIC are also depicted.
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Figure 11. The number of nodes as explanatory or response in each time-point specifically in “feeding”.
The numbers of explanatory or response variables (“nodes”) in each time-point are shown as the size of
a filled circle, which can estimate the effects of the variables. The effects as response and explanatory
are estimated by the regression of each B-variable on arbitrary O-indices (1–3), and the regression
of arbitrary B-indices on each O-variable (4,5), respectively. The MRNs and MENs are marked by
gray squares.

These results suggest that developmental ‘relay’ systems may be formed through complex
psychophysical and circadian mechanisms via feeding experiences and nighttime biological activity.
Because food and sociality are strong factors that induce anticipatory behavioral and physiological
responses [54,55] as functions of the brain limbic systems [36,37,46,55–57], these differences in
time-sequence before/after social and dietary rewards in developmental day–night cycles might
reflect psychological memory of expectant and satisfied states.

3.5. A Trigger Candidate of the Feeding-Dependent B-Developmental Pathway Contributes to Circadian
Biological Door Preference-Body Surface Temperature (BD-BT) Correlation Switching

Finally, to extrapolate feeding-dependent developmental mechanisms under the influence of
the interplay of multiple factors [58,59], the pathways of the B-MRNs from O-/B- were represented
as two types of 3 color-superimposed plots (Figure 10B). One is from B- indices (Figure 10(B2,B3),
Figure 12A–D), and another is from PC4–6 (Figure 10(B5,B6), Figure 12I–L) to reduce either O-/I-effects
(Figure 12E–H) based on the factor loadings (Figure 2J–O). The former results may have involved
interplay between the dominant O- and BV in the B- variables (Figure 10(B2,B3)), which ambiguously
expressed color gradient shifting as red in St1, orange in St2, yellow in St3, and green in St4.
Hence, the alteration of Figure 10(B2,B3) is explained as ‘flat shifting’ with a less critical change,
except in the BV circadian phases (two-way ANOVA in Figure 10(B1)). Thus, we added the BV-relevant
LMM pathways from either O- or B- explanatory variables with the MRNs in St4 (Figure 10(A1–4))
and then compared them above the B-variable plots (Figure 10(B2,B3)). The pathway from B- to BV
(Figure 10(A2)) was primarily projected from St3 (Figure 10(B3)), whereas the pathway from O- to BV
(Figure 10(A1)) was frequently shown to be longer from St1–3 (Figure 10(B2)), consistently with the
higher O- ratios in the inter-stage than the intra-stage (Figure 7A).
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Figure 12. Characterization of complex circadian rhythms. Overlaid raster plots of BV ((B), blue), BD
((C), red) and BT ((D), green), or PC1 ((F), blue), PC2 ((G), red) and PC3 ((H), green), or PC4 ((J), red),
PC5 ((K), green) and PC6 ((L), blue) are depicted in (A), (E) or (I), respectively.

Last, we compared the relevant B- to BD (Figure 10(A3) and B- to BT (Figure 10(A4)) pathways
to the circadian BD-BT pattern, particularly in St4 (Figure 10(B4) (white arrow)) visualized by PC4–6
overlay (Figure 10(B5,B6)). Both MRNs emerged after morning feeding when infants were sated.
Their behavior after feeding was different from than before feeding, presumably due to different
expectations associated with the caregiver. Following morning feeding in St.4, we found two notable
oppositely paired positive/negative correlating branches from the same night times and explanatory
variables but different response-variable sets. One pair started BV from 5–6 a.m. as the night before
morning in St1 (Figure 10(B5,B6,Ba)) and another, BD from 7 p.m. as the night beginning in St2
(Figure 10(B5,B6,Ba).The common MRN of BD and BT in St4 was consistently around the beginning of
the PC4 (red) dominant phase because of the negative BD-BT correlation of PC4. This key pathway
origin was confirmed in BT after morning/evening feeding in St1 and BD before evening feeding
in St2 (Figure 13B, daggers), which might explain the effect of the previously noted difference in
BD and BT around feeding in Figure 4B–D (evening) as trigger candidates for late-stage emotional
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circadian development in St4. Additionally, considering the presence of a simpler straight pathway
from BD before evening feeding in St1 toward after morning feeding in St4 (Figure 13A), both pathways
suggested that each psychobiological character either before or after feeding was independent in
the early stage (St1–2) but converged later (St4). The former pathway passed circuits via different
B-mechanisms and then reached St4 (Figure 13B). The circadian positive and negative correlation shift
emerged (Figure 2B) as contributing to the formation of more complex emotional mechanisms with
a psychologically relevant BD [35–38] –BT [57,60] correlation. In contrast, the latter influenced the
underlying basic mechanism because of the longitudinal effect in St2 but not St3, just after the dramatic
change in home environment and when feeding times were reduced from three to two.
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Figure 13. The origin of candidate trigger pathways revealed in Figure 10. The double plots are same
as shown in Figure 10B, overlay of PC4–PC6. (A) The pathways from the maximum explanatory nodes
revealed in the regression of arbitrary B-indices on BD. (B) Solid lines marked by a dagger and double
dagger indicate the original pathways of key pathways marked by “a” and “b” corresponding to “a”
and “b” in Figure 10(B5,B6).

It is reasonable to assume that feeding has among the strongest impact on infantile development.
The current correlation analysis of marmosets before and after feeding by LMMs might allow us
to decipher a certain “learning” in both intra- and inter-stage comparisons. This approach has the
potential to reveal not only individual responses but also species-specific development or evolutionary
mechanisms. Our data-driven comprehensive visualization approaches might reveal cause and effect
estimations of interactive developmental processes although further studies are required.

This biological and environmental measurement system was designed to use a low-cost IR
image sensor that also required lower data-processing costs providing general versatility to apply this
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technique to human studies however, as a trade-off, the detection ability was limited. More recently
available high-end IR image sensors and big data processing technology must be used to further
visualize novel developmental neurobiology.

4. Conclusions

We have shown the validation and application of an inclusive sensing technique for the
continuous non-invasive collection and assessment of home position, body temperature, locomotion
and environmental 1 Hz data for one month using an inexpensive IR thermal sensor in a primate model.
Through validation of this methodology, we have uncovered new information about the common
development of circadian rhythm in four common marmosets and its relationship to ambient and
climatic, social and biological variables. We consistently detected common developmental cascades and
multiple factors in time-age nodes appeared as estimated causes and responses in the network structures.
Limitations of the study include the animals’ living situation. While we have shown this technique to
be particularly effective in singly housed primates, it could be readily adapted for human use at home
with the addition of non-invasive IR or wireless tags. The potential application of this sensor technology
to humans may facilitate the development and implementation of home artificial intelligence programs
designed to support healthy development.
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