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Abstract: In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites
thin film has been described. Its properties were characterized using Fourier transform infrared
spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis).
FTIR confirmed the existence of Fe–O bond, C–N bond, C–C bond, C–O bond, O=C=O bond and
O–H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively
smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan.
Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The
incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance
spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm
(49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in
Hg2+ detection.

Keywords: chitosan; maghemite; optical; mercury ion; surface plasmon resonance

1. Introduction

Organic polymeric materials made up of many repeating monomer units have made a significant
impact on biological and biomedical research activities because of the flexibility and the ease of
fabrication [1]. One of the well-known organic polymeric materials is chitosan, easily derived from
partial deacetylation of chitin with a degree of 50% or greater [2–4]. To be more specific, chitosan
is a family of linear polysaccharide as a part of glucosamine and N-acetyl glucosamine units linked
via β-1,4 glucosidic bonds [5,6]. Chitosan contains three types of reactive functional groups, primary
amine groups and primary and secondary hydroxyl groups, respectively, at positions C-2, C-3 and C-6.
Among the three types of functional groups, the primary amine groups at C-2 positions are the most
favorable sites interacting with the biological molecules, metal ions and organic halogen substances.
Taking the advantages of chitosan with high absorption capacity and high biocompatibility, chitosan is
known as an ideal substrate for enzyme immobilization [7]. Other excellent advantages of chitosan
including non-toxicity, great film-forming ability, powerful adhesion property and high mechanical
strength, offers great room for sensor applications [8–10]. However, the problem of poor stableness

Polymers 2020, 12, 1497; doi:10.3390/polym12071497 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-3475-7469
https://orcid.org/0000-0001-5652-8670
http://dx.doi.org/10.3390/polym12071497
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/7/1497?type=check_update&version=2


Polymers 2020, 12, 1497 2 of 13

of chitosan because of the hydrophilic character and pH sensitivity restricts its application [11,12].
Previous reports showed that the stability of chitosan could be improved by combining with oxide or
metal oxides and the product can be effectively used as recognition elements for chemical sensors and
biosensors [13–15].

Iron (III) oxide or ferric oxide is the inorganic compound with the Fe2O3 formula, which varies in
color depending on its phase [16]. Fe2O3 materials have four polymorphs phases such as α-Fe2O3

(hematite), β-Fe2O3, γ-Fe2O3 (maghemite) and ε-Fe2O3 [17,18]. The differences of the phases are
known from their originality, for examples, hematite and maghemite are naturally obtained and the
other two of phases are synthesized in laboratory [19,20]. Among the phases, γ-Fe2O3 is one of the
chief interests. It is the second most common sustainable form of Fe2O3, known as completely oxidized
magnetite. Maghemite has a high curie temperature, but has a lower saturation magnetization at room
temperature and a supermagnetism property that makes it quite efficient in removing heavy metal
pollutants from water [21,22]. Moreover, it is believed that Fe2O3 can improve and provide better
mechanical properties to chitosan [23].

Accumulation of heavy metals in water and food production, primarily mercury (Hg) is the most
hazardous heavy-metal pollutants even at a very low concentration. The most toxic chemical forms
of Hg are ionic Hg (Hg2+), causes serious damage to human health such as brain damage, immune
dysfunction and paralysis [24–26]. Therefore, the removal and detection of Hg2+ in the aqueous
environment are of great significance [27–31]. Among the existing optical techniques to detect Hg2+

are colorimetric, fluorescent, chemosensor, electrochemiluminescence (ECL) and photoluminescent
(PL) [32–34]. Though these techniques are widely used, they encounter from many drawbacks, such as
high instrument operating costs, repetitive pretreatment procedures and long initiation times [35].

Corresponding to the previous methods, surface plasmon resonance (SPR) proposed a cost-effective,
label-free detection method for convenient usage, rapid detection and excellent sensitivity and selectivity
to heavy metal ions [36–40]. Since enormous efforts devoted to creating sensors with high sensitivity to
Hg2+ are greatly needed currently, selection of the metallic layer such as the gold layer is an important
aid in producing higher sensor sensitivity in SPR [41]. Over the last decade, the surface SPR technique
has emerged as an effective optical technique for various applications including detection of heavy
metal ions [42–51]. Unfortunately, the main problem to detect optically the heavy metal ions solution is
the similar refractive indices of heavy metal ions for lowest concentration, which eventually becomes
the goal of researchers. Hence, many researchers have dedicated their time to develop chitosan-based
materials onto SPR interfaces in lowering the detection limit of Hg2+, specifically [52–54]. A recent
study documented the utilization of polypyrrole-chitosan/nickel-ferrite nanoparticles as an active layer
to a prism-based on SPR technique for Hg2+ sensing, which reached a limit of detection (LOD) as
low as 1.94 µM [54]. Other recent studies using chitosan-based materials as sensing layers for the
detection of Hg2+ by SPR are summarized in Table 1. It is of interest to further improve the LOD using
chitosan-based SPR sensor.

Table 1. Chitosan based material by surface plasmon resonance (SPR) for the detection of Hg2+.

Ref. Sensing Layer LOD

[38] MMW chitosan (glutaraldehyde-crosslinked) 2.49 µM
[52] Polypyrrole-chitosan conducting polymer composite 2.50 µM
[53] Chitosan/graphene oxide 0.50 µM
[54] Polypyrrole-chitosan/nickel-ferrite nanoparticles 1.94 µM

Ref.: reference. LOD: limit of detection.

To the best of our knowledge, the study for Cs/γ-Fe2O3 composite to detect Hg2+ using the SPR
technique is not reported yet. There is also a lack of studies on the structural and optical properties
of these composites. Therefore, an effort was made to apply the chitosan/γ-Fe2O3 thin film onto a
thin gold surface, as a novel active layer for the SPR technique in sensing Hg2+ as low as nanomolar.
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Besides, the studies of structural and optical properties of Cs/γ-Fe2O3 thin film on the gold surface are
also reported and explored.

2. Materials and Methods

2.1. Reagent and Materials

The Fe2O3 was purchased from R&M Marketing, Essex, U.K. The medium molecular weight
chitosan and acetic acid were purchased from Aldrich (Saint louis, MO, USA). Standard solution of
Hg2+ with concentration of 1000 ppm was purchased from Merck (Darmstatd, Germany).

2.2. Preparation of Chemical

Firstly, 50 mL distilled water was added into Fe2O3 (4 mg/mL). Then 10 mL of NH3 (25%) and
0.615 mg of ethylenediaminetetra acetic acid (EDTA) was added as precipitation agent and as capping
agent to the solution with stirring respectively. The reaction was allowed to proceed for 1 h at 50 ◦C
with constant stirring. Finally, the black precipitate of nano-Fe2O3-EDTA formed and it was rinsed with
distilled water and left to dry 80 ◦C for 3 h. For chitosan preparation, 1% acetic acid was prepped by
diluting stock 1 mL acetic acid with deionized water in 100 mL volumetric flask. Next, 400 mg medium
molecular weight chitosan that was acquired from Aldrich was dissolved in 50 mL of 1% aqueous
acetic acid and the solution vigorously stirring to ensure powder chitosan dissolved completely. To
produce the nanostructured chitosan/maghemite (Cs/Fe2O3) composites, 30 mg Fe2O3 capped EDTA
was dispersed in 10 mL of 0.1% in chitosan solution and sonicated in room temperature for 15 min.
The Hg2+ standard solution with a concentration of 1000 ppm was diluted with deionized water to
produce Hg2+ solutions with concentrations of 0.01, 0.05, 0.08, 0.1 and 0.5 ppm [55,56].

2.3. Preparation of Thin Film

To begin, glass slips (24 mm × 24 mm × 0.1 mm, Menzel-Glaser, Braunschweig, Germany),
as a substrate, were coated with a thin layer of gold with thickness 50 nm using SC7640 sputter
coater [57]. Next, approximately 0.55 mL of the chitosan, Fe2O3 and Cs/Fe2O3 composites solution was
set separately on the surface of the gold coated glass slip. Then the glass slips were spun at 6000 rev
min for 30 s using the Specialty Coating System, P-6708D (Inc. Medical Devices, Indianapolis, IN,
USA) to produce the chitosan, Fe2O3 and Cs/Fe2O3 composites thin films.

2.4. Instrumental

Fourier transform infrared (FTIR) spectra for each surface modification of thin films were recorded
in the transmittance mode using a Perkin-Elmer spectrophotometer (Waltham, MA, USA) under the
wavelength range 400–4000 cm−1. The absorbance spectra of the films were recorded from 200 to
500 nm using UV-Vis-NIR spectroscopy (UV-3600 Shimadzu, Kyoto, Japan). The optical band gap
energy was calculated using the data obtained. Atomic force microscopy (AFM) analysis was carried
out using Qscope 250, Qesant Instrument Corporation (Quesant, CA, USA) in intermittent mode to
study the topography and height of Cs/Fe2O3 thin film. An optical-based sensing method based on
surface plasmon resonance (SPR) was designed to identify the potential of the Cs/Fe2O3 thin film to
detect Hg2+. Figure 1 shows the schematic diagram of the SPR instrument setup [58–61]. The SPR
experiment was carried out by inserting Hg2+ solutions with different concentration varied from 0.01
to 0.5 ppm. It was injected one after another into the cell to bind with Cs/Fe2O3 thin film coated
onto gold surface thin film. The SPR curve and resonance angle for all concentrations was monitored
and recorded.
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Figure 1. Optical setup of surface plasmon resonance spectroscopy.

3. Results and Discussion

3.1. FTIR Analysis

FTIR spectroscopy was used to identify the functional groups existed in Cs/Fe2O3 thin film. The
spectrum of chitosan, Fe2O3 and Cs/Fe2O3 thin films in the range of 450–4000 cm−1 are represented in
Figure 2. From the FTIR spectrum of chitosan thin film, the broad absorption band at 3386.43 cm−1

can be appointed to the stretching vibration of O–H. A weaker band found at 2901.26 cm−1 can be
attributed to C–H stretching in chitosan. Another absorption band at 1655.48 cm−1 was associated with
the presence of the C=O stretching bond. There is an absorption peak at 1084.47 cm−1 that corresponds
to the C–O group, which indicates the presence of the –COOH group in chitosan thin film. Two more
bands at 500.76 cm−1 and 458.22 cm−1 were assigned to the C–C bond and C–N bond respectively. This
finding is well aligned to the previous study by Anas et al. [62].
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Next, a particular major peak in the Fe2O3 thin film was identified with the degree of cation
vacancy, ordering between octahedral Fe cation and O atoms [63]. The absorption peak at 789.63 cm−1

is a characteristic of maghemite Fe–O stretching vibrations particles. This peak is solely attributed to
the high degree of cationic vacancy ordering [64]. The broad band characteristic for bending vibration
of water adsorbed on the maghemite’s surface is at 2078.99 cm−1. The intense bands at 1642.79 cm−1

and 3153.55 cm−1 were then assigned to CO2 vibration and O–H vibrations, respectively, ratifying the
presence of surface γ-Fe2O3 hydroxyl groups.

In the spectrum of Cs/Fe2O3, the chitosan does not provide clear absorption bands at a lower
wavenumber. This is due to the low percentage of chitosan compared to maghemite in the synthesization
process. However, the presence of chitosan can be observed based on the intensity peak. The peak
intensity of Cs/Fe2O3 clearly increased after the sorption of chitosan and Fe2O3, i.e., at C–H stretching
(458.22 cm−1), C–C bond (611.23 cm−1) and O=C=O stretching (1630.85 cm−1). An increase in the
peak intensity usually indicates an increase in the sum of the functional group (per unit volume)
associated with the molecular bond [65]. On the other hand, a strong absorption band was observed at
789.63 cm−1, confirmed the presence of Fe-O as the main phase of the Fe2O3 and a band at 3110.26 cm−1

that appointed to the O-H vibration of surface maghemite hydroxyl groups. Overall, the FTIR results
showed the increasing peak intensity of Cs/Fe2O3, which confirmed the physical interaction of chitosan
and γ-Fe2O3 in those composites.

3.2. Surface Morphology

The in situ atomic force microscopy (AFM) measurements enable the chitosan, Fe2O3 and Cs/Fe2O3

adsorption on thin films to be visualized in real time. The AFM images illustrate the topographical in
the thin films as shown in Figures 3–5. The topographical can be observed by various parameters that
exist to quantify the root mean square (rms) roughness of a surface. The RMS roughness value can
be calculated from the cross-sectional profile or a surface area [66]. The RMS roughness obtained by
chitosan, Fe2O3 and Cs/Fe2O3 thin film were 1.4 nm, 47 nm and 37.3 nm, respectively. The magnitude
decreased in RMS roughness of Cs/Fe2O3 thin film compared to Fe2O3 thin film attributable to the
association of two materials, which are chitosan and Fe2O3. The roughness implies that a smoothening
mechanism by surface diffusion [67]. This result indicates that the presence of chitosan can enhance
the surface of the thin film. The roughness introduced in the nanostructured maghemite in chitosan
thin film intended appropriate form to enhance the thin film as sensing element [68]. This result is in
line with the FTIR data, proving the presence of maghemite and chitosan in the Cs/Fe2O3 thin film
based on the RMS roughness.
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Figure 5. AFM image of Cs/Fe2O3 thin film.

3.3. Optical Studies

For the optical properties, the absorbance spectrum of the thin films was observed and measured
at wavelength from 250 to 500 nm. The UV-Vis results of chitosan, Fe2O3 and Cs/Fe2O3 thin films are
shown in Figure 6 it can be spotted that all of the thin film has diverse value of absorbance. From
the graph, the absorbance spectra of Cs and Fe2O3 thin films were slightly higher as compared to
the Cs/Fe2O3 thin film. The maximum absorption wavelength can be observed at 260–300 nm. The
absorption peak about 300 nm corresponds to π→π* transitions of C=O [69,70].
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The UV-Vis absorbance spectrum was then quantitative analyzed based on the Beer–Lambert
law theory. This law refers to a relation between the attenuation of light by a material and its
properties, which the monochromatic light (single wavelength) is travelling. Since the amount of the
emitted radiation intensity is only dependent on the thickness, t and concentration of the solution, the
absorbance, A of the samples can be collected at a single wavelength, as follows [62]:

A = log10
Io

It
(1)

The transmittance, T of sample is given by the ratio of intensities of the presence It and the absence Io

of the sample:

T =
It

Io
(2)

Thus, the absorbance and transmittance can be related by:

A = − log10 T (3)

Apart from the absorbance, absorbance coefficient is a useful parameter to compare samples
with varying thickness. The sample thickness was obtained by using atomic force microscopy. The
absorbance coefficient, α (in unit of m−1) is given by:

α = 2.303
A
t

(4)

where t is the thickness of sample in unit of m. The absorbance coefficient and optical band gap can be
related by:

α =
k(hv− Eg)

n

hv
(5)

Rearranging Equation (5) gives:

(αhv)1/n = k(hv− Eg) (6)

where hv is the photon energy, h is Plank’s constant, Eg is the optical band gap, k is constant and n
is the transition states, i.e., direct or indirect transitions. Direct transition is transition in which a
photon excites an electron from the valence band to the conduction band directly if the momentum of
electrons and holes is the same in both bands (conduction and valence). On the other hand, indirect
transition is a photon cannot be emitted because the electron must pass through an intermediate state
and transfer momentum to the crystal lattice. From these, it can be concluded that the absorption in the
thin films corresponds to a direct energy gap. For direct transition, n = 1/2 and this value is substituted
in Equation (6) and becomes:

(αhv)1/n = k(hv− Eg) (7)

To evaluate the optical band gap, Eg of the chitosan, Fe2O3 and Cs/Fe2O3 thin films, the graphs
of (αhv)2 against hv are plotted as shown in Figures 7–9, respectively. As a result, the intersection of
straight line on the edge was obtained, indicating the direct transition of the optical band gap [71].
The calculated values of the optical band gap were 4.073 eV, 4.078 eV and 4.013 eV for chitosan, Fe2O3

and Cs/Fe2O3 thin films respectively (with the corresponding error of ±0.001 eV) [72,73]. This result
indicated the maghemite had a band gap energy of 4.078 eV, which was higher than to the 2 eV
bulk [64]. This might be due to the structure defects, that have changed the phase, strain and size of
nanoparticles during heat treatment that led to the increase of band gap [74]. When Fe2O3 added
on chitosan, the band gap became lower as compared to the individual band gap. It can be due to
the increased of crystallite size attributed to the confinement effects that related to the rise amount of
orbitals participating in the formation of valence bands and covalent bands through orbital overlap [75].
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Thus, this showed that defects and confinement effects have a huge impact on the optical properties of
a composite.
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3.4. Optical-Based Sensing of Hg2+

The optical sensing based on surface plasmon resonance (SPR) phenomenon was conducted by
using Cs/Fe2O3 thin film to identify the SPR angle for deionized water as a control experiment. The
SPR angle of 55.225◦ was further applied to compare the SPR angle for different concentration of Hg2+

solution ranged from 0.01 to 0.5 ppm. The SPR reflectively curves for Cs/Fe2O3 thin film in contact
with the different concentration of Hg2+ are shown in Figure 10. It can be seen that the SPR curves
of Hg2+ solution shifted from 0 to 0.5 ppm as compared with the deionized water SPR curve. The
SPR angle for 0.01, 0.05, 0.08, 0.1 and 0.5 ppm of Hg2+ were 54.615◦, 54.398◦, 54.212◦, 54.027◦ and
53.836◦, respectively, with the corresponding error of ±0.001◦ (the resolution of the stepping motor
of the SPR). Overall, it was observed that the SPR shifted to the left with increasing concentration of
Hg2+ solution. This finding can be attributed to the increase in binding between analyte–ligand, which
resulted in the change of refractive index as well as the thickness of the Cs/Fe2O3 sensing layer [76–79].
Hence it is confirmed that Cs/Fe2O3 thin film has an affinity with Hg2+ and can be integrated with SPR
optical-based sensing method for detection of Hg2+.
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4. Conclusions

In this study, a Cs/Fe2O3 thin film was successfully developed using the spin coating technique.
The functional groups analysis from the FTIR results confirmed the correlation between chitosan and
γ-Fe2O3, with the peak intensity of Cs/Fe2O3 clearly increasing after the sorption of chitosan and Fe2O3

at C–H stretching, C–C bond and O=C=O stretching. Next, the AFM result showed that the thin film
was homogenous when the surface of chitosan on the thin film was covered by Fe2O3. Besides, the
UV-Vis results confirmed that the Cs/Fe2O3 thin film had the lowest absorbance value compared its
individual thin films with an optical band gap of 4.013 eV. The incorporation Cs/Fe2O3 thin film with
the optical-based sensing method using the surface plasmon resonance technique provided positive
response to the Hg2+ solution of different concentrations. This result demonstrated the enormous
ability of Cs/Fe2O3 thin film for optical sensing of Hg2+ as low as 0.01 ppm.
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