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ABSTRACT
Aims/Introduction: We aimed to explore novel predictive markers for gestational dia-
betes mellitus using metabolomic analysis in pregnant Japanese women.
Materials and Methods: We carried out a case–control study with a cohort of partici-
pants enrolled during the first or early second trimester in the Center of Chiba Unit of the
Japan Environment and Children’s Study. Participants were classified as either gestational
diabetes mellitus cases or matched controls based on age, body mass index and parity.
Metabolite levels of their serum and urine obtained randomly before the diagnosis of ges-
tational diabetes mellitus were analyzed using hydrophilic interaction chromatography tan-
dem mass spectrometry. Orthogonal projections to latent structures discriminant analysis
was carried out to investigate metabolome profiles for the different groups. Metabolites
with a variable importance in projection value of >1.5 were identified as potential markers.
Results: In total, 242 participants were enrolled in the study, of which 121 were cases.
The R2X, R2Y and Q2 parameters for the discrimination ability of the resulting models
were 0.388, 0.492 and 0.45 for serum, and 0.454, 0.674 and 0.483 for urine, respectively.
We finally identified three metabolites in serum and 20 in urine as potential biomarkers.
Glutamine in serum and ethanolamine and 1,3-diphosphoglycerate in urine showed >0.8
area under the receiver operating characteristic curves.
Conclusions: The present study identified serum and urine metabolites that are possi-
ble predictive markers of subsequent gestational diabetes mellitus in Japanese women.
Further studies are required to elucidate their efficacy.

INTRODUCTION
Gestational diabetes mellitus (GDM) is defined as carbohydrate
intolerance resulting in hyperglycemia of variable severity, with
onset or first recognition during pregnancy1. GDM is report-
edly associated with the risk of various maternal and perinatal
complications, such as macrosomia, premature delivery and
pre-eclampsia2, and the onset of type 2 diabetes postpartum3.
Additionally, GDM promotes the development of obesity and
other metabolic disorders in the offspring of GDM mothers
later in life4–6. Hence, the developmental origins of health and
disease is a concept that states that environmental factors dur-
ing the fetal and perinatal period affect the onset of some non-
communicable diseases in adulthood7. Prevention of GDM

development or strict control of plasma glucose in patients with
GDM is considered to be important for both pregnant women
and their children8. Given the availability of effective interven-
tions for delaying or preventing GDM onset9,10, earlier identifi-
cation of individuals at risk is particularly crucial. Biomarkers
for prediction are required for an effective prevention of GDM.
Valid predictive methods have not been established thus far;
however, despite the use of conventional risk factors, such as
body mass index (BMI), hemoglobin A1c (HbA1c) might pos-
sibly prove to be feasible in the development of a predictive
method11. Although some hormones and nutrients associated
with glucose metabolism have also been reported as potential
markers for GDM prediction12,13, these factors alone are not
sufficient to predict GDM. Recently, analytical methods to
investigate all of the metabolites in an organism, also known as
the metabolome, have been established. This method allows forReceived 25 January 2018; revised 21 June 2018; accepted 26 June 2018
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the simultaneous analysis of various metabolites14. Recent stud-
ies have reported early detection or prediction of diabetes or
impaired glucose metabolism using metabolomic analysis15,16.
GDM has been one of the targets of this analytical method.
Several studies using a metabolomic approach reported that
various metabolites might have the potential to predict the sub-
sequent development of GDM in European, USA or Chinese
populations17–23. Metabolomic profiles are affected by ethnic-
ity24; thus, metabolomic analysis for the Japanese population
should be carried out. In the present study, we aimed to
explore the novel predictive factors for GDM using the metabo-
lomic analysis of serum and urine from pregnant Japanese
women in their first or early second trimester.

METHODS
Design
This was a case–control study within a cohort of participants
enrolled in the Japan Environment and Children’s Study (JECS)
at the Center of Chiba Unit.

Participants
JECS is a nationwide, ongoing cohort study that is planned and
implemented to elucidate the influences of environmental fac-
tors in the fetus through childhood on children’s development
and health. Pregnant women were recruited for 3 years (2011–
2014), and women who agreed to participate were enrolled
before delivery. The study design of JECS has been described in
detail elsewhere25. Various environmental factors were assessed,
and biomaterials, such as maternal blood and urine, were col-
lected25,26. The blood and urine samples obtained randomly at
the first visit after enrollment were analyzed in the present
study. Blood samples were centrifuged and divided into serum.
Serum and urine samples were frozen and stored at -20°C
until analysis.
Participants with GDM were defined as those with GDM

reported in their medical records at the time of delivery27, and
without a past history or diagnosis of GDM reported by the
first questionnaires carried out at the beginning of pregnancy
(prior to diagnosis of GDM: p-GDM group). We then selected
the same number of participants without a history or diagnosis
of GDM who were matched to the cases based on age, BMI
and parity for the control group at random. In Japan, GDM
screening is recommended using the following stepwise meth-
ods for almost all pregnant women. Random blood glucose
levels are measured at an early stage of pregnancy. Between 24
and 28 gestational weeks, pregnant women are given a 50-g
glucose challenge test (cut-off value ≥140 mg/dL), or random
blood glucose levels are measured (cut-off value ≥100 mg/dL).
All women with positive screening test results are administered
a 75-g oral glucose tolerance test for GDM diagnosis28.
The present study was carried out according to the Declara-

tion of Helsinki, and the study protocol was approved by the
Biomedical Research Ethics Committee of the Graduate School
of Medicine, Chiba University, Chiba, Japan. Additionally,

written informed consent was obtained from the enrolled par-
ticipants.

Metabolomic analysis by hydrophilic interaction
chromatography tandem mass spectrometry
Metabolomic analysis was carried out as previously
described29,30. Serum and urine levels of 42 and 263 metabo-
lites, respectively, found to be detectable under our storage con-
ditions (-20°C) were pre-treated31 and analyzed using
hydrophilic interaction chromatography tandem mass spec-
trometry methods as previously reported31,32. Briefly, after cen-
trifugation at 14,000 g for 10 min, 40 lL of sample and 60 lL
of methanol containing the internal standards (1 nmol/L lido-
caine and N,N-diethyl-2-phenylacetamide for positive ion
mode, and D-camphor-10-sulfonic acid for negative ion mode)
to adjust for sample loss during the pretreatment procedure
were pipetted onto Amicon� Ultra-0.5 3K filter columns
(Merck Millipore, Tokyo, Japan). The columns were centrifuged
at 14,000 g for 1 h, and the filtrates were analyzed using
Prominence UFLC (Shimadzu, Kyoto, Japan) and QTRAP
4500 systems (AB SCIEX, Tokyo, Japan). Samples were deliv-
ered to mass spectrometry through hydrophilic interaction
chromatography using a 3.5-lm XBridge BEH Amide column
(Waters, Tokyo, Japan), 4.6 mm (internal diame-
ter) 9 100 mm, at a flow rate of 350 lL/min. In the present
study, we analyzed the target metabolome using a gradient of
mobile phase A (20 mmol/L ammonium hydroxide/20 mmol/L
ammonium acetate [pH 9.0] in ultrapure water : acetonitrile
[95:5]) and mobile phase B (high-performance liquid chro-
matography-grade acetonitrile). Peak areas from the total ion
current for each metabolite selected reaction monitoring transi-
tion were integrated using MultiQuant v3.0 software (AB
SCIEX). The peak integration settings used were as described
by Yuan et al.31. Urine metabolites were corrected using the
peak area of creatinine in each sample.

Statistical analysis
Data are presented as mean – standard deviation or median
(interquartile range). Differences in the measurement values
between p-GDM and control groups were evaluated by
unpaired t-tests, Mann–Whitney tests or Fisher’s exact tests
according to their distribution. Orthogonal projections to latent
structures discriminant analysis (OPLS-DA) were carried out to
investigate metabolome profiles of different groups using R
package ropls33 in Microsoft R open 3.3.0 (R Core Team, 2016,
R Core Team R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna,
Austria). Metabolites with a variable importance in projection
value >1.5 were identified as potential markers. The statistical
significance and validity of the OPLS-DA model were calcu-
lated using a permutation test (number of permuta-
tions = 1,000)34. The sensitivity and specificity of each
metabolite was assessed using the receiver operating characteris-
tic (ROC) curve and respective area under the ROC curve
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(AUCROC) carried out using R package ROCR35. It has been
previously reported that several metabolites can be affected by
gestational age36. Thus, we carried out comparisons and ROC
analyses using the data obtained before 16 weeks-of-gestational
age (serum: p-GDM n = 32, controls n = 44; urine: p-GDM
n = 11, controls n = 13).
To identify pathways that changed in the p-GDM group, we

used an enrichment analysis using MBRole 2 (Computational
Systems Biology Group, National Center for Biotechnology
[CNB-CSIC], Madrid, Spain)37. In this study, we used a false
discovery rate value38 of <0.05 as the threshold to judge the sig-
nificantly enriched metabolic pathways of submitted metabolites
using the Kyoto Encyclopedia of Genes and Genomes ID of
potential biomarkers39.

RESULTS
From 2011 to 2014, approximately 6,000 participants were
recruited at the Chiba Unit Center, of which 167 developed
GDM based on medical record reviews used to match the
p-GDM group. Serum samples were available from 121 partici-
pants in the p-GDM group for metabolomic analysis. We then
selected 121 participants for the control group. The characteris-
tics of the p-GDM and control groups are shown in Table 1.
Age, pre-pregnancy weight, height, pre-pregnancy BMI and
ratio of primipara did not significantly differ between the
groups. HbA1c values and gestational age in weeks at the time
of sample collection in the p-GDM group were significantly
higher than in the control group. The urine samples of 67 (p-
GDM: 36, control: 31) of 242 participants were also analyzed.
To identify metabolic differences between the p-GDM and

control groups, we quantified serum and urine metabolites dur-
ing early pregnancy. Using hydrophilic interaction chromatog-
raphy tandem mass spectrometry, 32 of the 187 and 42 of the
263 targeted metabolites in serum and urine were detected in
>50% of analyzed samples, respectively.
We carried out OPLS-DA to generate discrimination models

(Figure S1). In serum, the predictive ability of R2X, R2Y and
Q2 was 0.388, 0.492 and 0.45, respectively, whereas in urine,
the predictive ability of R2X, R2Y and Q2 was 0.454, 0.674 and

0.483, respectively. The original model did not belong to the
population of 1,000 randomly permuted models (for serum
and urine, R2Y and Q2: P < 0.001), showing the significance
of the fitness and prediction ability attached with the original
OPLS-DA model. Variable importance in projection scores was
calculated for each metabolite based on its contribution to sta-
tistical discrimination. In total, 3 and 20 metabolites were found
to meet the selection criteria (variable importance in projection
>1.5) in serum (Table 2) and urine (Table 3), respectively, and
were therefore subjected to further evaluation.
In serum, glutamine (P < 0.001), pyrophosphate (P < 0.001)

and octulose-1,8-bisphosphate (P < 0.001) significantly differed
between the p-GDM and control groups. Shikimate-3-phos-
phate (P < 0.001), ethanolamine (P < 0.001), 1,3-diphosphogly-
cerate (P < 0.001), N-acetyl-L-alanine (P < 0.001) and
methionine (P < 0.001) in urine were also significantly different
between the groups (Table 4). In the p-GDM group, one serum
sample had been obtained during the third trimester, whereas
all others had been obtained during the first or second trime-
ster. We carried out the same analyses excluding the serum
sample obtained during the third trimester. The results were
comparable with those described above, and therefore we car-
ried out the subsequent analyses without this serum sample.
Among these metabolites, glutamine in serum and ethanola-

mine and 1,3-diphosphoglycerate in urine showed >0.80
AUCROC values in the prediction model for discrimination
between the p-GDM and control groups (Table 4). These
results suggest that glutamine in serum, and ethanolamine and
1,3-diphosphoglycerate in urine are candidate predictive mark-
ers for GDM (Figure S2). In contrast, the AUCROC value for
HbA1c was 0.58.
Using the data from before 16 weeks-of-gestational age, we

compared the aforementioned three metabolites between the
groups. The levels of these three metabolites were significantly
different between the groups (data not shown). The AUCROC

values of glutamine in serum, and ethanolamine and 1,3-dipho-
sphoglycerate in urine were 0.81, 0.92 and 0.78, respectively.
Enrichment analysis showed that the metabolites contributing

to discrimination in urine were related to seven pathways

Table 1 | Participant characteristics

Characteristics p-GDM Control P-value

Age (years) 32.0 (5.0) 31.9 (4.8) 0.90
Pre-pregnant weight (kg) 57.5 (12.8) 57.8 (13.2) 0.82
Height (cm) 158.4 (5.5) 158.7 (5.3) 0.58
Pre-pregnancy BMI (kg/m2) 22.4 (5.4) 22.9 (4.8) 0.49
Gestational weight gain (kg) 8.6 (5.1) 9.3 (4.7) 0.24
Parity 0.81 (1.06) 0.86 (0.91) 0.68
Gestational weeks at sample collection (weeks) 18.6 (3.8) 17.3 (3.5) <0.01
HbA1c 5.15 (0.41) 5.03 (0.30) 0.01

Values are shown as mean (standard deviation). BMI, body mass index; HbA1c, hemoglobin A1c; p-GDM, prior to diagnosis of gestational diabetes
mellitus.
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(Table 5). These pathways are associated with amino acid
metabolism and the pentose phosphate pathway.

DISCUSSION
In the present study, we found that glutamine in serum, and
ethanolamine and 1,3-diphosphoglycerate in urine might be
new predictive metabolites for GDM in Japanese women dur-
ing early pregnancy using metabolomic analysis.
Gestational diabetes mellitus is reported to be associated with

both maternal and fetal adverse outcomes; thus, blood glucose
levels must be controlled within an appropriate range to pre-
vent the onset of adverse outcomes. A previous study showed
that an intensive therapeutic approach might be useful for this
purpose8. Prediction of GDM before its onset is also required,
as it allows for the provision of early interventions for suscepti-
ble women to prevent GDM.
Several factors have been reported to predict GDM, such as

age, pre-pregnancy BMI, family history of diabetes and history
of large-for-gestational age infant delivery. As we selected the
control group based on age, pre-pregnancy BMI and parity of
p-GDM group, which are risk factors for GDM, their predictive
values could not be evaluated in the present study. However,
we examined the predictive value of HbA1c. Although maternal
HbA1c level in early pregnancy significantly differed between
the groups, the predictive ability of HbA1c was not sufficient in
our cohort, as suggested by its low AUCROC value. It was
reported that HbA1c within the normal range alone might not
be sufficient to predict GDM12. Here, most of the participants
showed HbA1c <5.7%, which might be the reason why HbA1c
did not show sufficient predictive ability. However, several stud-
ies have reported that HbA1c was useful in predicting subse-
quent GDM or to exclude women who are at low risk for
GDM40–42. The inconsistency in the results might have been
due to the difference in study population or other risk factors.
Larger cohort studies are required to elucidate the ability of
HbA1c to predict GDM. Our cohort had no family history of

Table 2 | Metabolite markers identified in serum

VIP Coefficient

Glutamine 2.39 -0.1866
Pyrophosphate 2.34 -0.1900
Octulose-1,8-bisphosphate (OBP) 2.24 -0.1366

Metabolites with variable importance in projection (VIP) of >1.5 are
shown.

Table 3 | Metabolite markers identified in urine

VIP Coefficient

Shikimate-3-phosphate 2.91 0.0510
Ethanolamine 2.59 -0.0620
1,3-Diphopshateglycerate 2.36 0.0625
Leucine-isoleucine 2.04 -0.0413
p-Hydroxybenzoate 1.96 0.0309
Hydroxyphenylpyruvate 1.87 -0.0326
N-acetyl-L-alanine 1.83 0.0420
Hydroxyproline 1.83 -0.0353
Octulose-monophosphate 1.76 -0.0261
N-acetyl-glucosamine 1.74 -0.0327
Shikimate 1.73 -0.0273
Cellobiose 1.71 0.0337
Threonine 1.70 -0.0354
Methylcysteine 1.70 -0.0331
Methionine sulfoxide 1.69 -0.0350
Urea 1.66 -0.0311
Deoxyribose-phosphate 1.65 -0.0305
Methionine 1.61 -0.0379
Acadesine 1.54 -0.0324
D-sedoheptulose-7-phosphate 1.52 -0.0299

Metabolites with variable importance in projection (VIP) of >1.5 are
shown.

Table 4 | Area under the receiver operating characteristic curve for metabolite markers, and differences in the serum and urine metabolite markers
stratified by pre-gestational diabetes vs control groups

p-GDM Control P-value FDR AUC

Serum
Glutamine 0.15 (0.098–0.21) 0.29 (0.25–0.35) 3.74E-16 1.57E-14 0.804
Pyrophosphate 0.0071 (0.00–0.043) 0.092 (0.0054–0.18) 9.03E-10 3.70E-08 0.725
Octulose-1,8-bisphosphate 0.15 (0.035–0.23) 0.24 (0.15–0.36) 4.25E-07 1.70E-05 0.689

Urine
Shikimate-3-phosphate 0.047 (0.032–0.062) 0.032 (0.023–0.040) 1.13E-04 2.94E-02 0.768
Ethanolamine 0.039 (0.028–0.053) 0.070 (0.055–0.096) 2.47E-06 6.47E-04 0.821
1,3-Diphosphoglycerate 0.037 (0.023–0.053) 0.015 (0.011–0.022) 2.38E-07 6.27E-05 0.848
N-acetyl-L-alanine 0.071 (0.054–0.11) 0.046 (0.027–0.073) 8.00E-04 2.08E-01 0.735
Methionine 0.0064 (0.0041–0.0098) 0.013 (0.0072–0.017) 2.29E-03 5.93E-01 0.718

Data are presented as median (interquartile range). AUC, area under the receiver operating characteristic curve; p-GDM, prior to diagnosis of gesta-
tional diabetes.
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diabetes, which is an important predictor of GDM11. Several
studies have shown that the alterations of the metabolites are
useful in predicting GDM, especially when added to clinical
findings, such as family history23,43. The present results should
be validated using other cohorts in combination with these clin-
ical findings.
The present data suggest that glutamine in serum, and

ethanolamine and 1,3-diphosphoglycerate in urine are poten-
tial predictive markers, as shown by their AUCROC values.
Glutamine is reported to increase insulin secretion and sup-
press b-cell apoptosis in diabetic rats44. Conversely, glutamine
stimulated a-cell proliferation through mammalian target of
rapamycin signal45. Meta-analysis of metabolomics data
showed that blood glutamine was inversely associated with
the risk of type 2 diabetes development46. Glutamine is con-
sidered to play an important role in glucose metabolism in
p-GDM pregnant women. Ethanolamine is a metabolite of
glycerophospholipid metabolism. Glycerophospholipid metabo-
lism is reportedly associated with GDM or pre-diabetes17,47.
However, the role of ethanolamine itself in glucose metabo-
lism still remains unclear and warrants further studies.
1,3-Diphosphoglycerate is a metabolite of glycolysis and glu-
coneogenesis. Alteration of urinary 1,3-diphosphoglycerate
might reflect the changes in glycolytic or gluconeogenic path-
ways of patients in the p-GDM state. The precise mecha-
nism of alteration of these metabolites has not yet been
clarified; hence, further studies are required.
Several amino acids are reportedly associated with the

p-GDM state, such as glutamate and serine48. The present
results showed this trend for glutamate, although its contribu-
tion to prediction was unremarkable. Urinary choline was
reported to be one of the predictor candidates for GDM48–50.
In our study, choline did not show an ability to predict GDM.
Metabolites that were not detected to have a positive predictive
ability for GDM in the present study have also been reported
to predict GDM in the previous literature17. Because there are
several differences between the results from previous studies
and the present results, such as the timing of sample collection,
analytical methods or ethnicity, we could not detect other
metabolites in this study. Bentley-Lewis et al.22 reported that
metabolomic profiles were different among USA, Chinese and

Japanese people. They explained that these differences might be
caused by dietary habits or gut microbiome22. It is useful to
analyze the metabolomic profiles of individuals from each eth-
nic group. In addition, GDM is thought to have a common
pathogenic pathway. Therefore, we need to study GDM predic-
tion using metabolomic analysis from the point of view of the
ethnic-specific characteristics and common pathogenic mecha-
nism.
The present data showed that maternal urine had more

metabolites that were associated with subsequent GDM than
serum. Given these findings and that urine collection is less
invasive than blood collection, urine might be a suitable biolog-
ical material obtained from pregnant women in their first to
early second trimester to examine the risk of subsequent GDM.
Enrichment analysis showed that amino acid metabolism

and the pentose phosphate pathway were related to p-GDM
status. In several studies in which metabolomic analysis has
been applied for the prediction of GDM, metabolites in amino
acid metabolism were possible biomarkers17–23. The alteration
of amino acid metabolism is reportedly associated with type 2
diabetes and the development of diabetes in the future15,16.
Amino acids activate the mammalian target of rapamycin signal
pathway, which is involved in insulin receptor signaling and
glucose metabolism51. In the present study, several amino acid
metabolic pathways were associated with subsequent GDM.
These data suggest that the alterations in amino acid metabo-
lism were associated with p-GDM and can resemble type 2 dia-
betes or a pre-diabetes status.
Recently, the pentose phosphate pathway has been reportedly

associated with adiposity, a higher glycemic phenotype52 and
diabetes complications48. In studies involving a cohort of uni-
versity students, it was shown using glucose tolerance tests that
alterations in the pentose phosphate pathway were associated
with glucose metabolism30,53. The pentose phosphate pathway
is associated with purine metabolism, which is reportedly asso-
ciated with GDM18,22. The key enzyme of pentose phosphate
pathway, glucose-6-phosphate dehydrogenase, has been
reported to be associated with insulin resistance54. Increased
expression of glucose-6-phosphate dehydrogenase promotes
b-cell dysfunction and apoptosis55. Conversely, high glucose
levels can activate the pentose phosphate pathway56. These data

Table 5 | Altered metabolites identified as potential markers in urine using enrichment analysis

Annotation P-value FDR correction Matching identification

Valine, leucine and isoleucine biosynthesis 2.23E-04 5.13E-03 C00123 C04236 C00188
ABC transporters 5.36E-04 6.16E-03 C00123 C00185 C00188 C00086
Betaine–homocysteine S-methyltransferase 4.23E-04 1.14E-02 C00155 C00073
Methionine synthase 1.46E-03 1.97E-02 C00155 C00073
Aminoacyl-tRNA biosynthesis 4.05E-03 2.17E-02 C00123 C00188 C00073
Phenylalanine, tyrosine and tryptophan biosynthesis 6.14E-03 2.35E-02 C03175 C01179
Pentose phosphate pathway 8.56E-03 2.81E-02 C00673 C05382

FDR, false discovery rate; tRNA, transfer ribonucleic acid.
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and the present findings show that the pentose phosphate path-
way or purine metabolism play an important role in impaired
glucose metabolism including p-GDM status. Additionally,
alteration of the pentose phosphate pathway might be caused
by altered glucose metabolism reflecting a p-GDM state.
The present study was subject to several limitations. The JECS

is a multi-region, multi-facility cohort study; thus, we could not
review the accuracy of the diagnostic process or oral glucose tol-
erance test results for all enrolled participants. Hence, the diag-
nostic criteria for GDM might not have been consistently used27.
We did not obtain the history of the study participants regarding
whether delivery of a large-for-gestational age neonate occurred.
We sampled blood and urine randomly. Therefore, we could not
determine the accurate relationship between the metabolites and
meals. Metabolic status is considered to be affected by diet57;
however, we did not make adjustments for diet in any of our
analyses. Serum and urine were stored at -20°C; therefore, it is
possible that some metabolite profiles were altered, although the
stability of urine samples at -20°C has been previously
reported58. Consequently, the present data might not reflect the
precise metabolic status of the participants.
In conclusion, the present study identified metabolites in ran-

domly obtained serum and urine samples that distinguish the
p-GDM group from the control group during early pregnancy.
Glutamine in serum, as well as ethanolamine and 1,3-dipho-
sphoglycerate in urine, are possible predictive markers of subse-
quent GDM in Japanese women. Amino acid metabolism and
the pentose phosphate pathway could be key metabolic path-
ways associated with p-GDM status. These findings might pro-
vide new insights into the prediction of GDM. Further studies
are required to elucidate the efficacy of these metabolites as
predictive markers at an earlier gestational age in other cohorts.
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Figure S1 | Score plots of orthogonal projections to latent structures discriminant analysis model from serum and urine.
Figure S2 | Receiver operating characteristic curves of metabolites in serum and urine.
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