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TherapeuTic advances in 
Musculoskeletal disease

Introduction
Osteoporosis is a common systemic skeletal dis-
order that leads to low bone mass and increased 
risk of fragility fractures.1 Hip fracture is the most 
debilitating among all fragility fractures, resulting 
in chronic pain, loss of independence,2 decreased 
quality of life,3 and high mortality following hip 
fracture surgery.4 The classification of osteoporo-
sis is defined by the lowest bone mineral density 
(BMD) on the axial bone, including spine and 

bilateral hip regions.5 However, BMD on the 
proximal hip area is especially critical to directly 
reflect the future risk of hip fracture.6 Dual-energy 
X-ray absorptiometry (DXA) is the golden stand-
ard and most extensively used method for BMD 
measurement in the hip and spine regions.5 
Nevertheless, to screen osteoporosis, DXA lacks 
the minimum service requirement, as the geo-
graphic availability and associated utilization of 
DXA are inadequate, especially for rural 
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residents.7 It is of utmost significance to develop 
other reliable and easily accessible methods to 
identify the risk of osteoporosis at the hip besides 
DXA assessment.

The hip radiographs may be informative for 
screening osteoporosis. The Singh index (SI), a 
six-graded classification system for bone density 
of the proximal femoral neck based on the visibil-
ity of the trabecular types and arrangement, is a 
simple grading system for diagnosing osteoporo-
sis with plain radiographs.8 The SI directly reflects 
the osteoporotic grading of the proximal femur 
and potentially predicts the future risk of hip frac-
ture; however, it is highly subjective by clinicians 
with fair inter- and intra-observer agreement.9,10 
Recently, deep learning (DL) algorithms have 
illustrated remarkable progress in developing a 
screening tool for osteoporosis based on simple 
hip radiographs11–15; however, these were limited 
to using DL for only identifying osteoporosis 
rather than further predicting the T-score on the 
targeted region owing to the inappropriate object 
detection results with methodological flaws.

Hence, this study aims to propose and validate a 
fully automated convolutional neural network 
(CNN) model (X1AI-Osteo) to (i) segment the 
bony contour of the proximal hip as the region of 
interests (ROIs), (ii) classify osteoporosis, and 
(iii) directly predict the T-score on the proximal 
femur from a single hip radiograph (Figure 1). 
Furthermore, the classification of osteoporosis 
and predicted T-score by DL are compared with 
the results assessed by DXA on the targeted hip 
to validate the clinical reliability and applicability 
of this automated osteoporosis screening tool.

Methods

Study design
This single-center, retrospective study investi-
gated the diagnostic accuracy of osteoporosis 
using the proposed X1AI-Osteo model and com-
pared it with two CNN models (InceptionV3, 
ResNet50). The Ethics Committee of Taipei 
Medical University approved this study (registra-
tion number: TMU-JIRB N201909036). Owing 
to the retrospective nature of the study and the 
analysis of anonymous clinical data, the Ethics 
Committee waived the need for obtaining 
informed consent.

Patient selection
The data with both simple hip anterior–poste-
rior (AP) radiographs and DXA examination 
results of consecutive patients who presented to 
one medical center between November 2017 
and September 2019 were retrospectively 
reviewed. The inclusion criteria were as follows: 
(i) aged ⩾50 years and (ii) underwent both hip 
AP radiography and DXA within 6 months. We 
excluded hip radiographs on the left or right 
side of hips containing image-analyzing obsta-
cles, including retained metal implants and 
severe osteoarthritis and osteonecrosis of the 
femoral head or foreign body materials, from 
DL model training. The reporting of this study 
conforms to the Strengthening the Reporting of 
Observational Studies in Epidemiology state-
ment16 (Supplemental Material).

The lowest T-score on the targeted proximal hips, 
including total hip and femoral neck regions for 
bilateral sides of the hip, from each patient 
assessed by DXA were obtained to classify osteo-
porosis on the targeted hip and train the proposed 
CNN model. We defined the diagnosis of osteo-
porosis and osteopenia as T-score ⩽ −2.5 and 
−1.5, respectively.1 The T-score measurement by 
DXA was done using the Lunar Prodigy Advance 
System (GE Healthcare, WI, USA).

Anatomical segmentation
Figure 1(a) defines the analyzing area on the hip 
radiographs and Figure 1(b) defines the ROIs for 
the bony contours of the proximal femur. A pair 
of ROI images were predicted and segmented by 
the Mask RCNN model [Figure 1(b)]. Next, the 
square images were used to predict osteoporosis 
and T-score, which were resized as 224 × 224, 
also defined in Figure 1(b), without distortion, 
and were cropped from the ROI images. To high-
light the texture of the femoral neck, the enhanced 
images were obtained from the square images 
with/without mirror process by contrast enhance-
ment techniques, which were the training/validat-
ing/testing data for the inputs of the triplet model.

Training
To make triplet model learning more targeted, we 
proposed customized CNN model, shown in 
Figure 1(c) and Supplemental Figure S1, to 
obtain the critical 128 features of each sub-image 
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based on the labeled target: Class 1, osteoporosis 
target; Class 0, non-osteoporosis target. 
Furthermore, we use principal component analy-
sis dimensionality reduction for 131 triplet fea-
tures to obtain these two clusters of features 
separated by the triplet algorithm; Figure 1(d) 
and Supplemental Figure S2 show the clustering 
result. Moreover, these two clusters of points for 
two classes (Classes 0–1) were classified by the 
red classification boundary [Figure 1(d) and 
Supplemental Figure S2]. Then, the eight 
T-score’s sub-clusters were selected by the given 
reasonable ranges [Supplemental Table S1 and 
Figure 1(e)].

Supplemental Table S1 shows the two cases we 
designed. Case 1: If the Class 0’s testing data 
were closest to one of the four classes mapped to 
one of the four T-score sub-clusters of Class 0, 
then the inference of this testing data was the out-
put of that class’s MLP model, and the fifth class 
was the outliers for 131 features of Class 0, which 
were filtered by multi-linear regression. Case 2: If 

the Class 1’s testing data were closest to one of 
the four classes mapped to one of the four T-score 
sub-clusters of Class 1, then the inference of this 
testing data was the output of that class’s MLP 
model, and the fifth class was the outliers for 131 
features of Class 1, which were filtered by multi-
linear regression, and shown in Supplemental 
Figure S3 and Supplemental Table S1.

Next, the regression errors (reg_err) of all 2D 
points (Supplemental Figure S2) were calculated 
by the regression output (reg_out) compared with 
the desired T-score value (tsv), as shown in 
Supplemental Figure S3. This study defined the 
reg_err of tsv as:

 reg_err = tsv reg_out−  

The outliers are subject to the filter condition 
|reg_err ⩾ 0.5|. After filtering the outliers, the 
clusters 1–4 data were reserved (Supplemental 
Figure S3).

Figure 1. Schematic representation of the workflow for osteoporosis and bone mineral density estimation using a radiograph. (a) 
Definition of the analyzing area on the hip radiographs. (b) Definition of the ROIs for the bony contours of the proximal femur. A pair 
of ROI images were predicted and segmented by the Mask RCNN model. (c) The triplet model designed by the customized CNN 
model and obtain the critical 128 features of each sub-image based on the labeled target. (d) Two-dimensional projection features 
by principal component analysis dimensionality reduction for 131 triplet features to obtain two clusters of features separated by the 
triplet algorithm. Two clusters of points for two classes (Classes 0–1) were classified by the red classification boundary. (e) Eight 
T-score’s sub-clusters were selected by the given reasonable ranges. (f) Training eight MLP (multilayer perceptron neural network) 
models and mapping the abovementioned eight T-score sub-clusters using genetic algorithm. (g) Calculate the T-score.
CNN, convolutional neural network; MLP, multilayer perceptron neural network; RCNN, regioned-based convolutional neural network; ROI, region of interest.
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To calculate the precise T-score shown in Figure 
1(g), we set four T-score sub-clusters for Class 0 
and another four T-score sub-clusters for Class 1 
(Supplemental Table S1) to train the eight MLP 
models [Figure 1(f)] and map the abovemen-
tioned eight T-score sub-clusters using genetic 
algorithm (GA).17 If the testing data were closest 
to one of eight sub-clusters, then the inference of 
this testing data was the output (T-score) of one 
of the MLP models. In technology, we selected 
the learning rate; neurons of the first, second, and 
third layers; and the training epochs as the 
searched hyper-parameters for GA to optimize 
the three layers of eight MLP models. 
Supplemental Figure S4 shows the learning 
curves. After the eight MLP models for eight 
groups were trained (Supplemental Table S2), we 
decided on the 131 features input of Class 0 or 
Class 1 in MLP models to evaluate the T-score 
value.

Model evaluation
All performance measures were evaluated only on 
the test dataset, imputed separately. The receiver–
operating characteristic (ROC) curve in 
Supplemental Figure S5 is based on the different 
data augmentation implemented using the black 
and white background images, the different 

degree of angles near the vertical bone direction, 
and different hyper and model parameters for the 
proposed CNN structure. Figure 2 summarizes 
the ROC curves based on the different CNN 
structures for triplet models.

The guided Grad-CAM (Gradient-weighted 
Class Activation Mapping) provided a direct visu-
alization of the values in a map and combined the 
Grad-CAM and back-propagation visualization 
techniques. It showed information significant for 
classification – the high gradient of the input to 
the last convolutional layer. In this study, the 
heatmap visualizations were displayed relative to 
the range of values in the image. All visualizations 
were performed using iridescent map projections. 
Within the ROI, high attenuation was shown in 
green and low attenuation in red; hence, this 
study selected the best model.

Results

Data source
Overall, 1730 patients [age: >50 years; mean age: 
72.4 (standard deviation (SD) 11.1) years; 1332 
(77.0%) female] with concomitant hip radiograph 
and DXA examination within 6 months were 
enrolled. As a simple hip radiograph contained 

Figure 2. Receiver–operating characteristic curves for each osteoporosis prediction tool. All performance 
measures were evaluated on the test dataset, imputed separately.
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bilateral sides of hip images for analysis, 3460 uni-
lateral hip images were collected for training and 
testing of X1AI-Osteo. We excluded 490 unilat-
eral hip images (249 right hips and 241 left hips) 
owing to image-analyzing obstacles, including 
retained metal implants or bony deformity. 
Finally, 2473 unilateral hip images from 1430 
patients were utilized for the training set and 497 
unilateral hip images from 300 patients for the 
testing set.

Table 1 presents the subjects’ characteristics. The 
mean T-score assessed by DXA was −2.6 (SD 
1.1). The DXA identified 1045 (60.4%) patients 
with osteoporosis based on the lowest T-score on 
the targeted hip region. The mean interval 
between DXA and a hip radiograph was 38.8 (SD 
73.2) days.

Prediction performance for osteoporosis
Currently, the contour segmentation model will 
mark out three types: (1) screws, (2) joints, and 
(3) femur. Our program only extracts the contour 
of the femur, while screws and joints (image-ana-
lyzing obstacles) are not processed. Before calcu-
lating the T-score, medical personnel confirm the 
absence of distortion in segmented images.

The performance of Segmentation in terms of 
Intersection over Union (IoU) is as follows (Table 
2). The contour detection model uses 2506 
images, including 163 bone nail images, 137 arti-
ficial joint images, and 2206 femoral images. 
Standards for IoU values: Artificial joints and 
femur must be greater than 0.97, the style of bone 
nails must be diverse and complicated, and the 
IoU value must be greater than 0.95.

The default features of pre-trained CNNs are not 
suitable for osteoporosis. Therefore, the triplet 
method is needed to fine-tune the default features 
of pretrained models. The fine-tuned features can 
highlight the more obvious differences between the 
characteristics of osteoporosis and non-osteoporo-
sis, which is more helpful for the convergence of 
the proposed classifier (triplet model). The seg-
mented images need to be resized to inputs of reso-
lution size 224 × 244 × 3 for the proposed model, 
the ResNet50, and InceptionV3 models.18,19

Table 3 presents the performance assessment of 
the three CNN models (ResNet50, InceptionV3, 
and X1AI-Osteo) applying the 497 test sets of 
unilateral hip radiographs. Among the 

three prediction tools, X1AI-Osteo exhibited the 
superior performance in predicting osteoporosis 
[sensitivity: 97.2%; specificity: 95.6%; positive 
predictive value (PPV): 95.7%; negative predic-
tive value (NPV): 97.1%], followed by ResNet50 
(sensitivity: 84.3%; specificity: 75.8%; PPV: 
77.8%; NPV: 82.8%) and InspectionV3 (sensitiv-
ity: 78.3%; specificity: 78.6%; PPV: 78.6%; 
NPV: 78.3%). Figure 2 demonstrates the higher 
area under the curve (AUC) in predicting hip 
osteoporosis using X1AI-Osteo than that by 
ResNet50 and InspectionV3 (AUC: 96.4%, 
80.1%, and 78.5%, respectively).

Prediction performance for T-score
Figure 3 summarizes the X1AI-Osteo perfor-
mance to predict BMD. The Pearson’s correla-
tion coefficient between DXA-measured and 
X1AI-Osteo-predicted T-score was 0.996 
(p < 0.001). Supplemental Figure S6 demon-
strates high concordance correlation coefficient 
[0.996 (95% confidence interval (CI): 0.995–
0.997)] between DXA-measured and X1AI-
Osteo-predicted T-score. Figure 4 confirms the 
high consistency of T-score prediction using 
X1AI-Osteo than that by DXA measurement.

Visualization of the ROI by X1AI-Osteo
Figure 5 presents the focused visualization area 
attained by guided Grad-CAM. In the radio-
graphs of patients with and without osteoporosis, 
the relatively distinct areas of shading (obscure 
trabeculation) on the femoral neck and trochan-
teric region were identified as deep-learned  
feature areas.

Discussion
Mostly, osteoporosis progresses silently until fra-
gility fractures happen, highlighting the clinical 
importance of osteoporosis screening programs.20 
Considering the limited availability of DXA as a 
screening modality for osteoporosis,7 DL-based 
modalities using a simple hip radiograph in 
opportunistic osteoporosis screening constitute a 
potential domain despite technical and clinical 
concerns.11,12,14,15 In our model, the performance 
on osteoporosis classification was robust with 
DXA as a reference and competent with (or even 
superior to) the performance of the existing 
DL-based osteoporosis screening tools using sim-
ple hip radiographs.11,12,14,15 The proposed and 
customized CNN network (X1AI-Osteo) rather 
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than the open-source CNN models utilized in our 
screening tool and the introduction of the auto-
mated segmentation of bony contour, as well as 
the image-enhancing process on the proximal 
femur, primarily attributed to its excellent perfor-
mance in the diagnosis of osteoporosis. Our study 
proposes the aligned data augmentation of small 
data based on the data need reduction by the 
image process method to manage the overfitting 
issue of small data to train the proposed CNN 
model. Compared with the two most popular 
CNN models (InceptionV3 and ResNet50), our 
model illustrated a more compact model architec-
ture (with faster model convergence to speed up 
about 12 times), resulting in better interpretation 
performance in predicting osteoporosis. Besides, 
our study introduced the method of automated 
segmentation of the bony contour on the proxi-
mal femur and in the workflow of the DL model, 
which can not only avoid the potential bias due to 
manual annotation of ROI but also simplify the 
analysis process in the clinical application. Our 
study introduced an effective method of auto-
mated segmentation of the bony contour on the 

proximal femur and in the workflow of the DL 
model, building upon methodologies such as 
those explored in the paper ‘Deep Radiomics-
based Approach to the Diagnosis of Osteoporosis 
Using Hip Radiographs.’ We acknowledge the 
contributions of previous studies in this field. Of 
note, the automated segmentation of the bony 
contour can facilitate focusing on the visualiza-
tion area of the DL feature on the proximal femur 
cortex and trabecular patterns of the neck and 
trochanter region (Figure 5), with the main ana-
lyzing area for BMD by DXA examination21 and 
also matched the rationales of SI in diagnosing 
osteoporosis based on plain hip radiographs.8 
Therefore, our model may create the added val-
ues of the published DL models11,12 based on the 
image process method for enhancing the texture 
of hip radiographs, which would be extremely 
valuable in a clinical setting.

To the best of our knowledge, this is the first 
study to compare the single model in predicting 
T-score with the multi-cluster models. In addi-
tion, the positive results obtained rationalize 

Table 2. The performance of segmentation in terms of IoU.

Segmentation Image Standards 
IoU

Average IoU True True 
percentage (%)

False False 
percentage (%)

Bone nail 163 0.95 0.968 160 98.2 3 1.8

Artificial joint 137 0.97 0.987 135 98.5 2 1.5

Femur 2206 0.97 0.991 2202 99.8 4 0.2

IoU, intersection over union.

Table 3. Discriminatory performance (%) of the osteoporosis AI prediction tools.

Discriminatory measuresa InceptionV3 ResNet50 X1AI-Osteo

AUC (95% CI) 78.5 (74.3–82.6) 80.1 (76.0–84.1) 96.4 (94.5–98.3)

Sensitivity (95% CI) 78.3 (72.9–83.1) 84.3 (79.5–88.5) 97.2 (94.6–98.8)

Specificity (95% CI) 78.6 (73.2–83.4) 75.8 (70.2–80.9) 95.6 (92.5–97.7)

PPV (95% CI) 78.6 (73.2–83.4) 77.8 (72.6–82.5) 95.7 (92.7–97.7)

NPV (95% CI) 78.3 (72.9–83.1) 82.8 (77.6–87.3) 97.1 (94.5–98.8)

Analysis is based on the test set, which comprised 300 individuals (497 unilateral hip radiographs). The CIs were calculated 
using the bootstraps, as detailed in section ‘Methods’.
aAll measures were evaluated and averaged across the 11 imputed datasets of the test sets.
AI, artificial intelligence; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive 
predictive value.
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further work applying the DL-based opportun-
istic osteoporosis screening using a simple hip 
radiograph. The several advantages of our 
DL-based screening tool include low cost, 
widely available radiographic modality, and 
simple protocol. Furthermore, it detects the risk 
of osteoporosis on the targeted hip, directly pro-
viding the future risk of hip fracture. For older 
people suffering a hip fracture, the concomitant 
screening of osteoporosis risk on the contralat-
eral hip can be easily attained by X1AI-Osteo 
using the index hip radiograph, enabling clini-
cians to take early actions to prevent secondary 
fractures consistent with the spirit of Fracture 
Liaison Service.22 Furthermore, owing to the 
simple protocol and high accuracy regarding 
DXA, the future work of X1AI-Osteo may be 
applied to the community osteoporosis screen-
ing in remote medical institutions or local clin-
ics lacking DXA machines to optimize the 
strategy to expand screening populations 
cost-effectively.

Nevertheless, this study has some limitations. 
First, from opening the DICOM file to contour 
extraction and analysis, it takes approximately 12–
15 s (the DICOM file size is roughly 18–22 MB). 
Second, the majority (60.4%) of our study popula-
tion was diagnosed with osteoporosis, and approx-
imately 14% of unilateral hip images were excluded 
owing to image-analyzing obstacles. Besides, the 
disease severity was relatively high because we 
enrolled patients from a tertiary medical center. 
Thus, our sample might not have represented the 
healthier aged population in the community. 
Third, all patients were enrolled from a single hos-
pital. Our training datasets could be small such 
that overfitting of the CNN model might be a 
potential concern. Thus, the accuracy of DL-based 
osteoporosis classification and BMD prediction 
would be enhanced by increasing the number of 
images in a multicenter study. Besides, further 
external validation is warranted to confirm the 
applicability of our screen tool in other institutions. 
Finally, in our model of T-score prediction, we 
selected three clinical variables as additional fea-
tures in the DL training metric to increase the pre-
diction performance. Other confounding factors, 
including races, comorbidities, or previous fracture 
history, could be critical features contributing to 
the training performance of the CNN model. 
Nevertheless, the performance of our tool attained 
almost excellence in the BMD prediction even 
when only three clinical variables were included in 
the DL training metric.

Figure 3. Relationship of the predicted T-score between DXA-measured 
and X1AI-Osteo-predicted T-score. The plot was created using the first 
imputed test set, which comprised 300 individuals.
DXA, dual-energy X-ray absorptiometry.

Figure 4. Bland–Altman plots between DXA-measured and X1AI-Osteo-
predicted T-score. Solid line, the mean difference (bias); upper and lower 
lines, 95% LoA. The mean difference was −0.010 (95% CI: −0.019 to −0.001), 
LoA lower limit was −0.214 (95% CI: −0.230 to −0.198), and upper limit was 
0.194 (95% CI: 0.178–0.210).
CI, confidence interval; DXA, dual-energy X-ray absorptiometry; LoA, limits of 
agreement.
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Conclusion
This study demonstrates that our proposed 
CNN model, X1AI-Osteo, may identify osteo-
porosis and predict T-scores on the targeted hip 
regions from simple hip radiographs with high 
accuracy. Hence, the future application of this 
screening tool could be an efficient strategy for 
population-based opportunistic osteoporosis 
screening with low cost and high adaptability for 
a broader population at risk. The previous model 
had a clinical intake of 300 people, and cur-
rently, it is being used by approximately 4000 
people in the market.
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