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There is a critical need for interventions to control the development and remodeling of

scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy

is presented by the complex spatial needs of the infarcted ventricle, namely that

collagenous buildup is beneficial in the ischemic zone but detrimental in the border

and remote zones. As a new, alternative approach, we present a case to develop self-

adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental

mechanics to modulate a therapy’s pharmacologic effect. Such approaches could

provide self-tuning control to either promote fibrosis or reduce fibrosis only when and

where it is beneficial to do so.

Keywords: mechanobiology, heterogeneity, cardiac fibroblast, fibrosis, mechanotransduction, myocardial

infarction

INTRODUCTION

Roughly 800,000 myocardial infarctions (MIs) occur in the U.S. each year, and while 85% of
patients survive the initial ischemic event, these survivors are left with reduced cardiac function
and a shortened lifespan (1). Some emerging regenerative therapies may offer potential to restore
myocardium in the collagenous infarct scar tissue (2–5), but a critical hurdle remains: how
can we control the build-up of collagenous scar tissue in infarct, border zone, and remote
myocardial regions post-MI? Reducing collagen content in animal infarct models has shown an
ability to enhance the performance of regeneration therapies, enabling increased cell engraftment,
capillary density, fractional shortening and ejection fraction (6, 7). Reducing fibrosis in remote
viable myocardium post-MI also offers significant therapeutic benefit as excessive remote fibrosis
is associated with mechanical and electrical cardiac dysfunction (8–10). However, reducing
myocardial fibrosis must be tightly coupled to local structural integrity in order to prevent infarct
scar expansion or rupture. This need is highlighted by past clinical trials of steroid treatments
that decreased collagen content to disastrous effects, resulting in infarct rupture and multiple
patient deaths (11). In this perspective paper, we present a case for self-adapting, mechano-
sensitive therapies - i.e., therapies whose effect on fibrosis depends on the localized mechanical
microenvironment and thereby reduces matrix content only when and where it is safe to do.
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PROS AND CONS OF POST-INFARCT
FIBROSIS: ESSENTIAL MECHANICS AND
THE NEED FOR ADAPTIVE CONTROL

Myocardial fibrosis is characterized by the accumulation
of extracellular matrix (ECM), which is determined
by the relative balance of ECM synthesis, assembly,
degradation by proteases such as matrix metalloproteinases
(MMPs), and protease inhibition by enzymes such as
tissue inhibitors of metalloproteinases (TIMPs). These
processes are typically balanced in healthy myocardium,
where a resident population of quiescent cardiac fibroblasts
maintain a network of ECM within the interstitial space
between cardiomyocytes providing a scaffold for cell
adhesion and regulating ventricle stiffness during diastolic
filling (12–14).

MI is caused by a coronary artery occlusion producing
immediate ischemia and necrosis of the downstream
myocardium. The dynamic wound healing process starts
with inflammatory cells infiltrating the infarct zone over the
first few days post-MI, releasing a variety of proteolytic enzymes
to clear necrotic tissue, and signaling for the recruitment of
cardiac fibroblasts via secreted cytokines (15). In the following
weeks, fibroblasts migrate, proliferate, and transition to an
activated phenotype with heightened contractile forces and
heightened synthesis of ECM-related proteins including
collagens, fibronectin, laminin, periostin, osteopontin, tenascins,
thrombospondins, TIMPs, and many others (16–19). Recent
work has found these activated fibroblasts can stem from
not only the local resident population but also a range of
different lineage sources including epithelial cells, endothelial
cells, perivascular cells, fibrocytes, and bone marrow-derived
progrenitors (20–22).

From a mechanical perspective, fibrosis in the infarct zone
is essential for maintaining structural integrity of the scar,
which becomes passive, non-contractile tissue subjected to
biaxial tensile stresses from ventricular cavity pressure and
remote cardiomyocyte systolic contraction. Decreased levels
of collagen in the infarct scar result in reduced material
stiffness and reduced thickness, which in turn drive higher
wall stresses and exacerbate infarct expansion. This expansion
is characterized by wall thinning in the radial direction
with dilation in the circumferential-longitudinal plane, and
it has long been association with reduced systolic function,
increased outward bulging (dyskinesis), increased cavity dilation,
increased heart failure risk, and increased wall rupture (17,
23–31). It is important to note that a “small” infarct when
defined as the volume of the acutely infarcted zone relative to
the uninjured myocardium is strongly correlated with much
better post-MI function and clinical outcomes (32–37), so it
is tempting to think that less scar tissue should be a top
therapeutic objective. But numerous studies urge caution against
this overly simplistic goal as drugs to reduce edema and
inflammation early post-MI have repeatedly reduced collagen
density in the infarct zone without affecting the infarct zone size,
thereby exacerbating scar thinning and expansion as a result
(38–43).

While fibrosis in the infarct zone is beneficial, excessive
fibrosis in the border zone and remote zone can be detrimental
to cardiac function (8–10, 44, 45). Most notably, increased
ECM levels in the uninjured myocardium are associated with
progressive tissue stiffening, which impairs diastolic filling (44–
46). Systolic contractile function is also reduced from fibrosis-
related electrical dysfunction, possibly diminished Frank-Starling
effect, possibly diminished thickening from microenvironment
crowding, and impaired radial thickening ability from physical
coupling between the borderzone and the infarct scar (17, 28).

Collectively, data suggest that therapeutically increasing
infarct stiffness and decreasing remote stiffness may help limit
ventricular dilation. Further complicating the pros and cons of
post-infarct fibrosis, ECM alignment, preferred orientation, and
heterogeneity have demonstrated significant effects on post-MI
performance (24, 26, 27, 46–49). The trade-off between pros
and cons from post-infarct fibrosis should urge much caution
against overly simplistic reports and conclusions in the literature.
In other words, it is too simplistic to say we want to “reduce
fibrosis” or “limit scar tissue” after a heart attack. We must be
clearer to specify our objectives for matrix control - in what
location, in what dimension, over what time period, assessed by
volume vs. density, etc.? There is a critical need for more nuanced
approaches for fibrotic control.

FIBROTIC REGULATION: BIOCHEMICAL
AND MECHANICAL SIGNALS

Fibroblast expression of matrix-related proteins is regulated by
a wide variety of biochemical agonists. Inflammatory cytokines
such as tumor necrosis factor-α, interleukin 1, and interleukin
6 are upregulated immediately after injury as a stress response
(50, 51) and act to suppress fibroblast activation and upregulate
MMP secretion for the removal of necrotic tissue (52–55).
Growth factors such as transforming growth factor β and platelet-
derived growth factor are later secreted by neutrophils and
macrophages as part of both an anti-inflammatory response as
well as a pro-fibrotic response via upregulation of proliferation
and matrix synthesis (44, 56–59). Hormonal agonists such
as angiotensin II, norepinephrine, natriuretic peptides, and
endothelin-1 also modulate fibroblast behavior including ECM-
related gene expression (60–65).

In addition to biochemical regulation, cardiac fibroblast
expression of matrix-related proteins is highly sensitive to
mechanical regulation. While beating myocardium contracts
with each heartbeat, infarct scar is subjected to tensile stretch,
sometimes extending 5–10% in the circumferential-longitudinal
dimensions (46, 47, 66). Correspondingly, cardiac fibroblasts in
the infarct zone show elevated mechanotransduction signaling
activity (18, 19, 67). In vitro mechanobiology studies have
subjected fibroblasts to a variety of mechanical deformation
environments including uniaxial tension, biaxial tension, and
shear (68–91). Across a range of stretch magnitudes, frequencies,
and durations, mechanical deformation generally produces a
pro-fibrotic effect with ∼2-fold increases in collagen production
on average (68). In addition to substrate deformation, previous
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studies have shown that substrate stiffness can similarly induce
mechanotransduction pathways and matrix production in cells
cultured on acrylamide hydrogels, silicone-based substrates,
collagen scaffolds, and other culture environments of tunable
stiffness (81, 92–95). These studies have found that increased
stiffnesses can induce various cell types to upregulate synthesis of
matrix proteins by inducing cytoskeletal contractility and driving
tension-dependent signaling pathways via inside-out integrin
activation. For example, Herum et al. recently found that cardiac
fibroblasts alter a host of ECM-related genes with culture on
increasingly stiff substrates, including genes for collagens I and
III, tenascin-c, periostin, osteopontin, thrombospondin 1, and
secreted protein acidic and rich in cysteine (SPARC) (94).

Not only can mechanical force regulate fibrotic turnover via
cellular mechanotransudction, force can also modulate matrix
regulation in the extracellular space. A range of studies have
confirmed that altered deformation of matrix proteins like
collagen fibers induce altered degradation rates by proteases,
presumably due to conformational changes in the matrix-
protease binding pocket (68, 96–100). Other studies have shown
that tension (either from cell-driven contractility or from
externally applied tissue loads) can release active growth factors
like TGFβ from their matrix-bound latent complexes (101, 102).

MECHANO-ADAPTIVE THERAPY: A NEW
STRATEGY

Many preclinical animal studies have sought to develop
effective fibrotic-related therapies for the infarcted ventricle, but
there remains a striking paucity in adequate therapies. Some
interventions have successfully altered matrix levels post-MI at
particular time-points or spatial locations, but do so at the cost
of exacerbating dysfunction at other time-points or locations.
The collection of failed trials reflects the difficulty in developing
therapies for the infarcted ventricle context where different
spatial regions and directions require different fibrotic responses.
For example, Ikeuchi et al. investigated an anti-TGFβ gene
therapy in mice following left coronary ligation and found that
anti-TGFβ treated mice showed lower collagen volume fraction
levels and myocyte hypertrophy as well as improved clinical
outcomes such as non-infarct wall thickness, left ventricular end
systolic and diastolic diameters at 28 days compared to sham
mice (103). However, the same population also experienced a
greater degree of wall thinning 9 h post-MI with anti-TGFβ
treatment, which was accompanied by heightened neutrophil
invasion, inflammatory cytokine expression, and rate of mortality
at 24 h, presumably caused by suppression of early reparative scar
formation. This finding was later supported by Frantz et al. (104)
and demonstrates the temporal nature of fibrosis, in which early
scar formation can prevent further dysfunction but late fibrosis
can reduce contractility, as well as the spatial nature of fibrosis,
in which the infarct zone requires a robust scar formation for
continued function while excess scar deposition in remote zones
can lead to dysfunction.

Additional studies altering both signaling pathways and
matrix-related proteins in a global manner have revealed similar

challenges in temporal and spatial control. The Lindsey group
has conducted several studies inhibiting specific MMPs in post-
MI mouse models, finding that pharmacological inhibition of
MMP9 and MMP12 reduced ejection fractions compared to
saline-treated controls, with anti-MMP9 treatment increasing
leukocyte infiltration and both treatments reducing apoptosis
at 1 week post-MI (105, 106). Interestingly, a knockout mouse
model of TIMP3 also increased complications related to early
ventricular wall thinning, with TIMP3−/− mice demonstrating
lower hydroxyproline content, procollagen synthesis, and TGFβ
expression 2 days post-MI as well as a 4-fold increase in cardiac
rupture compared to wild-type mice (107). The increases in
early complications after MI for seemingly opposite modes of
treatment suggest that global inhibition of one single pathway
or mechanism may produce counterintuitive effects in overall
tissue remodeling.

It is increasingly clear that improving post-MI fibrotic control
will require therapeutic interventions producing spatially distinct
responses in order to reduce matrix buildup in remote and
regenerating contractile zones while maintaining or increasing
matrix buildup in passive scar zones. As a new, alternative fibrotic
intervention strategy, we propose that local mechanics can
provide self-adapting feedback to modulate collagen signaling
and thereby enable self-adjusting specificity for anti-fibrotic
therapy (Figure 1). Localized deformation and stiffness depend
on local tissue structure: stiff, collagenous infarct scar stretches
while functioning remote muscle contracts, with intermediate
stretch levels in the infarct border zone (24, 108–111). The
sensitivity of fibroblasts to local mechanical stretch presents an
opportunity to design therapies that reduce fibrosis in areas
that don’t need it (i.e., remote or regenerating myocardium
that undergoes repeated contraction) while maintaining or
increasing collagen in areas that do need it (i.e., stiffening scar
tissue that undergoes persistent stretch). Such a therapy could
provide spatial, temporal, and even patient-specific adaptability
by tailoring its effect to the localized mechanical need (112).

The premise of mechano-adaptive therapy is
supported by the extensive connection between
intracellular mechanotransduction signaling pathways and
chemotransduction signaling pathways. Studies investigating
biochemical and mechanical signals have identified evidence of
crosstalk between modes of signaling, both through common
intermediate pathways as well as through secondary activation
of one or more additional pathways. Examples of common
intermediates include angiotensin II type 1 receptors, which
have been shown to mediate cardiac fibroblast gene expression
in response to both increased stiffness and interstitial fluid flow
(113, 114), and phosphoinositide 3-kinase/Akt signaling, which
in addition to regulating TGFβ and TNFα signal transduction
(115–117) has been shown to function downstream of β1-
integrin signaling to regulate fibroblast apoptosis (118). Several
groups have observed the secondary activation of biochemical
signaling mechanisms initiated by biomechanical signaling
and vice versa. The Hinz group has investigated the activation
of TGFβ by fibroblasts in response to mechanical stimuli for
example finding that fibroblast-generated forces can release
latent TGFβ from the surrounding ECM via β-integrins,
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FIGURE 1 | Mechano-adaptive therapy. To meet the spatially complex needs

of the left ventricle cross-section post-infarction, we propose that localized

mechanical cues could be leveraged to modulate a therapy’s pharmacologic

effect. Specifically, such a therapy could reduce collagen content in contractile

muscle subregions (where fibrosis is detrimental) while simultaneously

maintaining collagen content in the stretching and stiffening scar subregions

(where fibrosis is beneficial).

thereby inducing a positive feedback loop for further activation
(102, 119). This feedback could be amplified by other cellular
sources of TGFβ such as macrophages, which are concentrated
in the infarcted zone during the inflammatory response to
ischemia and thereby influence the local fibrotic niche (120–
122). Conversely, canonical transient receptor potential (TRPC)
channels have been appreciated for their role as stretch-activated
ion channels in promoting cardiac fibroblast activation (67),
but Davis et al. observed that the TRPC6 channel was required
for TGFβ-induced activation of fibroblasts (123). TRPC6−/−

cells displayed attenuated αSMA fiber incorporation and
gel contraction in dermal fibroblasts with TGFβ treatment
as well as significantly smaller scar size and higher rates of
ventricular rupture in a post-MI mouse model, demonstrating
an additional mechanism-of-action beyond canonical signaling
via Smad signaling.

Many studies have now shown thatmechano-chemo-signaling
pathway interactions ultimately give rise to mechano-sensitive
gene expression responses of cells stimulated by chemical
agonists (70, 79, 84, 90, 124–126). In other words, the presence
of mechanical stimulation can amplify, dampen, or even reverse
the effect of biochemical stimulation. Spatial differences in

mechanical cues such as cyclic tension and tissue stiffness
observed in the post-MI environment act as local mediators
of fibroblast activation compared to remote myocardium, and
so it is expected that global pharmacological treatments would
exert differential responses on infarct- and remote-localized
fibroblasts. Indeed, Ramirez and colleagues observed that in
a post-MI mouse model, pharmacological treatments with
valsartan (an angiotensin receptor blocker) and aliskiren (a renin
inhibitor) primarily affected cardiac gene expression of ECM-
related proteins in remote regions with minimal changes in
infarcted myocardium (127). We suspect that, in similar fashion,
mechano-sensitive therapies could be identified to remove
detrimental fibrosis in the remote zone while simultaneously
enhancing beneficial fibrosis in the infarct zone. It is also possible,
though currently unknown, that cardiac fibroblasts arising from
different lineages across the infarcted vs. remote zones could
demonstrate region-specific sensitivities to mechano-chemo-
stimuli and thereby amplify region-specific therapy responses.

Given the potential capabilities of mechano-adaptive
therapies, a pressing question remains: how do we prospectively
design such perturbations to leverage local mechanics for
spatially and temporally adaptive benefit? One possible approach
is the continued advance of higher-throughput tissue culture
platforms that provide in vitro screening tools for drug discovery
within increasingly physiologic environments. Culture arrays
that can modulate the local mechanical environment can help
identify pharmacologic perturbations whose effects of matrix
turnover are mechano-adaptive (84, 128–132).

Yet even with high-throughput experimental approaches,
the complex fibrotic regulatory network presents hundreds of
potential pharmacologic targets, and millions of potential target
combinations whose combined effects may not be intuitive. This
challenge has motivated the advance of computational modeling
approaches to predict influential mechanisms-of-action and
cellular behavior while accounting for complex conditions and
non-linear network dynamics (133–135). Computational models
of molecular and cellular systems using mechanistic models,
statistical models, and artificial intelligence approaches have
been valuable in drug discovery and regulatory approval, both
from academic and industry perspectives (136). In recent work,
we and others have developed large-scale network models
of mechanotransduction signaling capable of computationally
predicting how various pathways are activated or inhibited by
mechanical stimuli, how these pathways interact with other
biochemical stimuli, and how these pathways alter downstream
gene expression related to fibrotic turnover (137–141). Zeigler
and colleagues, for example, demonstrated sizable cross-talk
between TGFβ and biomechanical signaling in a model of
cardiac fibroblast signaling, as both model predictions and
experimental validation found that the TGFβ1 receptor is
necessary for mechanically-induced αSMA expression and
contraction of collagen gels (137). The same model was also
used to simulate cellular responses to time courses of post-
MI biochemical stimuli mimicking the inflammatory, reparative,
and maturation phases of wound healing (142). The authors
found that different intracellular signaling species mediate
collagen I and III expression during early, intermediate, and
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late phases of wound healing, thus informing potential time
courses for treating MI patients with anti-fibrotic therapeutics.
In other work, Tan and colleagues demonstrated the potential
for network models to enable comprehensive drug screens
in silico by predicting cell responses to knockdowns of
individual or combinations of signaling species (138). They
used a model of cardiomyocyte mechanotransduction to identify
several perturbations in combination with angiotensin receptor
blockers that could provide therapeutic benefit above the use
of angiotensin receptor blockers alone, such as those inhibiting
ET-1 receptors or integrins. Applications of this computational
approach to the spatially varying post-MI microenvironments
can provide a basis for further experimental studies and
ultimately improve the efficiency of drug discovery by accounting
for the myriad of interconnected signaling pathways between
mechano- and chemo-transduction.

CONCLUSION

Does the heart want what it wants? That is to say, given
the complex infarcted ventricle where fibrosis can be both
beneficial and detrimental depending on the location, timing,
and direction, can we design post-MI therapy that lets
the heart’s own local mechanical environment dictate the
therapeutic effects according to the heart’s own personalized,

spatial, and temporal needs. While chemo-mechano-interactions
complicate the regulatory network driving fibrotic turnover,
we have proposed that localized mechanics also offer an
exciting opportunity for tailoring fibroblast behavior to localized
mechanical cues. Mechano-adaptive therapies could thereby
provide self-adapting responses and modulate matrix only when
and where it is beneficial to do so.
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