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,e aim of this paper consists in the derivation of an analytic formula for the hydraulic resistance of capillaries, taking into account
the tube hematocrit level. ,e consistency of the derived formula is verified using Finite Element simulations. Such an effective
formula allows for assigning resistances, depending on the hematocrit level, to the edges of networks modeling biological capillary
systems, which extends our earlier models of blood flow through large capillary networks. Numerical simulations conducted for
large capillary networks with random topologies demonstrate the importance of accounting for the hematocrit level for obtaining
consistent results.

1. Introduction

Simulation of blood circulation in large capillary networks is
a challenging task. Realistic modeling of microvessel
structures should take into account not only sophisticated
topologies of blood vessel networks but also correct hy-
draulic resistance of microvessels. ,e latter is characterized
by the apparent blood viscosity which depends on the vessel
diameter as well as the discharge and tube hematocrit. ,e
discharge hematocrit is the volume fraction of the red blood
cells (RBCs) in the blood delivered by the flow in the vessel.
,e tube hematocrit is the volume fraction of RBCs that are
inside the vessel at a given time instant. ,e discharge
hematocrit is larger than the tube one because the velocity
profile in the radial direction is nonuniform; namely, the
RBCs velocity is higher than the mean bulk flow speed,
which is called the Fåhraeus effect [1, 2]. ,e velocity profile
in the radial direction is affected by the presence of the
endothelial surface layer (ESL) [1].

,e importance of accounting for the hematocrit level in
blood flow simulations attracts attention of many researches.

Animal models are utilized, for example, to measure and
analyze the distributions of cell velocity and cell flux in the
capillary network for different values of systemic hematocrit
[3]. By using fluorescent microscopic analysis of rat cerebral
capillary networks, the influence of hematocrit on mean
RBC capillary velocity and mean arterial pressure can be
assessed [4]. Moreover, the effect of hematocrit can be in-
vestigated in artificial microvascular branching networks [5].
A combination of an animal model with an effective iterative
algorithm allows for finding the distribution of discharge
hematocrit and blood flow velocity in a cerebrocortical
microvascular network [6].,is approach takes into account
the heterogeneity of blood flow and partitioning of red cells
at bifurcations.

,e current paper is related to modeling of computer-
generated blood microvessel networks with vessel diameters
less than 10μm. ,is is motivated by our previous work on
simulating cerebral blood flow of preterm infants [7]. In such
thin blood vessels, RBCs move in single file. Due to their ability
to deform, RBCs can pass through vessels down to 2.7μm in
size, which is less than their diameter, without damaging their
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membrane [8]. ,e hematocrit level and the shape of single
erythrocytes during their motion in a capillary with diameter
less than 8μm depend on RBC velocity [9].

Two approaches to mathematical modeling of RBC
transport through microvessels can be mentioned.

,e first one is based on continuum models [7, 10],
where erythrocytes are considered as a homogeneous sub-
stance, and the RBC motion is described as a two-phase
blood flow; namely, the erythrocyte homogeneous substance
moves in the central core of the vessel, whereas the plasma
fraction moves in a cell-free layer formation near the wall.
Reasonable assumptions allow for deriving an explicit for-
mula for the hydraulic resistance of a single capillary [7],
which is very important for the simulation of blood flow in
large capillary networks. A model derived in [10] studies the
relations between the tube hematocrit level, vessel diameter,
and apparent viscosity.

,e second approach relies on discrete models [11, 12],
where the effect of each erythrocyte is taken into account.
,e capillary blood flow is considered as single-file flow of
red cells in blood plasma playing the role of lubrication and
filling gaps between the erythrocytes. Such an ansatz [11] is
used to develop a model resulting in an efficient algorithm
for computing the pressure and flow field as well as the
hematocrit distribution in simplified capillary networks.
,is approach shows a strong influence of single-file ar-
rangement of RBCs on flow behavior. A coupled model
describing the delivery of oxygen to tissue cells is considered
[12] at the scale allowing to take into account the size and
shape of individual RBCs as well as their deformation. ,e
proposed approach [11, 12] takes into account the level of
hematocrit in simulations of blood flow.

In the present paper, the approaches described in [7, 11]
are combined to obtain an analytical formula for the
computation of blood flow resistance in microvessels. ,is
formula accounts for gaps between RBCs and, therefore,
reflects the dependence on tube hematocrit. ,e tuning and
validation of this formula are performed using hydrody-
namical computations based on the representation of the
cell-plasma mixture as a fluid with two different viscosities
(much larger viscosity for blood cells). A very good con-
sistency of the analytically computed values with the nu-
merical results is obtained. An example of finding the
pressure distribution in a relatively large capillary network
(the germinal matrix or the whole brain), accounting for the
level of tube hematocrit, is presented. ,e ability to account
for the hematocrit level significantly enhances the algorithm
proposed in [7] for finding the pressure distribution in the
germinal matrix. Numerical experiments show a significant
influence of the hematocrit level on the pressure distribution.

2. Continuous Model of Red Cell Transport

In [7], the transport of red cells in capillaries was modeled as
a continuum flow with spatially variable viscosity. A high
viscosity was assigned to the central part of the capillary,
RBC substance, whereas the layer between the RBC sub-
stance and capillary wall was assigned with a small viscosity
typical for blood plasma (Figure 1.)

Such an approach is motivated by the results of [13]
claiming that a rigid body moving in a fluid can be replaced
with another fluid whose viscosity tends to infinity. Ignoring
gaps between the red cells was explained by small length of
gaps compared to a high velocity of RBCs. ,us, the re-
sistance of a capillary was assumed to be independent on the
hematocrit in a first approximation.

,e viscosity as function of the vessel’s radius was chosen
as follows:

μ(r) �
μ1, if r0 ≤ r≤ rc,

μ2, if r< r0,
 (1)

where rc is the radius of the capillary, r0 is the radius of the
RBC substance, and μ1 and μ2 are the viscosities of blood
plasma and the RBC substance, respectively. Typically, μ1 �

0.001 Pa·s and μ2 � 0.1 Pa·s. ,e last high value is used here
to make the RBC column effectively rigid. It should be noted
that further increasing μ2 has practically no effect.

,e velocity profile corresponding to (1) was derived in
[7, 14], under some assumptions, as follows:

v(r) �

A r2 − r2c( 

4μ1
, if r≥ r0,

A r20 − r2c( 

4μ1
+

A r2 − r20( 

4μ2
, if r< r0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where A � Δp/L and Δp is the pressure drop at the capillary of
the length L. ,e total flux is given by the following formula:

q � −
πΔp
8L

r4c − r40
μ1

+
r40
μ2

 , (3)

and the resistance reads as follows:

R �
8L

π
r4c − r40
μ1

+
r40
μ2

 

− 1

. (4)

In [7] (see the end of Section 2 and references there), the
following relation between r0 and rc was proposed:

r0 � 0.3 μm + 0.8rc, (5)

and arguments for the reliability of this formula were presented.
Notice that formula (4) with r0 � 0 (i.e., the whole

capillary is filled with blood plasma) transforms into the
Poiseuille formula:

R �
8L

π
r4c
μ1

 

− 1

. (6)

Plasma

RBC substance

Plasma

Figure 1: Schematic representation of continuum stream of
erythrocytes in a capillary (the axial section is shown). ,e gaps
between erythrocytes are ignored. ,e motion occurs due to the
lubrication plasma layer between erythrocytes and vessel wall.
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It should be noted that the model described in this section
is a rough approximation of RBC motion in a capillary.
Obviously, plasma recirculation between cells should affect
the flow properties. Section 3 considers an extended model,
assuming the presence of gaps between RBCs, which means
accounting for tube hematocrit.

3. Discrete Model of Red Cell Transport

In [11], RBCs in capillaries are considered as separate rigid
bodies immersed in blood plasma, as it is sketched in
Figure 2. ,e RBCs are schematically shown as cylinder-
shaped objects (their projections onto the axial section are
depicted).

,e following formula for the effective resistance Re of a
capillary, assuming that RBCs move in single-file, is pro-
posed in [11]:

R
e

� R(1 + Hβ). (7)

where H � L/L is the value of tube hematocrit, and β �

(9/9) − 1, where L � ili is the part occupied by RBCs, 9 is
the specific resistance for the parts occupied by erythrocytes,
and 9 is the specific resistance for the parts filled with
blood plasma. Moreover, R is the Poiseuille resistance of the
vessel filled only with blood plasma, i.e., R � L9. Obviously,
Re � R if H � 0, and Re � R ≔ 9L if H � 1. Note that the
Obrist et al. [11] neglected the plasma layer between RBCs
and the capillary wall, which yields some error. For example,
the values 0.1, 0.4, and 1 ofH correspond to the values 0.082,
0.33, and 0.82 of exact tube hematocrit. Nevertheless, the
definition of [11] will be kept for consistency. Note that
single-file flow of RBCs is typical for small vessel diameters
(down to 10 μm [15]), which holds for the capillary network
of the brain.

Formula (7) can be transformed into the following one:

R
e

� L9 +(L − L)9, (8)

which means that Re is the resistance of serially connected
parts corresponding to the intervals li and gaps between
them.

Note that paper [11] does not propose a precise defi-
nition of β in (7). In contrast, we are able to compute β
directly using the expressions (4), (5), and (6); that is, 9 and 9

will be set as follows:

9 �
8
π

r4c − r40
μ1

+
r40
μ2

 

− 1

,

9 �
8
π

r4c
μ1

 

− 1

,

r0 � 0.3 μm + 0.8rc.

(9)

4. Finite Element Model of Red Cell Transport

Similar to the modeling method described in Section 2, the
RBCs and blood plasma are considered as one flow with two
different viscosities. As in Section 2, the viscosity of blood

plasma is assumed to be μ1 � 0.001 Pa·s, whereas the vis-
cosity of RBCs is set to be μ2 � 0.1 Pa·s to make RBCs ef-
fectively rigid. Moreover, it is assumed that the flow is steady
state, without transition effects. ,erefore, the model is
described by the steady state Stokes equation with spatially
variable viscosity. As usually, Euler’s reference system is
used; that is, the flow velocity is computed at each spatial
point of the unmovable simulation domain. Assuming that
the flow is axisymmetric and all variables depend only on the
radial and longitudinal coordinates r and z, the problem is
reduced to a two-dimensional one (Figure 3). Using the
linear size and volume of erythrocytes reported in [16, 17],
the average length of erythrocytes was estimated to be 3 μm.
,e FE method is implemented with triangle linear finite
elements. ,e simulation domain is partitioned into
50×1000 rectangles in the radial and longitudinal directions,
respectively, and each rectangle was divided into two
triangles.

Let ur and uz be radial and longitudinal flow velocities,
respectively, p the pressure, and Ω � (0, rc) × (0, L).

,e model is mathematically formulated in [18] in a
weak form, which allows for using spatially discontinuous
viscosity functions. With x1 � r, x2 � z, u1 � ur, u2 � uz,
u � (u1, u2)

T, p(r, 0) � p0, and p(r, L) � 0, the weak for-
mulation reads in cylindrical coordinates as follows:


Ω

x1 2μ x1, x2(  

2

i,j�1
Dij(u)Dij(v) +

u1v1

x2
1

⎛⎝ ⎞⎠dx

− 
Ω

x1p div(v)dx � 
Γ0

x1p0v2 dx,

(10)

ε
Ω

x1pq dx − 
Ω

x1 div(u)q dx � 0,

ε � 10− 6
,

u|Γ2 � 0,

v|Γ2 � 0,

(11)

where Dij(u) � 1/2((zui/zxj) + (zuj/zxi)) and div(u)

� (u1/x1) + (zu1/zx1) + (zu2/zx2).
Functions v � (v1, v2)

T and q are the test ones. ,e
viscosity distribution μ(x1, x2) is the following discontin-
uous function:

RBC Plasma RBC RBCPlasma

l1 l2

L

l3

Figure 2: Schematic representation of a discrete stream of
erythrocytes in a capillary (the axial section is shown). ,e RBCs
are separated by blood plasma. ,ere is also a plasma lubrication
layer between the RBCs and vessel wall.
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μ x1, x2(  �
μ1 � 0.001 Pa·s, if x1, x2(  ∈ plasma part,
μ2 � 0.1 Pa·s, if x1, x2(  ∈ RBCs part.



(12)

,us, the RBCs are modeled as fluid parts with a high
viscosity to make them effectively rigid.

,e model (10)-(11) is equivalent to the following one:


Ω

x1 2μ x1, x2(  
2

i,j�1
Dij(u)Dij(v) +

u1v1
x2
1

+ ∇pv⎛⎝ ⎞⎠dx � 0,

ε
Ω

x1(pq − div(u)q)dx � 0,

(13)

p|Γ0 � p0,

p|Γ1 � 0,

u|Γ2 � 0,

v|Γ2 � 0,

(14)

where ∇p � (zp/zx1, zp/zx2).
,e system (13)-(14) is implemented with finite element

method using the FreeFEM++ package [19]. Figure 4 shows
the z-component of the velocity. ,e simulation is done for
rc � 2.8 μm, L � 60 μm, p0 � 0.63mmHg, and H � 0.4. Only
a part (20 μm) is presented in Figure 4 for better illustration.

Figure 5 shows the dependence of specific resistance on the
value of tube hematocrit for rc � 2.8 μm. An almost linear
behavior holds in the range H≤ 0.6. ,e dashed line,
1.28H + 0.41, is a good linear approximation for this range,
which includes practically all realistic values of tube hematocrit.

5. Adjustment of the Formula for Capillary
Flow Resistance

Fitting formula (7), or equally (8), to the numerical results
is performed by increasing the blood plasma viscosity in (9)

to the value μ1 � 0.0011 Pa·s for H � 0.1 and to the value
μ1 � 0.0012 Pa·s for H � 0.4. In this case, a very good
agreement of this formula with numerical results is shown in
Figures 6 and 7. ,us, for fitting the formula (7) to the results
of the numerical simulation, we need to increase the viscosity
of the plasma when the hematocrit is increased. Notice that
the interval from 0.1 to 0.4 covers a large part of the normal
tube hematocrit range [16]. ,us, we can interpolate the
above values of μ1 to obtain μ1(H) � 10− 3(16 + 5H)/15.
Obviously, μ1(0.1) � 0.0011 and μ1(0.4) � 0.0012.

,e influence of hematocrit on the specific resistance is
shown in Figure 8. Here, the specific resistances computed
by the Finite Element method for different values of

0

Γ0

Γ2

zL

Γ1

rc

r

Figure 3: Schematic drawing of the FE domain in cylindrical coordinates; only three RBCs are shown. ,e RBC subdomain is shown in
pink, and the plasma subdomain is colorless.
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Figure 5: ,e dependence of specific resistance (red dots) on the value
of tube hematocrit for rc � 2.8 μm, computed with the FMmodel. ,e
dashed line is a good linear approximation of this dependence for
H≤ 0.6. ,e scale factor for the vertical axis is equal to 10− 20.
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hematocrit (H � 1, H � 0.4, and H � 0.1) are presented.,e
value H � 1 corresponds to the model used in [7], where the
gapless flow of RBCs was assumed. For the tube hematocrit
values of 0.1 and 0.4, the corresponding specific resistances
approximately differ by factor 2, which points out to the
importance of incorporating tube hematocrit in models of
capillary blood flow.

Finally, the effective specific resistance is given by the
following formula:

r
e

� ρ +(ρ − ρ)H, (15)

where ρ and ρ are defined by (9) with μ1 � μ1(H) ≔
10− 3(16 + 5H)/15.

Simulation results presented in Figures 6 and 7 correspond
to cylinder-shaped erythrocytes with the radius r0 and length
li � 3 μm. To check the robustness of the model with respect to
the change of RBC shape, simulations with a modified RBC
shape were performed. ,e new shape, with parabolic front

and back parts, is shown in Figure 9. In the simulations, l �

3 μm and h � l/3 were used. Figures 10 and 11 show the
specific resistance versus capillary radius for the hematocrit
values H � 0.1 and H � 0.4, respectively. ,e results were
computed both by the FE method and analytic formula (15)
with μ1 � μ1(H) ≔ 10− 3(16 + 5H)/15. A good agreement
between the results delivered by the two methods is observed.
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Figure 6: Comparison between analytically (solid line) and FEM-
computed (dots) specific resistances in the case of H � 0.1. ,e
scale factor for the vertical axis is equal to 10− 20.
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Figure 7: Comparison between analytically (solid line) and FEM-
computed (dots) specific resistances in the case of H � 0.4. ,e
scale factor for the vertical axis is equal to 10− 20.
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values of the hematocrit: H � 1 (solid red), H � 0.4 (dashed blue),
and H � 0.1 (dashed-dot green). ,e scale factor for the vertical
axis is equal to 10− 20.
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Figure 9: Noncylindrical (deformed) RBCs.
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Figure 10: Comparison between analytically (solid line) and FEM-
computed (dots) specific resistances for noncylindrical (deformed)
RBCs in the case H � 0.1. ,e scale factor for the vertical axis is
equal to 10− 20.
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6. Verification of the Method on Large
Capillary Networks

To check the consistency of formula (15), the total resistance
of the brain capillary network is computed. Similar to [7], it
is assumed that capillaries of the brain are connected in a
network having a variable random topology, i.e., a random
number of incident edges are generated for each node. ,e
topology is characterized by the average number of incident
edges for each node so that 2-edge, 3-edge, 4-edge, etc.
random topologies can be considered. Let us explain the
network generation in the case of 4-edge topology. First, the
set of all nodes, (i, j, k), is generated. For a node (i, j, k), the
successive closest nodes, e.g., (i + 1, j, k), (i, j + 1, k), and
(i, j, k + 1), are considered, and two of them are randomly
chosen. ,ese two nodes are to be connected to (i, j, k) with
the corresponding edges (capillaries). ,e probability that
the current node (i, j, k) already has two incident edges,
constructed when (i, j, k) was considered as a successive
node with respect to the nodes (i − 1, j, k), (i, j − 1, k), and
(i, j, k − 1), is close to 1. ,erefore, the network constructed
in such a way has in average 4-edge topology.

Additionally, it is supposed that the length and radius of
capillaries are random values distributed according to data
reported in [20]. Moreover, a tube hematocrit level is
assigned to all capillaries, and formula (15) is applied to
compute the resistance of each capillary. Similar to [7], it is
supposed that the network contains blood sources and sinks
(inlets and outlets) distributed over the network. ,ey are
associated with the arteriolar and venular endpoints, re-
spectively. ,e calculation of the total resistance is per-
formed by the direct computation of the total blood flux
through the capillary network by analogy with electric
circuits, i.e., using Kirchhoff’s law and solving a large sparse
system of linear algebraic equations.

,e results yielded by the above sketched procedure
are compared with data obtained from a model by Piechnik

et al. ([21]) fitted to experimental data of papers [22–24],
where intravascular pressures have been measured on ani-
mals. Since the model from [21] assumes the parallel con-
nection of all capillaries, which reduces the global hydraulic
resistance, the length of capillaries has apparently been
increased by factor 10 to be equal 600 μm there. ,is allowed
the authors of [21] to fit the modeled pressure drop in the
capillary compartment to the data reported in [22–24].
However, experimentally retrieved parameters of capillaries
reported in [20] are the following: themean length is equal to
57.4 μm and mean diameter equals 5.9 μm (M1-mosaic). We
use these realistic values and, additionally, different levels of
tube hematocrit in the test runs.

,e computation, using different random topologies, of
the hydraulic resistance of the entire adult cerebral capillary
network containing 756 million capillaries is presented in
Figure 12. Here, the horizontal solid black line corresponds
to the value of 9.9 · 107(Pa·s/m3) computed with the
Piechnik et al. model ([21]) based on experimental data. ,e
red stars show values of the total brain resistance calculated
by the authors’ method assuming 3-edge random topology
and different values of tube hematocrit. ,e dashed line
connecting the red stars demonstrates a linear dependence
of the result on the hematocrit level. ,e blue hollow circle
dots stand for 4-edge random topology. It is seen that the
case of 3-edge random topology (along with the hematocrit
level of 0.35) yields the best approximation of the value
delivered by Piechnik’s model that, generally speaking, in-
terpolates experimental data. ,erefore, it is established that
3-edge random topology should be more consistent with the
structure of the brain capillary network, which is in
agreement with physiological data. Note that 4-edge (not
quite realistic) random topology was found in [7] to be the
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Figure 11: Comparison between analytically (solid line) and FEM-
computed (dots) specific resistances for noncylindrical (deformed)
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Figure 12:,e scaled total resistance of the brain capillary network
for different values of tube hematocrit: solid line—Piechnik’s model
immediately based on experimental data; red asterisks—the case of
3-edge random topology; blue hollow circles—the case of 4-edge
random topology.,e dashed lines demonstrate linear dependency
of the resistance on the hematocrit level. ,e scale factor for the
vertical axis is equal to 10− 7. Note that this simulation shows the
sensitivity of the method against the change of the hematocrit level
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best one because of ignoring the tube hematocrit level (it was
always equal to 1 by default).

7. Computing the Pressure Distribution in the
Germinal Matrix Accounting for
Tube Hematocrit

As it is seen from Figure 8, the hydraulic resistance of a
capillary essentially depends on the level of tube hematocrit.
,us, the pressure distribution in a cerebral capillary network
should be significantly affected by the hematocrit level. ,is is
especially important in the case of the subependymal ger-
minal matrix, which is a specific part of the immature brain
with high vascularity and a fragile capillary network [25],
because most hemorrhages originate from this structure [26].

To calculate the pressure distribution in the germinal
matrix, accounting for the hematocrit level, the approach
proposed in [7] is used in the current paper with some
modifications. Recall first that the total vascular system of
the infant brain was described in [7] using a model proposed
in [21]. ,is model comprises 19 levels of brain vessels: 9
levels of arterioles, 9 levels of venules, and 1 level of
capillaries. All vessels at each level i, i � 1, . . . , 19, are
connected in parallel. In [7], to adapt the model to infants,
the numbers of vessels, their lengths, and their diameters
were reduced by dividing the original values over
12 − 1.22|i − 10|, 1 + 0.14|i − 10|, and 1 + 0.11|i − 10|, re-
spectively, which fits the CBF to a typical value of the infants
brain corresponding to the age of 25weeks [27, 28]. Re-
sistances of noncapillary vessels are given by Poiseuille’s
formula (6) with the apparent viscosity set to be equal to
0.003 Pa·s ([21]). ,e capillary level is assumed to consist of
two networks corresponding to the germinal matrix and the
rest part of the brain, respectively.

In the current paper, it is supposed that these networks
have 3-edge random topology, and the capillary mean length
and diameter are equal to 57.4 μm and 5.9 μm, respectively
([20]). ,e total resistances RGM (of the germinal matrix)
and RB (of the rest part of the brain) are computed as it is
outlined in Section 6, assuming that formula (15) is used for
computing capillary resistances. To compute the pressure
drop in the germinal matrix, the capillary level is replaced
with two parallel connected lumped objects having the re-
sistances RGM and RB, which yields the total resistance of the
whole 10th level (Figure 13):

R10 � R
− 1
GM + R

− 1
B 

− 1
. (16)

For the other levels, the resistances are calculated as

Ri �
Ri

Ni

, i � 1, 19, i≠ 10, (17)

where Ri is the resistance of a single vessel of i th level and Ni

the number of vessels of i th level ([21]). ,e total resistance
is given as

RT � 
19

i�1
Ri, (18)

and the total flow is given by the following formula:

Q �
pA − pV( 

RT
, (19)

where pA and pV are the arterial and venous (intracranial)
pressures for infants. Finally, the pressure drops in the 10th level
of the model, and therefore, in the germinal matrix, it is given as

Δp � QR10. (20)

Remember that Δp is the difference of pressures exerted
on the blood sources and sinks (inlets and outlets) dis-
tributed in the germinal matrix, and, therefore, Δp is the
driving force of flow.

Parameters of a brain corresponding to infants of
25weeks’ gestational age (Table 1) are used.

Two tube hematocrit values, 0.1 and 0.4, that are close to
extreme levels [16] are taken. In both cases, the resistances of
the germinal matrix and the rest part of the brain, the
pressure drop in the germinal matrix, and the cerebral blood

Germinal
matrix Rest part of the brain

1

2

...

9

10

11

...

18

19

CBF, pA

CBF, pv

Figure 13: A vascular brain model used in [7] for the calculation of
the pressure drop in the germinal matrix. ,e germinal matrix and
the rest part of brain are considered as lumped objects.,emodel is
a modification of that developed in [21].
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flow are presented in Table 2. It is seen that the pressure drop
in the germinal matrix varies by factor 1.6 if the hematocrit
level increases from 0.1 to 0.4. ,e corresponding pressure
drop distributions in a longitudinal cross-section of the
germinal matrix are shown in Figure 14. ,e elliptic shape is
chosen for better visualization. ,e gradient is caused by a
heterogeneous distribution of inlets and outlets in the
germinal matrix (see the middle of Section 4 of [7]).

An essential difference in the pressure drop distributions
is clearly seen there.

8. Conclusion

When creating a model of cerebral capillary network, it is
necessary to randomly assign diameter and length to almost
billion of capillaries and to compute the RBC flow resistance
for each capillary. ,erefore, it is important to have a simple
analytical formula for the resistance accounting for the

hematocrit level. In the current paper, such a formula is
proposed and numerically verified through finite element
simulations. Accounting for hematocrit will justify and
enhance models of cerebral capillary networks, allowing us
to study the danger of vessel rupture in the germinal matrix,
dependence on the hematocrit level.

Bearing in mind that the main goal of our study is
simulation of large capillary networks, we neglect some fine
effects. For example, we assume that the hematocrit level is
constant over the capillary network, the plasma lubrication
layer between the erythrocyte flow and the capillary wall
depends on the capillary diameter only, the effect of bi-
furcation at network nodes is dropped because of approx-
imate homogeneity of capillaries, and the effect of ESL
(endothelial surface layer) is not accounted for. We believe
that the effect of such simplifications is not damaging in
context of modeling large capillary networks. Our future
intentions include enhancements of the current model, in

Table 1: Average data corresponding to the age of 25 gestational weeks.

Parameter Name Value Source
NA Number of capillaries of the adult brain 756 · 106 [21]
wA Weight of the adult brain 1.2 kg [21]
w Weight of the infant brain of 25 gestational weeks 0.1 kg [29]
pGM Weight part of the germinal matrix 0.023 [30]

wGM
Weight of the germinal matrix for infants of 25

gestational weeks, wGM ≔ pGMw
2.3 g —

κ Capillary density correction factor for the germinal
matrix 1.5 [31]

NGM
Number of capillaries of the germinal matrix for

infants of 25 gestational weeks, NGM ≔ κwGMNA/wA
2.17 · 106 —

NB
Number of capillaries of the rest part of the brain of

25 gestational weeks, NB ≔ (w − wGM)NA/wA
61.55 · 106 —

pA/pV Arterial/venous pressure 34/5mmHg [28, 32]

Table 2: Dependence of computed network characteristics on the tube hematocrit level.

Characteristic H � 0.1 H � 0.4
Resistance of the germinal matrix, RGM (Pa·s/m3) 150 · 108 229 · 108

Resistance of the rest part of the brain, RB (Pa·s/m3) 8.2 · 108 13.2 · 108

Pressure drop in the germinal matrix, Δp (Pa) 129.2 203.3
CBF (ml/min) 9.97 9.77

180
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(a)

180
160
140
120
100
80
60
40
20
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(b)

Figure 14: Pressure drop distributions in the longitudinal cross-section of the germinal matrix: (a) H � 0.1; (b) H � 0.4.
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particular through including the bifurcation and ESL effects.
We are planning the investigation of fluid interaction with
ESL using homogenization theory for partial differential
equations.
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