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ABSTRACT: We introduce a physics-based model for calculating
partition coefficients of solutes between water and alkanes, using a
combination of a semi-empirical method for COSMO charge
density calculation and statistical sampling of internal hydrogen
bonds (IHBs). We validate the model on the experimental
partition data (∼3500 molecules) of small organics, drug-like
molecules, and statistical assessment of modeling of proteins and
ligand drugs. The model combines two novel algorithms: a bond-
correction method for improving the calculation of COSMO
charge density from AM1 calculations and a sampling method to
deal with IHBs. From a comparison of simulated and experimental
partition coefficients, we find a root-mean-square deviation of
roughly one log 10 unit. From IHB analysis, we know that IHBs can be present in two states: open (in water) and closed (in apolar
solvent). The difference can lead to a shift of as much as two log 10 units per IHB; not taking this effect into account can lead to
substantial errors. The method takes a few minutes of calculation time on a single core, per molecule. Although this is still much
slower than quantitative structure−activity relationship, it is much faster than molecular simulations and can be readily incorporated
into any screening method.

1. INTRODUCTION

In previous publications, we have discussed automated coarse-
graining protocols to calculate partition coefficients1 and
diffusion coefficients.2 In this work, we focus on providing a
fast and reliable method for calculating the alkane/water
partition coefficient of lead-like molecules with a molecular
weight of up to 800. As far as modeling is concerned, predicting
large-molecule partitioning in a practical industrial setting is
extraordinarily difficult. One must be able to accurately calculate
the COSMO charge density distribution of molecules with a
molecular weight of up to 800 and then the free energy of
partition (here by COSMO-RS3) in a reasonable amount of time
(a few core minutes). Finally, internal hydrogen bonding (IHB)
redistribution should be considered, taking proper account of
statistical thermodynamics. In simple terms, when the molecule
is dissolved in water, it is energetically favorable to expose the
IHB to the solvent, while in an organic solvent, the molecule
forms IHB to inhibit its interaction with the surrounding apolar
environment.
In a recent statistical assessment of modeling of proteins and

ligand (SAMPL5) competition to predict cyclohexane−water
partition coefficients of lead-like molecules,4−6 it was found that
COSMO-RS beats the competition, including force-field
methods, in both calculation time and accuracy. From a
medicinal chemist point of view, one has only a few choices.

The increasing size of drugs/drug candidates and the need for
fast estimation in medicinal chemistry screening require
significant advancements in ab initio7 and force-field-based8,9

methods to compete against COSMO-RS,4 UNIFAC,10 and
quantitative structure−activity relationship (QSAR) ap-
proaches.11 QSAR approaches are the ones requiring the least
computational resources, although they are not always precise,
and most importantly, they do not provide physics-based
insights to improve on them. A statistical thermodynamic model
like COSMO-RS or UNIFAC can provide accurate results in
relatively short time but cannot really be used in any system
without careful consideration. More specifically, charged
molecules cannot really be handled using COSMO-RS in its
current implementation. Certain functional groups are not
described adequately enough, regardless of the method used to
extract COSMO charge densities. Theoretically, these issues are
resolved by using ab initio and force-field-based models. Such
approaches will always be the most accurate ones but very
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expensive computationally. Depending on the system, the
properties, and the application of interest, one should decide
which method to use cautiously, as this is the most important
choice in building a successful workflow.
Despite their shortcomings, COSMO-RS and UNIFAC that

provide accurate estimations considerably faster than force-field-
based methods are increasingly being used in the literature. In
other domains, such as octanol−water partition coefficients, one
could perhaps rely on massive amounts of data to build an ultra-
fast machine learning correlation or a QSAR model. However,
for the systems of current interest, drug-like molecules
partitioning in water and alkane solvents, there are simply not
enough data to calibrate correlations. Hence, a statistical
approach cannot be adopted, and models must necessarily be
physics-based.
A suitable candidate can be found in the COSMO-RS model

because it requires only a handful of parameters, all with realistic
physical meaning, while it is, at the same time, precise.
Unfortunately, in standard COSMO-RS, one needs to calculate
the charge envelope by performing a costly density functional
theory (DFT) calculation, which could take many days for the
molecular targets of our interest. Approximate methods exist
that combine fragments extracted from a library (COSMO-
frag12,13), but the library and extraction method are not publicly
available nor described in sufficient detail to rebuild these
methods.
The second significant problem is that many lead-like

molecules exhibit IHBs as these amplify drug-design specificity.
From analyzing small molecules such as salicylic acid and o-
nitrophenol, it is clear that IHBs can have a dramatic effect on
the partition coefficient. The difference between open (in water)
and closed (in hydrocarbon solvent) state can account for
roughly one to two log 10 unit per IHB.14−16 When extended to
large molecules (i.e., MW 800) that can easily have 3−5, if not
more, IHBs, the effect is dramatic, and getting this right will
make or break any prediction tool.
The present work is structured specifically to resolve the two

issues mentioned above (fast estimation of COSMO charge
density and the IHB effect). In the Systems and Methods
section, we describe the methodology that we have developed to
predict COSMO charge density in a fast and accurate way, using

the AM1 semi-empirical method17−20 alongside a bond charge
correction.21,22 To cope with the IHB effect, a separate
algorithm was developed to generate the conformations that
include all the possible open (no IHB formed) and closed (IHB
formed) states for a given molecule. We also discuss the way to
extract the partition coefficient and the data sets used. In the
Results section, we present the COSMO charge density as
calculated from our newly developed method, AM1-bond
charge correction-COSMO (ABC), and we compare it with
the corresponding DFT outcome. We optimize COSMO-SAC
coefficients against the thermodynamic and partitioning data.
We apply the ABC model with the IHB algorithm and the
optimized COSMO-SAC coefficients to the BioByte and
SAMPL5 data set. In the Discussion section, we report a few
improvements that could make the model more accurate. The
Supporting Information contains the BCC parameters for ABC,
the molecules extracted from the BioByte and SAMPL5 data set,
and the Kuhn patterns used to identify IHB. All algorithms,
including AM1, are implemented in CULGI software version
13.0,23 installed on a Dell desktop PC equipped with an Intel
Xeon E5-2670 dual processor.

2. SYSTEMS AND METHODS
This section is separated into four different subsections
explaining the methods we have developed and the systems
studied. We present the “AM1-bond-charge-correction-
COSMO” (AM1-BCC-COSMO, ABC for short) algorithm
we have developed for calculating the COSMOcharge density of
a molecule. We include a detailed explanation of the IHB
algorithm we developed to generate all possible IHB con-
formers. Subsequently, we illustrate the methodology for
parameterizing COSMO-SAC coefficients and the features
and characteristics of the data sets we applied the protocol to
(CULGI,1 NIST standard reference database 103b as
implemented in the NIST ThermoData Engine (TDE) version
7.0, BioByte,24 and SAMPL54,25,26). A schematic representation
of the implemented protocol can be found in the form of a
flowchart in Figure 1.

2.1. ABC Algorithm. We introduce a COSMO charge
density calculation method based on Dewar’s AM1,17−20 a
widely used and fast semi-empirical quantum method. Our

Figure 1. Protocol’s flowchart is used to optimize the ABCmodel, generate IHB conformers, parameterize the COSMO-SAC coefficients, and predict
the SAMPL5 distribution coefficients (denoted by a dashed rectangle).
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implementation of COSMO in AM1 is largely based on the
method described by Klamt and Schüürmann,24 specifically
solving the linear system from eq 9 in that paper directly.
However, for calculating the interaction of the electron density
(orbitals) with the COSMO surface charges, we follow the
implementation by Klamt in MOPAC 7.27−29 There, the
electron density is approximated by a collection of atom-
centered multipoles (monopoles, dipoles, linear quadrupoles,
and square quadrupoles) in the same way as this is used for
calculating the two-center repulsion integrals in MNDO,30,31

using the same parameters as MNDO. An additional
approximation is then made by treating the multipoles as
point dipoles instead of physical dipoles (taking the limit to zero
distance between charges while keeping the multipole moments
constant). This leads to relatively simple analytical expressions
for the electrostatic potential arising from the electron density.
The explicit expressions can be found in the Supporting
Information. Additionally, our implementation of COSMO in
AM1 generates smoother COSMO surfaces than MOPAC. The
construction of the solvent-excluded surface is based substan-
tially on the work of Sanner et al.32

AM1 by itself does not give accurate electrostatic moments
and as a result gives unsatisfying COSMO charge density,33

which we propose to repair by a QSAR type of approach. Our
new ABC algorithm is a bond charge correction that works
similar to the BCCmethod for force fields.21,22 Compared to the
force-field BCC algorithm, we do not optimize for atomic partial
charges but for COSMO surface charge density. The BCC
parameters are calculated by comparing DFT to AM1 results; no
experimental input is needed, but instead, we can profit from
matching vast amounts of purely computer-generated data. The
algorithm itself can be described as follows:

• Perform an AM1 calculation with COSMO as usual,
giving the COSMO surface charge density σM

AM1 of the
molecule.

• Apply the AM1-BCC method (with modified parameters
to be determined) to obtain atom-centered correction
charges qM

BCC

• Calculate the COSMO surface charge density that results
from these correction charges alone, ΔσMBCC by solving
separately the COSMO equations using only the
correction charges.

Because the COSMO equations are linear, this COSMO
correction charge density is added to the charge density from the
original AM1-COSMO calculation to obtain an improved
COSMO surface charge density σM

AM1‑BCC = σM
AM1 + ΔσMBCC. In

this way, the improvement of the COSMO calculation is a
straightforward post-processing step that can be performed after
a regular AM1-COSMO calculation. The improved COSMO
sigma profile can then be used in COSMO-RS-type calculations,
after re-optimizing the COSMO-RS parameters for this source
of sigma profiles.
The modified AM1-BCC parameters for this procedure are

found by fitting the parameters to minimize the difference
between the AM1-BCC-COSMO surface charge density
σM
AM1‑BCC = σM

AM1 + ΔσMBCC and the σM
DFT resulting from a full

DFTCOSMO calculation. This is in contrast with the force-field
BCC method, where the parameters are fitted to reproduce
atomic partial charges. For the optimization, we must construct
an objective function to be minimized, which expresses the
deviation of the AM1-BCC-COSMO results from the full DFT
calculations. The surface charge density is calculated on a

discretized (triangulated) surface, leading to a representation as
a collection of local surface charge densities σM,I,, one for each
surface segment i in the molecule M. In the objective function,
we multiply each σM,i with the surface area aM,i of the segment to
properly weigh the size of the surface segments. We, then,
minimize numerically the following objective function

F a ( )
M i

M i M i M i
,

, ,
AM1 BCC

,
DFT 2∑ σ σ= [ − ]‐

(1)

Minimizing this function (the total square deviation) is
equivalent to minimizing the root-mean-square deviation. In
order to calculate the difference between the surface charge
density distributions segment by segment, we perform a
COSMO calculation on the DFT BP86/def2-TZVP34−39-
optimized geometry for both the full DFT calculation and the
AM1-BCC-COSMO calculation, using the same COSMO
surface tessellation for both cases.
The set of molecules that we used for this parameterization is

a subset of an in-house database of over 11,000 molecules (“the
Culgi molecular database”) that all have pre-computed COSMO
information, calculated with DFT as described above. To obtain
a manageable subset of this database while making sure that we
have enough occurrences of each BCC bond type, we followed
this procedure:

• For each bond type in the list of BCC bond types, we
determined the molecules that contain this type.

• If there were fewer than 10 molecules containing a bond
type, we did not include that bond type in our list. This
means, for example, that we cannot apply our AM1-BCC-
COSMO on iodine-containing molecules because we
only have a handful of these in our entire database, not
enough for a meaningful parameterization of the iodine-
containing bond types. The more than 300 bond types
that were present in the original AM1-BCC scheme were
thus reduced to 149 types. Of these 149 types, there are 17
that are bonds between atoms of identical type, where the
correction charge is necessarily 0. That leaves 132 non-
trivial bond types. These parameters suffice for the vast
majority of molecules in the Culgi Molecules Database.

• For each bond type that has 10 or more molecules
containing it, 10 molecules with the lowest molecular
weight were selected.

• The overlap between these sets of 10 molecules left us
with 965 molecules to parameterize 132 non-trivial bond
charge-correction parameters.

The objective function was minimized using an L-BFGS-B
minimizer as implemented in the SciPy library for the Python
programming language.
The resulting set of bond charge corrections can be found in

the Supporting Information. A more quantitative analysis of the
results of applying this to the entire Culgi Molecules Database is
presented in the Results section. However, an indicative
demonstration of how well the new model works is provided
in Figure 2.We show the COSMO charge density distribution of
propanol calculated from AM1, ABC, and DFT, respectively. It
is evident that ABC (red line) is far closer to DFT results (blue
line) than plain AM1 (black line), even for a molecule without
special and exotic functional groups, such as propanol.
DFT calculations were carried out with a modified version of

NWChem 6.3,40 with an improved COSMO mesh generation
based substantially on the work of Sanner et al.,32 and with
outlying charge correction.41 Molecules were geometry-
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optimized in vacuum, using the def2-TZVP basis set34,37 and
BP86 exchange−correlation functional.36−38 A COSMO
calculation was then performed on that geometry using the
def2-TZVPD basis set.34,35,39 These are the recommended high-
quality settings for COSMO-RS as used in COSMOtherm
software42 and also used in the entry of Klamt et al. in the
SAMPL5 challenge.
2.2. COSMO-RS Partition Coefficients. The ABC

algorithm is completed by reparameterization of some of the
COSMO-SAC coefficients by fitting four sets of thermodynamic
and partitioning data. Our implementation is based on
COSMO-SAC,43,44 but because COSMO-SAC and COSMO-
RS differ only cosmetically, we will use the name COSMO-RS
throughout the paper. With the ABC method, we can calculate
the COSMO charge density of even a large molecule (MW 800,
the upper range of SAMPL5 molecules) in just a few minutes on
a single core. Afterward, one can easily derive the partition
coefficient in less than a second.
The partition coefficient is defined as the ratio of

concentrations in the two solvents as follows

K
c

c
V

V
e RToil

water

water

oil

( / )0
≡ = μ−Δ

(2)

where Vwater and Voil are the molar volume of water and oil,
respectively, while the difference in chemical potentials Δμ0 is
calculated from COSMO-RS through the activity coefficients γ,
via

f aln ( , )i i
0 oil

water surfacepanel

∑μ
γ

γ
σΔ ≡ = Δ

(3)

where ai is the surface area and σi is the COSMO surface charge
density on segment i. When two or more conformations of the
same molecule are included in the partition coefficient
calculation, the corresponding relation is transformed. For two
conformations A and B, in oil/water solvents, the cumulative
partition coefficient is provided by the following equation

e e
e e

E E

E E

(A) (B)

(A) (B)

oil oil

water water
Κ = +

+

− −

− − (4)

where Eoil(A) and Ewater(A) are the total energy required for the
conformation A to move from the perfect conductor state into a

solvent like oil or water, respectively (same for conformation B).
Such a quantity for a conformer i in a solvent S can be calculated
as

E i E i i( ) ( ) ( )S COSMO Sμ= + (5)

where ECOSMO(i) is the total quantum mechanical energy of the
conformer i in the perfect conductor and μS(i) is the chemical
potential of the conformer i in solvent S that accounts for the
transition of this conformer from a perfect conductor into the
solvent S.
COSMO-RS theory amounts to the integration over the

surface, of a local free energy difference for a charged segment
exposed to two different solvents Δf = foil − fwater. The local free
energy function differs between various COSMO-RS flavors; in
most cases, as we do here, one accommodates the polarization
energy of a charged segment in a conductor and a hydrogen
bonding term. In the limited sense of integration over the
surface, the model is not too dissimilar from QSAR, where one
integrates over different types of polar groups and hydrogen
donors and acceptors. The essential difference is that in
COSMO-RS, one does not employ a group description and
group parameters but a generic interaction model based on
electrostatics from quantum chemistry calculations, and there-
fore, one needs only a few physics-based parameters, instead of a
whole zoo of groups and group parameters.
In this paper, we use the “SplitOH” COSMO-SAC model

from Lin’s group45,46 (a recent approach by Chang et al.47

suggests directional interactions for a more accurate representa-
tion of hydrogen bonding). The Staverman−Guggenheim
combinatorial term is used. Instead of taking the published
Lin parameters as is, we re-optimized the COSMO-SAC
coefficients. This was carried out by minimizing the total root-
mean-square error for four sets of thermodynamic and
partitioning data:

• 400 pressure data points for binary vapor−liquid
equilibria (VLEs)

• 400 excess Gibbs free energies for 50/50 liquid binary
mixtures (derived from VLE data)

• 400 partition coefficients for octanol/water
• 212 partition coefficients for hexadecane/water

VLE data were obtained from the NIST standard reference
database 103b as implemented in the NIST TDE version 7.0.
Partition coefficients were obtained from the BioByte data set.24

More information related to the parameterization scheme can be
found in the Supporting Information. The optimized settings
can be seen in the following table where cbase defines the
interaction between any related segment, cOH−OH provides the
(additional) interaction between segments with hydroxyl
groups, cOH−OT gives the (additional) interaction between a
segment containing a hydroxyl group and a segment with a
different hydrogen bonding acceptor, and cOT−OT represents the
interaction between two segments that do not contain any
hydroxyl group. The segment surface area is the size of a
thermodynamically independent segment. This is equivalent to
the inverse of the so-called “coordination number” in chemical
engineering models.
One can use the suggested coefficients in Table 1 alongside a

software package supporting COSMO-SAC calculations. An
open source implementation of COSMO-SAC has recently
become available.48

2.3. IHB Sampling. The special treatment of IHB in a
molecule is related to the different conformations that the

Figure 2. COSMO charge density distribution of propanol calculated
using (a) AM1 semiempirical method, (b) ABC model, and (c) DFT
with the modified NWChem software package.40
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molecule can form when dissolved in a polar or apolar solvent.
More specifically, if a molecule that exhibits an IHB is dissolved
in a polar solvent, the acceptor (hydroxyl, amine, etc.) and the
donor would be exposed to the solvent, the so-called “open”
conformation. If dissolved in an apolar solvent (i.e., alkane), the
molecule tends to form IHB so that the acceptor and donor are
hidden from the solvent; this is the “closed” conformation.
Therefore, we have conducted conformation analysis for
molecules exhibiting IHB, so that all possible combinations of
open and closed IHB structures will be included in the final
analysis. Such analysis ensures that the effect of the solvent on
the molecular conformation is explored and accounted for.
Following the work of Kuhn et al.49 we have used the Kuhn

rings to identify the presence of IHB in a molecule. The patterns
do not include the trans-core IHBs that can be found in
macrocycles, and we therefore omitted all such molecules from
the present study.We have included an additional pattern for the
IHBs between carboxylic groups and aromatic nitrogen. Finally,
a few additional rings are included to make sure that we capture
the IHBs present in smaller molecules like salicylic acid and o-
nitrophenol.
The second challenge in IHB sampling is to find an automatic

way of reproducing the conformations that would include all the
combinations of open and closed IHBs. We start by assigning
zero charges to all atoms, apart from the donor and acceptor
atoms that take part in the formation of the IHB. To the donor/
acceptor couple, we assign opposite charges if the closed
conformation should be formed (attractive electrostatic
interaction) or equal charges if the open conformation should
be formed (repulsive electrostatic interaction). Using these
charges, we run successive molecular dynamics runs followed by
energy minimization, until a hydrogen bond distance criterion is
met (distance below a certain value if an IHB is to be formed and
distance above a certain value if the atoms should not form an
IHB). Each molecular dynamics run consists of 1000 steps. We
have selected an NVT ensemble with the Andersen thermostat,
at a temperature of 298 K, with a 0.5 fs timestep coupled with the
Dreiding force field.
As the second step, we re-assign the correct charges and

geometrically optimize the conformation, so that we make sure
that the structure is energetically favorable. This way, after the
optimization step, some of the conformations might end up
without the desirable IHB, although the vast majority of them
will maintain the desired structure. Then, we apply AM1
geometry optimization to each conformation to ensure that we
have a physically meaningful representation of the molecule.
The COSMO charge density is then calculated using ABC for
every conformation. Finally, we calculate the partitioning of the
molecule between water and alkane using eq 4.
A characteristic example can be found in salicylic acid. Figure

3 illustrates the two different conformations that should be taken
into account when calculating the partition coefficient of this
molecule in water/alkane solvents. When the molecule is
dissolved in water, the “open” conformation, depicted in Figure
3a, is practically the only one observed. In contrast, when
dissolved in alkane solution, the “closed” conformation,
represented in Figure 3b where an IHB is formed, is

predominant. The COSMO surface is visualized in the form
of a color map. The red surface areas correspond to a positive
COSMO charge density, while the blue areas carry a negative
COSMO charge density. The gray COSMO surface indicates
neutral COSMO charge density.
The severe effect of leaving out the closed conformation is

evident when estimating the salicylic acid partition coefficient in
water/cyclohexane. Using eq 2, the open conformation partition
coefficient is equal to −5.43, while the experimental one is
−1.97. If we use eq 4 to include both conformations, we get to
the value of −2.54, which is in good agreement with the
experiment.

2.4. Data sets. We used the BioByte database24 as the
primary source for partition coefficients between water and
alkane solvents (hexane, cyclohexane, heptane, isooctane,
octane, decane, undecane, dodecane, and hexadecane). We
have curated the data set manually: for the solutes with data in
more than one solvent, we only accepted those entries where log
10 deviated less than 1.5 unit between the lowest and highest.
We accepted all entries for which only one solvent is present, for
lack of a good curation criterion. We have also omitted

• all tautomer-forming molecules (as they need to be
separately investigated for different solvents, while we
have not developed a special model for their treatment),

• all molecules with more than five rotatable bonds
(because we focus mostly on the residual contribution,
so we limit surface flexibility and folding effects), and

• all crown ethers, where water binding should be taken into
account due to the extreme hydrogen bonding behavior.

The OpenBabel package is utilized to generate the molecular
three-dimensional conformations from their corresponding
SMILES strings. Subsequently, we stretch the molecule open
to prevent energetically unfavorable starting conformations; this
also avoids unphysical steric and intramolecular effects. To do
so, we apply molecular dynamics without charges to open the
molecule, followed by energy minimization with the corre-
sponding force-field charges to get a molecule with realistic
geometry. When the same molecule is encountered again for
different solvents, we keep the generated conformation from the
earlier occurrences to ensure that statistical mechanics from the
molecular dynamics steps will not sample different conforma-
tions for different alkane solutes, hence providing different
results.
As discussed in the previous section, a further distinction is

made between the molecules with IHB (a few hundred) and
those without IHB (a few thousand). The molecules are listed in
the Supporting Information. A second set is the SAMPL5 data
set of drugs and drug-like candidates.4,25,26 In Figure 4, we

Table 1. Optimized COSMO-SAC Coefficients

cbase
(kcal/mol)·
(Å/e2)

cOH−OH
(kcal/mol)·
(Å/e2)

cOH−OT
(kcal/mol)·
(Å/e2)

cOT−OT
(kcal/mol)·
(Å/e2)

segment
surface area

(Å2)

6032.98 3175.29 2209.34 940.67 7.58

Figure 3. Salicylic acid’s (a) open conformation, favorable in an
aqueous environment, and (b) closed conformation, favorable in alkane
solution. The COSMO surface is depicted in the form of a color map.
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present the molecular weight distribution for the BioByte and
SAMPL5 data set. The average of the molecular weight
distribution for the BioByte data set is equal to 180 and for
SAMPL5 is equal to 290. This difference is expected because
BioByte contains many smaller solutes, while SAMPL5 includes
larger lead-like molecules.

3. RESULTS
In this section, we demonstrate how we acquired the correction
charges for the ABC model for some of the most representative
functional groups. Subsequently, we have applied the protocol
(ABC alongside IHB sampling) to predict the partition and
distribution coefficients in the BioByte and SAMPL5 data sets,
respectively.
3.1. ABC Optimization. As explained in the Systems and

Methods section, we optimized the ABC model against DFT
results for a wide range of functional groups found in the CULGI
database (extensively analyzed in previous publications1), such
that the surface charge density disparity between ABC and DFT
is minimized. The quadratic error in the surface charge density
between AM1 and DFT and between ABC and DFT (for a few
of the most frequently appearing functional groups) is
represented using boxplots in Figure 5.

By comparing either the median value or the relative position
of a boxplot between AM1 and DFT (Figure 5a) and between
ABC and DFT (Figure 5b), one can see that for all functional
groups, apart from sulfides, there is a moderate to substantial
improvement using ABC instead of AM1. We can see the
molecules with hypervalent sulfur and phosphorus in the upper
regions of Figure 5a: “sulfonamide” and “phosphate”the latter
including thiophosphates. In Figure 5b, these groups improve
significantly, with errors ending up in the same range as more
“regular” molecules. It is known that AM1 does not deal well
with these atom types, and this is also clear from looking at the
COSMO surface of these molecules when comparing the DFT
COSMO surface charge density with the AM1 COSMO surface
charge density, as we show graphically in the Supporting
Information for the pyridine-3-sulfonamide molecule. The
nitriles show a moderately large improvement. In general, for
large molecules, the dominant source of error is often formed by
large alkyl tails.
The values of the optimized parameters also bear this out. For

the bonds involving hypervalent S and P, the charge shift is often
as large as 0.4 to even 0.9 electron charges. For nitriles and
similar groups, this may still be up to 0.1 to 0.2, but in the vast
majority of other bonds, the charge displacement is below that
value. To quantify our metric in familiar COSMO terms, if there
is a difference in σerror of one unit between the estimation of AM1
and ABC, this corresponds to approximately 0.85 kBT difference
in the total surface segment energy. Because the introduced
bond charge correction significantly improves AM1 results, we
are justified to apply it in calculating the COSMO charge density
and, subsequently, the partition coefficient.

3.2. Protocol Application to the BioByte Data Set. We
have applied the ABC model to the BioByte data set to predict
the alkane/water partition coefficient. For molecules that exhibit
IHBs, we applied the IHB sampling algorithm as described in the
Systems and Methods section.
Formolecules containing carboxyl groups, we use only the syn

conformation (with the hydrogen pointing in roughly the same
direction as the carbonyl oxygen) and not the anti-conformation
(with the hydrogen pointing away) because the former is the
most stable and energetically favorable one as far too polar
behavior is observed when we sample energetically unfavorable
carboxyl anti-conformations (donor and acceptor exposed to the

Figure 4.Molecular weight distribution for BioByte and SAMPL5 data
sets.

Figure 5.Quadratic surface charge density error betweenDFT and (a) AM1 and (b) ABC for a selection of different functional groups represented in a
boxplot fashion.
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solvent). The necessity of special treatment for carboxyl groups
has already been demonstrated in force-field-based works in the
literature.50,51

Figure 6 compares the experimental Kexp and calculated Kcalc
partition coefficients for each hydrocarbon solvent (namely,
isooctane, decane, hexane, heptane, octane, undecane, dodec-
ane, hexadecane, and cyclohexane). A color density map is used
for regions with overlapping data points. Prior to optimization,
using the SplitOH coefficients as suggested by Lin’s group,45,46

we obtained RMSD = 1.92 with a correlation coefficient of 0.80.
Using the optimized COSMO-SAC coefficients (shown in
Table 1), we calculated RMSD = 1.24 with a correlation
coefficient of 0.81. This is a significant improvement,
considering how diverse the data set is.
Looking in more detail, taking each solvent separately into

account, we notice that the model appears better for some
solvents and not that adequate for others. For instance, heptane
exhibits RMSD = 1.55, while hexadecane shows RMSD = 0.79.
Heptane has more data points, but it is also the noisiest of the
two. This noise does not appear to be a feature of the solvent; we
have verified this for the same molecule, partitioning is almost
identical for both solvents. This is to be expected because for all
alkanes, the COSMO profile is essentially a delta-function, that
is, all these hydrocarbon molecules have an almost zero
COSMO charge density everywhere on the entire molecular
surface.
However, we have identified several molecules of rather exotic

structures and functional groups being experimentally studied
only in the case of heptane (like morin and xanthine). ABC is
less accurate in predicting the partitioning of such molecules,
which are more common in the heptane data set, making this
particular solvent appear to be much more problematic and
prone to error. This is an indication of how important it would
be to improve upon functional groups that are not described
with high accuracy in the current model.
The scatter plots of hexadecane and heptane show a

downward curvature for larger values of the partition coefficient,
which could be attributed to a combination of conformational

changes and insufficient alkyl−water parameterization. In the
current ABC implementation, all conformations are obtained by
AM1 minimization; no sampling is applied (apart from cases
where IHBs occur and we apply a special sampling as explained
in the IHB sampling section). We have checked that almost all
compounds with large partition coefficients are hydrocarbons.
Overall, the fit is entirely satisfactory. The attained accuracy is
typical for what one can expect for oil−water partition
coefficients from COSMO-RS. Still, here we have achieved
this result by applying semi-empirical calculations (a few
minutes per molecule) rather than full andmuchmore expensive
quantum DFT calculations (hours per molecule).4

3.3. Protocol Application to the SAMPL5 Data Set.We
can, also, apply the developed protocol in predicting the
distribution coefficient for water/cyclohexane of the SAMPL5
data set containing drug-like molecules. The distribution
coefficient is given by the following relation

D Klog log log10 10 10α= + (6)

where K is the partition coefficient of the neutral molecule and α
is the neutral fraction of molecules at pH = 7.4; pK values are
estimated with the program cxcalc from ChemAxon.
As we observe in Figure 7 our model gives RMSD = 1.88,

slightly outperforming Klamt’s result of RMSD = 2.07, while our
model correlation coefficient is equal to 0.81, comparable to
Klamt’s 0.85. The overall comparison indicates that we can
obtain similar results, if not improved, using ABC to calculate
COSMO charge density and IHB sampling in the case of IHB.
At this point, we need to stress that on comparing the RMSD
with respect to the experimental data and uncertainty in
measurements, the difference between our model and Klamt’s
COSMO-RS is insignificant. Therefore, in the SAMPL5
challenge, our protocol would have performed similar to the
winner.
What deserves further investigation is that both ABC and

Klamt’s model deviate from the experimental values in twoways:
for polar molecules, partition coefficients are too low (log too

Figure 6. Computed partition coefficient, from ABC and IHB sampling, plotted against the experimental partition coefficient of the BioByte data set
for different solvents. The red line corresponds to y = x. A color density map is used for regions with overlapping data points.
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negative), and for less polar molecules, the partition coefficients
are systematically too high (log too positive). In fact, it seems as
if the entire curve is shifted a few units in the positive direction.
These two effects have been discussed in extenso by Klamt4 and
the SAMPL5 organizers,5 without any clear conclusion. Other
prediction methods of very different backgrounds (force fields)
seem to suffer from this same phenomenon, so it could be
concluded that this is partly an experimental effect. It could also
be due to limited conformational sampling. Apart from
molecules exhibiting IHBs, we did not use any conformational
sampling. We simply took the conformation of the lowest AM1
energy in a vacuum. In contrast, force-field methods do sample
conformations while Klamt also used conformational sampling.
Considering that ABC performs similar to or better than all of
them at a fraction of the computation time, the sampling issue
remains a puzzle.

4. DISCUSSION
To our knowledge, there is no similar large-scale comparison
between the calculated and experimental partition coefficients.
As far as we know, in works using molecular dynamics, only a
handful or at the most a few tens (SAMPL5) of molecules are
investigated.52,53 These data sets are too small to draw
statistically valid conclusions, and anyway, a molecular dynamics
simulation on the scale of the BioByte database is not possible in
a reasonable amount of time. On the QSAR level, we also found
only a few studies: a study on ∼100 molecules using Abraham
descriptors (a fine RMSD 0.2−0.3 but a rather poor correlation
r2 0.5−0.7)54 and an older QSAR study on ∼100 molecules by
the group of Leo (the source of some of the experimental data
we use here).55 These studies have been limited to a few tens or a
few hundred molecules at most, and apart from this, it is always
challenging to extract physical insights from QSAR modeling.
For the ubiquitous log P (octanol/water) predictions

(COSMO-RS was recently used to predict octanol/water
partitioning in small drug molecules56), the situation is very
different and large-scale comparisons abound (see, e.g., the
review57 that compares methods based on a data set of more
than 96,000 molecules). For hydrocarbon predictions, the
situation is much less satisfactory. This is worrisome because on
theoretical and experimental grounds,58−63 one can expect that
hydrocarbon partitioning is a much better predictor for bilayer

permeability than log P: in the bilayer core, no hydrogen
bonding with the surrounding lipid is possible and one is better
off with a proxy solvent that cannot form hydrogen bonds.
Several improvements could be introduced to enhance the

accuracy of our model. A step in this direction could be to
correct for specific functional groups whose behavior is not well
captured using ABC. As illustrated in the Results, amines and
sulfides are not significantly improved by the method. However,
even for more frequently appearing and well-described groups
like nitros, a serious improvement could be obtained. A
representative molecule containing a nitro group is o-nitro-
phenol, which also happens to exhibit an IHB. After our IHB
algorithm, we calculate the partition coefficient from the three
different conformations, and finally, we estimate the total
partitioning. As we can see in Table 2, the ab initio calculation is

far closer to the experimental result than our semiempirical ABC
method. This is a serious indication that a more detailed
quantum description of the molecule could increase the
accuracy of our model.

5. CONCLUSIONS

We have developed a fast and precise method to calculate
COSMO charge density and, from that, the partition coefficient.
At the core of the model, a bond charge correction is applied to
the AM1 semi-empirical method, while special treatment for
IHB is introduced.
The charge shifts for the bond charge correction were

optimized by an iterative process so that the COSMO charge
density difference between the new model, ABC, and DFT
results was minimized. For molecules that exhibit IHBs, we built
an algorithm that generates the majority of the possible
combinations of open and closed IHBs to avoid severe
underestimation in the partitioning calculation.
Subsequently, we re-parameterized some of the COSMO-

SAC coefficients, namely, cbase, cOH−OH, cOH−OT, cOT−OT, and the
segment surface area, against the experimental data of several
thermodynamic and partitioning quantities. Having obtained
the optimized COSMO-SAC coefficients, we applied the whole
methodology to predict partition coefficients in the BioByte data
set and distribution coefficients of drug-like molecules
participating in the SAMPL5 challenge. The results were
entirely satisfactory and in the case of SAMPL5, comparable
to (and perhaps slightly better than) the competition winner4 at
a fraction of the computational cost, as ABC bypasses the
expensive DFT computations.
The fact that the model is so fast makes it a suitable candidate

for large-scale screening studies of lead-like molecules as it
provides fast and reliable results. The accuracy could be further
improved, considering that ABC results are still inferior to DFT
results for specific functional groups. Hence, in future studies, we
will focus on finding quantum mechanical descriptors that can
correct for the missing information related to the electronic
structure of the interacting molecule.

Figure 7. Distribution coefficient calculated from ABC and IHB
sampling, alongside the results from Klamt et al.4 against the
experimental data of the SAMPL5 challenge. The red line corresponds
to y = x.

Table 2. Partition Coefficient of O-Nitrophenol Calculated
Using ABC and DFT, Compared to the Experimental Data

ABC + SplitOH (optimized) DFT + SplitOH experiment

Log K −1.34 0.35 1.48
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