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Noninvasive prediction of perineural invasion
in intrahepatic cholangiocarcinoma by
clinicoradiological features and computed
tomography radiomics based on interpretable

machine learning: a multicenter cohort study
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Background: Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumour \
recurrence and long-term patient survival. However, there is a lack of noninvasive tools for accurately predicting the PNI status. The authors
develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for
predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application.
Methods: This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n = 136;
external validation, n=81; prospective, n =26, respectively) who underwent preoperative contrast-enhanced computed tomography
between January 2012 and May 2023 at three institutions (three tertiary referral centres in Guangdong Province, China). The ElasticNet
was applied to select radiomics features and construct signature derived from computed tomography images, and univariate and
multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust
combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the
SHAP was used to visualize the prediction process. A Kaplan-Meier survival analysis was performed to compare prognostic differences
between PNI-positive and PNI-negative groups and was conducted to explore the prognostic information of the combined model.
Results: Among 243 patients (mean age, 61.2 years + 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-
positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves of 0.792, 0.748, and 0.729
in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and
combined with radiomics signature to construct a combined model using machine learning. The extreme Gradient Boosting exhibited
improved accuracy and robustness (areas under the curves of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the
construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% Cl: 1.093-3.418; P=0.021).
Conclusions: We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features
based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical
application.
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Introduction

Intrahepatic cholangiocarcinoma (ICC) accounts for 10-15% of
primary liver cancers, showing a gradual increase in incidence
and mortality rate globally'™!. Surgical resection is the primary
treatment for patients with ICC. However, the recurrence rate is
relatively high, ~57.9-73.4%, which is the main cause of post-
operative death®!. Due to the lack of effective treatment, the
overall prognosis of resected patients remains dismal, with a
S-year survival rate of only 20-40%3!,

Perineural invasion (PNI) is characterized by the infiltration of
tumour cells along the nerves and/or within the neuronal sheath’s
epineural, perineural, and endoneurial regions, encompassing at
least one-third of the nerves circumference!®l. As a potential route of
tumour spread, it has been proposed as a strong independent risk
factor for tumour recurrence and long-term survival in ICC'**®!, and
the ICC patients with PNI may benefit from a wide resection
margin!”#l, Therefore, preoperative PNI prediction is important for
making treatment decisions, helping develop individualized treat-
ment plans, and improving the prognosis of patients with ICC.

Computed tomography (CT) is a common noninvasive
imaging method important for ICC diagnosis and preoperative
evaluation. However, it is challenging for radiologists to assess
the PNI status based on macroscopic CT images. Radiomics
converts medical radiologic images into high-throughput
quantitative features, thus providing information about
tumour pathophysiology. It has shown great potential in
characterizing tumour phenotypes and improving cancer
diagnosis, prognosis, and treatment responsel’!. Traditional
machine learning often lacks interpretability, leading to the
“black box” problem, which is not conducive to clinical
application. The Shapley additive explanation (SHAP), an
emerging interpretability method, can explain the “black box”
problem from both global and local domains!'®'"). To our
knowledge, the noninvasive PNI prediction in ICC using
clinicoradiological features and CT radiomics based on inter-
pretable machine learning has not been well established in the
literature.

This multicenter study aimed to develop and validate a robust
combined model incorporating radiomics signature and clin-
icoradiological features based on machine learning for predicting
PNI in patients with ICC. Additionally, the combined model will
utilize SHAP to intuitively interpret the predicted process for
clinical application.

Materials and methods

Participants

This study included two retrospective cohorts and one pro-
spective cohort from three institutions: Shunde Hospital,
Southern Medical University (institution I); the Sixth Affiliated
Hospital, South China University of Technology (institution II);
and and the First People’s Hospital of Foshan (institution III).
This study was approved by the institutional review board of
Shunde Hospital, Southern Medical University. Written informed
consent was obtained from each prospectively enroled partici-
pant. For retrospective cohorts, the requirement of informed
consent was waived. This study had been reported in line with the
REMARK criterial'?!.

International Journal of Surgery

HIGHLIGHTS

e In a retrospective and prospective study of 243 patients
with intrahepatic cholangiocarcinoma, the radiomics sig-
nature based on computed tomography images could
identify the Perineural invasion status.

e The combined model incorporating radiomics signature
and clinicoradiological features was more accurate and
robust, and can be used to stratify relapse-free survival.

e The visualization prediction process through the Shapley
Additive explanation is helpful for personalized clinical
decision-making.

Between January 2012 and May 2023, preoperative contrast-
enhanced CT images and clinical data from 497 patients with
pathologically confirmed ICC were collected from three institu-
tions in China. Of these, 243 were included in the final analysis.
Ninety-four and 42 patients from institutions I and II were
recruited as a total of 136 patients in the training cohort. Eighty-
one patients were recruited as an external validation cohort from
institution III. Twenty-six patients were recruited as a prospective
cohort from institution III. Data were censored on 2 June 2023.
The inclusion criteria were: (a) patients with pathologically
confirmed ICC and (b) patients who underwent preoperative
contrast-enhanced CT. The exclusion criteria were: (a) patients
who did not receive curative resection, (b) incomplete clinical or
pathological data, (c) received previous treatment, (d) poor image
quality with obvious artifacts, and (¢) CT examination performed
more than 1 month before surgery. The inclusion and exclusion
processes are illustrated in Fig. 1.

Clinical data collection and follow-up

The following clinical data of each patient were recorded from the
medical record archives of participating institutions: age, sex,
chronic hepatitis, cirrhosis, clonorchis sinensis infestation, alpha-
fetoprotein (AFP, ug/l), carcinoembryonic antigen (CEA, ug/l),
cancer antigen 12-5 (CA12-5, U/ml), carbohydrate antigen 19-9
(CA19-9, U/ml), alanine aminotransferase (ALT, U/l), aspartate
aminotransferase (AST, U/l), gamma-glutamyl transferase (GGT,
U/l), neutrophil-to-lymphocyte ratio (NLR), platelet to lympho-
cyte ratio (PLR), and Child-Pugh classification. Preoperative
TMN stage was evaluated by CT, MRI, and/or whole-body PET/
CT, basing on the 8th edition of the American Joint Committee
on Cancer (AJCC) staging system.

Considering sufficient follow-up time, the patients in institu-
tion Il were followed up every 3-6 months after surgery by
enhanced ultrasound, CT or MRI until recurrence or the end of
31 December 2022. Relapse-free survival (RFS) was defined as
the time from surgery date to the date of first recurrence, metas-
tasis or last follow-up.

Histopathological examination

The histologic sections from three institutions were evaluated
using the same criteria by two experienced pathologists from
institution I without knowledge of the patients’ clinical data. They
made comprehensive judgments based on gross specimens or
radiographic images, combined with microscopic histopatholo-
gical examination!3!. A third senior pathologist was consulted in
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Patients with pathologically confirmed 1CC who satisfied the following criteria:

¢ Patients with pathological confirmed ICC
¢ Patients underwent preoperative contrast-enhanced CT

Institution I between April
2012 and December 2022
(n=182)

Institution II between January
2018 and December 2022
(n=81)

Excluded (n=88) Excluded (n=39)

* Without curative resection * Without curative rescection
—>! ¢ Incomplete clinical or [ ¢ Incomplete clinical or

pathological data (n=12)
Previous treatment (n=7)
Poor i ¢ quality (n=3)
CT examination underwent
more than one month (n=3)

pathological data (n=27)
s Previous treatment (n=15)
* Poor image quality (n=8)
¢ CT examination underwent
more than one month (n=6)

(n=32) (n=14)

Eligible patients Eligible patients
(n=94) (n=42)
e Yo ,
: Training cohort 5
! (n=136) :
4

Institution 111 between January % Institution II1 between January|
2012 and December 2018 3 2023 and May 2023
(n=204) [ (n=30)

Excluded (n=123) Excluded (n=4)

* Without curative resection
(n=3)

Incomplete clinical or
pathological data (n=0)
Previous treatment (n=1)
Poor image quality (n=0)
CT examination underwent
more than one month (n=0)

* Without curative resection

(n=48)

> .

Incomplete clinical or
pathological data (n=33)

o Previous treatment (n=21)

* Poor image quality (n=9)

o CT examination underwent
more than one month (n=12)

:

Eligible patients
(n=26)

Eligible patients
(n=81)

v |

Prospective cohort
(n=26)

Model construction to predict PNI with ICC patients

Figure 1. Flowchart of inclusion and exclusion criteria for eligible patients in the study. CT, computed tomography; ICC, intrahepatic cholangiocarcinoma; PNI,

perineural invasion.

the event of inconsistencies. According to the definition™!, PNI
was divided into positive (+) and negative (- ) groups.

CT technique

The CT scanners and scanning parameters for each institution are
shown in Supplement Table 1, Supplemental Digital Content 1,
http:/links.lww.com/JS9/B281. For each patient, a triple-phase
CT scan was performed, including a plain scan and arterial and
portal venous phases. Using bolus tracking technique, arterial
and portal venous phase images were acquired at 30 and 60 s,
respectively. The contrast agents (Ioversol 320 iodine/ml, Jiangsu
Hengrui Medicine Corp. Ltd.; or Omnipaque 300 mg iodine/ml,

GE Healthcare) were injected at a speed of 3.0-4.0 ml/s with a
high-pressure pump syringe.

Semantic features of computed tomography

Two radiologists with eight (Reader 1) and 15 (Reader 2) years of
experience in abdominal diagnosis were selected to independently
assess CT image features; they were aware that the lesions were
ICC but were blinded to all other clinical and histopathologic
information. Discrepancies were resolved by consensus after
reevaluating the images. Inter-reader variation of semantic fea-
tures was measured with k-statistic (kx> 0.75 was considered
excellent agreement; 0.40 <x<0.75, good; k< 0.40, poor). In
patients with multiple tumours, the largest tumour size was
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analyzed. The following CT image features were evaluated: (a)
tumour size; (b) tumour morphology; (c) tumour number; (d)
tumour location; (e) tumour capsule; (f) intrahepatic bile duct
dilatation; (g) intrahepatic bile duct calculus; (h) satellite nodules;
(i) surface retraction; (j) peritumoral arterial hyperenhancement;
(k) arterial phase enhancement; (1) dynamic enhancement pattern.
The evaluation of CT image features is shown in Supplement
Figure 1, Supplemental Digital Content 1, http:/links.lww.com/
JS9/B281, and a more detailed description in Supplement
Method.

Image pre-processing and tumour segmentation

All original CT images were appropriately pre-processed to
minimize the centre effect from different institutions and
scanners'' !, To standardize the voxel spacing, images were iso-
tropically resampled to a voxel dimension of 1x1x1 mm?
(X, v, z). To reduce noise and discretize intensities, the Hounsfield
units were set to 25 bins!'*™'71. A radiologist with five years of
abdominal diagnosis experience (Reader 3) segmented the
tumour using three-dimensional Slicer (version 4.10.2; http:/
www.slicer.org). The tumour volume of interest (VOI ymour) was
manually drawn on each transverse section from the arterial and
portal venous phases. In reference to previous peritumoral
radiomics studies™®11] the peritumoral VOI (VOI 1 mm) was
defined as 10 mm. The entire VOI (VOI tymour + 10 mm) included
the tumour and the peritumoral VOIs. The segmentation results
were validated by a senior radiologist with ten years of abdominal
diagnosis experience (Reader 4) who randomly selected 30
samples from a cohort. The reproducibility of the extracted fea-
tures was evaluated by the inter-class correlation coefficient.
Finally, the VOI tumours VOIlO mm>s and VOI tumour + 10 mm WEre
saved for subsequent quantitative feature extraction.

International Journal of Surgery

Radiomics feature extraction, standardization, and selection

Feature extraction was performed using the open-source pyr-
adiomics package in the three-dimensional Slicer extension
manager, which included shape, first-order, and texture
features!'®!. All radiomics features were standardized using
z-scores and ComBaTool, a free online application (https://for
lhac.shinyapps.io/Shiny_ComBat/)*®*!!. Principal component
analysis was used to visualize the correction of batch effects on
these features by ComBats. We followed a four-step procedure to
identify robust radiomics features in the training cohort. First,
features with high stability (inter-class correlation coefficient
>0.75) in the test-retest settings were retained for further ana-
lysis. Second, univariate statistical analysis was performed on the
features, with a significance of P < 0.05. Third, we used Pearson’s
or Spearman’s correlation analyses (Irl>0.80) to ensure low
collinearity. Finally, to prevent overfitting of the model,
ElasticNet was used to select the final radiomics risk factors of the
PNI*?!, The penalty parameter tuning was conducted by 10-fold
cross-validation, and the mixing parameters were set to
(A= -1.80, a=0.5). The radscore was determined by weighting
the feature coefficients of the model using logistic regression. The
radiomics analysis process is illustrated in Fig. 2.

Clinical and radiological risk factors

In the training cohort, individual factors were analyzed for sig-
nificant differences using the Student’s #-test or Mann—-Whitney
U test and the y* test or Fisher’s exact test, as appropriate.
Univariate and multivariate analyses were used to identify the
significant clinical and radiological factors with PNI, which were
selected by stepwise logistic regression based on the Akaike
information criterion.
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Clinical data
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portal venous phase

Image and clinical data collection

Individual application of SHAP
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Figure 2. Overall radiomics analysis process in this study. (A) Collection of clinical data and CT images. (B) Tumour segmentation on the arterial and portal venous
phases. (C) Radiomics features extraction from dual-phase CT images. (D) All radiomics features were standardized using z-scores and ComBaTool. (E) Radiomic
features selection from training cohort using ElasticNet. (F) Construction of the optimization model by comparing different models. (G) Model visualization, validation,

and survival prognosis analysis. CT, computed tomography.
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Model development and validation

We examined clinical, radiological, radiomics, and combined
PNI prediction models to demonstrate the clinical value of the
radiomics model. A combined model was built by incorporating
radscore and clinicoradiological risk features.

To select the optimal prediction model, four machine-learning
algorithms were used to build combined models: logistic regres-
sion (LR), eXtreme Gradient Boosting (XGBoost), random forest
(RF), and support vector machine (SVM). Each model’s perfor-
mance was evaluated using the receiver operating characteristic
(ROC) curve and area under the curve (AUC) values, accuracy, F1
score, sensitivity, and specificity. The DeLong’s test was used to
compare the AUC differences. Furthermore, the incremental dif-
ference between the combined and single models was compared
using the net reclassification index (NRI), and the net benefit was
determined using decision curve analysis (DCA). Based on the
study results, we used SHAP to visualize and analyze the predic-
tion process of the PNI model. Finally, to verify the predictive
model’s generalizability, external validation, and prospective
cohorts were used to validate the prediction performance.

Statistical analysis

Statistical analyses were performed using Python (version 3.7.3;
https://www.python.org/) and R software (version 4.0.4; https:/
www.r-project.org/). The quantitative statistics conforming to
the normal distribution were presented as mean + (SD), and
those not conforming to the normal distribution were presented
as median [interquartile range]. Qualitative data are expressed as
numbers and percentages (N, %). Survival curves were drawn
using the Kaplan—-Meier method and compared using the log-
rank test. Odds ratio (OR) was used for logistic regression, and
hazard ratio (HR) was used for Cox regression, and 95% CI were
set for evaluation and analysis. Statistical significance was set at P
less than 0.05.

Results

Baseline characteristics of the study cohorts

Among 243 patients (mean age, 61.2 years = 11.0 (SD); 152
men and 91 women), 108 (44.4%) were diagnosed with PNI
(+). Among these, 38.3% (36/94), 54.8% (23/42), and 45.8%
(49/107) were in institutions I, II, and III, respectively. We
combined institutions I and II into a training cohort, with PNI
incidence rates of 43.4% (59/136). Furthermore, institution III
conducted external validation and prospective cohorts chron-
ologically, with PNI prevalence rates of 51.9% (42/81) and
26.9% (7/26), respectively. The clinical data and CT imaging
features of the different cohorts are presented in Table 1. The
two radiologists (Readers 1 and 2) showed a consistent ana-
lysis of qualitative CT features, as the kappa values were all
greater than 0.600 (0.650-1.000, P <0.001, Supplement
Table 2, Supplemental Digital Content 1, http:/links.lww.
com/JS9/B281).

Clinicoradiological features associated with PNI

Univariate analysis showed sex, chronic hepatitis, cirrhosis,
GGT, PLR, tumour morphology, tumour location, tumour
capsule, intrahepatic bile duct dilatation, intrahepatic bile duct
calculus, peritumoral arterial hyperenhancement, arterial phase

enhancement, and dynamic enhancement pattern were sig-
nificantly related to the PNI (all P<0.05, Supplement Table 3,
Supplemental Digital Content 1, http:/links.lww.com/JS9/B281).
Multivariate analysis showed that PLR (OR 1.007; 95% CI
1.001-1.013; P=0.018), tumour location (OR 4.351; 95% CI
1.759-10.763; P=0.001), and arterial phase enhancement (OR
6.570; 95% CI 1.744-24.753; P=0.005) were independent
predictors of PNI (Supplement Table 4, Supplemental Digital
Content 1, http://links.lww.com/JS9/B281).

Radiomics feature extraction, standardisation, and selection

For feature extraction, 107 radiomics features (14 shape features,
18 first-order features, and 75 texture features) were extracted
from each three-dimensional segmentation, yielding 642 features
for every lesion (VOI tumours VOI 10 mm> and VOI tumour + 10 mm in
the arterial and portal venous phases). Supplement Figure 2,
Supplemental Digital Content 1, http:/links.lww.com/]S9/B281
shows that ComBat normalization aggregated the data distribu-
tions of the three institutions, which were scattered before elim-
inating the centre effects. For feature selection, first, based on the
test-retest settings, 125 features were removed, and 517 features
were retained. Second, 76 features were roughly selected using an
independent-samples #-test or Mann—Whitney U test, and 14 low-
correlation features were retained using Pearson or Spearman
correlation analysis. Finally, the ElasticNet regression analysis
determined seven predictive radiomics features (six peritumoral
features and one entire feature). Details of the radiomics features
selection is illustrated in Supplement Table 5, Supplemental
Digital Content 1, http:/links.lww.com/JS9/B281 and supple-
ment Figure 3, and the radscore formula is as follows:

Radscore = — 1.80 + (0.04117 X A_VOI 1+ 10mm

- (0.00698 x A_VOI,,,_10Percentile)

~ (0.04098 x A_VOL,,, Median)

- (0.08565 x A_VOI,,,,_glszm_GrayLevelNonUniformity)
- (0.10042 x P_VOL,,,.,_90Percentile)
-
—(

_glem_Correlation)

0.11367 x P_VOI,,_glem_Imc1)
0.20315 x P_VOI,y,,_glem_MaximumProbability).

Prediction models development and validation

The AUC, accuracy, F1 score, sensitivity, and specificity of each
model are presented in Table 2. The performance of the radiomics
model (AUCs of 0.792, 0.748, and 0.729 in the training external
validation, and prospective cohorts, respectively) was superior to
that of the clinical model (AUCs of 0.660, 0.601, and 0.586,
respectively; DeLong’s test, all P <0.05) but comparable to that of
the radiological model (AUCs of 0.796, 0.826, and 0.726, respec-
tively; DeLong’s test, P=0.196-0.981). The combined model
included four commonly used machine-learning models (LR,
XGBoost, RF, and SVM), with AUCs exceeding 0.796, 0.755 and
0.714 in training, external validation, and prospective cohorts,
respectively. In the training cohort, the XGBoost model out-
performed the RF and SVM models (DeLong’s test, all P <0.05),
but showed no significant difference compared to the LR model
(DeLong’s test, P=0.083). In the external validation cohort and
prospective cohort, there were no significant differences observed
between the XGBoost model and the other three machine-learning
models (DeLong’s test, P=0.059-0.740). However, XGBoost
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oL

Clinical and CT image characteristics of 243 patients with ICC in different cohorts.

Training (n=136)

External validation (n=81)

Prospective (n=26)

Characteristic PNI (=) (n=77) PNI (+) (n=59) PNI (=) (n=39) PNI (+) (n=42) PNI (-) (n=19) PNI (+) (n=7)
Age, mean (SD), year 61.78 (10.08) 60.29 (11.68) 63.77 (9.76) 63.07 (10.67) 55.26 (12.73) 51.71 (9.93)
Sex, 1 (%)

Female 24 (31.2) 29 (49.2) 17 (43.6) 15 (35.7) 5 (26.3) 1(14.3)

Male 53 (68. 30 (50.8) 22 (56.4) 27 (64.3) 14 (73.7) 6 (85.7)
Chronic hepatitis, 1 (%)

Absent 48 (62.3) 54 (91.5) 14 (35.9) 10 (23.8) 7 (36.9) 3(42.9

Present 29 (37.7) 5(8.5) 25 (64.1) 32 (76.2) 12 (63.2) 4 (57.1)
Cirrhosis, 1 (%)

Absent 60 (77.9) 54 (91.5) 32 (82.1) 35 (83.3) 15 (78.9) 7 (100.0)

Present 17 (22.1) 5 (8.5) 7(17.9 7 (16.7) 4(21.1) 0(0.0)
Clonorchis sinensis infestation, n (%)

Absent 64 (83.1) 53 (89.9) 25 (64.1) 29 (69.0) 15 (78.9) 6 (85.7)
Present 13 (16.9) 6(10.2 14 (35.9) 13 (31.0) 421.1) 1(14.3)
AFP, median [IQR], ug/! 2.63 [1.64, 5.11] 2.87 [1.88, 4.60] 3.07 [2.12, 5.26] 2.83 [2.06, 5.64] 2.14 [1.69, 3.90] 3.27 [2.13,5.97]
CEA, median [IQR], ug/! 3.38 [1.67, 8.72] 3.44 [2.42,7.16] 3.43[2.22, 6.70] 3.51[1.89, 7.14] 2.64 [1.73, 5.28] 6.85 [3.16, 7.85]

CA12-5, median [IQR], U/ml
CA19-9, median [IQR], U/ml
ALT, median [IQR], U/
AST, median [IQR], U/l
GGT, median [IQR], U/
NLR, median [IQR]
PLR, median [IQR]
Child-Pugh, n (%)
A
B
T stage, n (%)
-
[\
TNM stage, 1 (%)
-
(=)
Tumour size, median [IQR], cm
Tumour morphology, 1 (%)
Mass forming
Non-mass forming
Tumour number, 1 (%)
Solitary
Multiple
Tumour location, n (%)
Subcapsular
Perihilar
Tumour capsule, 1 (%)
Complete

19.90 [11.60, 75.35]
61.80 [19.80, 465.15]
34.00 [18.50, 58.50]
30.00 [23.45, 51.00]
68.00 [39.25, 149.00]
2.94 [2.05, 5.25]
134.26 [97.21, 169.28]

76 (98.7)
1(1.3)

34 (44.2)
43 (55.9)
4.80 [2.95, 6.85]

40.90 [14.60, 144.19]
220.26 [55.30, 2583.03]
30.00 [16.00, 122.00]
36.00 [22.00, 68.00]
105.50 [44.00, 251.00]
3.18 [2.27, 5.54]
184.27 [113.39, 231.82]

55 (93.2)
46.9)

18 (30.5)
41 (69.5)

4.90 [3.30, 6.50]

16.90 [12.43, 82.53]
50.94 [15.23, 769.30]
23.00 [15.50, 41.50]
23.00 [19.00, 32.00]
59.00 [30.00, 156.50]

2.47 [1.96, 3.40]

131.46 [104.85, 163.22]

38 (97.4)
1(2.6)

32 (82.1)
7(17.9)

27 (69.2)
12 (30.8)
4.90 [3.40, 6.40]

38 (97.4)
1(2.6)

17.52 [5.68, 50.61]
36.40 [13.23, 729.98]
34.00 [16.25, 101.00]
32.00 [20.50, 72.75]
73.00 [37.00, 226.00]

3.01 [2.02, 5.38]

144.23 [121.62, 190.86]

37 (88.1)
5(11.9)

26 (61.9)
16 (38.1)

20 (47.6)
22 (52.4)
420 [3.02, 5.35]

4419 [24.57, 114.54]
113.09 [42.71, 604.32]
21.00 [13.50, 41.00]
27.00 [19.00, 37.00]
58.00 [24.50, 150.50]
3.21[2.05, 5.89]
159.29 [102.32, 186.65]

7 (36.8)
12 (63.2)

6.30 [5.30, 7.90]

19 (100.0)

0.0

48.22 [36.94, 700.26]
719.24 [375.35, 824.90]
24.00 [22.50, 37.50]
34.00 [26.50, 51.50]
129,00 [110.50, 455.00]
3.24 [2.96, 5.840]
15023 [125.98, 206.67]

2 (28.6)
5 (71.4)

9.30 [7.70, 9.40]

7 (100.0)
0 (0.0

4 (57.1)
42,9

w
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Svol

Incomplete/none 44 (57.1) 52 (88.1) 26 (66.7) 33 (78.6) 14 (73.7) 6 (85.7)
Intrahepatic bile duct dilatation, n (%)

Absent 35 (45.5) 6 (10.2) 16 (41.0) 6 (14.3) 12 (63.2) 3(42.9

Present 42 (54.5) 53 (89.9) 23 (59.0) 36 (85.7) 7(36.8) 4 (57.1)
Intrahepatic bile duct calculus, n (%)

Absent 66 (85.7) 32 (54.2) 35(89.7) 25 (59.5) 19 (100.0) 7 (100.0)

Present 11 (14.3) 27 (45.9) 4 (10.3) 17 (40.5) 0 0
Satellite nodules, n (%)

Absent 50 (64.9) 41 (69.5) 25 (64.1) 36 (85.7) 10 (52.6) 2 (28.6)

Present 27 (35.1) 18 (30.5) 14 (35.9) 6 (14.3) 9 (47.4) 5(71.4)
Surface retraction, n (%)

Absent 55 (71.4) 37 (62.7) 29 (74.9) 32(76.2) 13 (68.4) 7 (100.0)

Present 22 (28.6) 22 (37.3) 10 (25.6) 10 (23.8) 6 (31.6) 0
Peritumoral arterial hyperenhancement, 1 (%)

Absent 54 (70.1) 24 (40.7) 19 (48.7) 20 (47.6) 10 (52.6) 3(42.9

Present 23(29.9 35 (59.3) 20 (51.3) 22 (52.4) 9 (47.4) 4 (57.1)
Arterial phase enhancement, 1 (%)

Diffuse hyperenhancement 20 (26.0) 5(8.5) 10 (25.6) 5(11.9) 4(21.1) 0

Peripheral rim 48 (62.3) 23(39.0) 19 (48.7) 7(16.7) 12 (63.2) 3(42.9

Diffuse hypoenhancement 9(11.7) 31 (52.5) 10 (25.6) 30 (71.4) 3(15.8) 4 (57.1)
Dynamic enhancement pattern, 1 (%)

Wash-in and wash-out 16 (20.8) 1(1.7) 9(23.1) 4(9.5) 421.1) 0

Progressive interstitial 53 (68.8) 47 (79.7) 27 (69.2) 28 (66.7) 12 (63.2) 5(71.4)

Persistent hyperenhancement 5 (6.5) 4 (6.9) 2 (5.1) 3(7.1) 2 (10.5) 0

Persistent hypoenhancement 3(3.9 7(11.8) 1(2.6) 7(16.7) 1.3 2 (28.6)

AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CA12-5, cancer antigen 12-5; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CT, computed tomography; GGT, gamma-glutamy! transferase; ICC, intrahepatic
cholangiocarcinoma; IQR, interquartile range; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet to lymphacyte ratio.
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Prediction performance of different models.

Cohort Model AUC (95% CI) Accuracy F1 score Sensitivity Specificity
Training Clinical 0.660 (0.562—0.750) 0.684 0.626 0.610 0.740
Radiological 0.796 (0.721-0.868) 0.765 0.729 0.729 0.792
Radiomic 0.792 (0.717-0.857) 0.750 0.696 0.661 0.818
LR-C 0.855 (0.788-0.911) 0.779 0.769 0.847 0.727
XGBoost-C 0.884 (0.824-0.935) 0.831 0.793 0.746 0.896
RF-C 0.804 (0.734-0.874) 0.779 0.737 0.712 0.831
SVM-C 0.796 (0.718-0.870) 0.787 0.739 0.695 0.857
External validation Clinical 0.601 (0.469-0.720) 0.605 0.673 0.786 0.410
Radiological 0.826 (0.733-0.907) 0.741 0.677 0.524 0.974
Radiomic 0.748 (0.635-0.843) 0.716 0.709 0.667 0.769
LR-C 0.839 (0.742-0.920) 0.802 0.778 0.667 0.949
XGBoost-C 0.831 (0.735-0.915) 0.815 0.810 0.762 0.872
RF-C 0.794 (0.693-0.885) 0.753 0.744 0.690 0.821
SVM-C 0.755 (0.645-0.848) 0.741 0.643 0.846 0.72
Prospective Clinical 0.586 (0.345-0.817) 0.500 0.519 1.000 0.316
Radiological 0.726 (0.479-0.966) 0.846 0.600 0.429 1.000
Radiomic 0.729 (0.477-0.925) 0.692 0.600 0.857 0.632
LR-C 0.850 (0.639—1.000) 0.808 0.706 0.857 0.789
XGBoost-C 0.831 (0.567—1.000) 0.846 0.750 0.857 0.842
RF-C 0.714 (0.495-0.938) 0.769 0.625 0.714 0.789
SVM-C 0.759 (0.534-0.943) 0.615 0.583 1.000 0.474

-G, -combined; AUC, area under the curve; LR, logistic regression; RF, random forest; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting.

exhibited improved accuracy and robustness in all cohorts based on
comprehensive predictive metrics. Therefore, we selected the
XGBoost model as the optimal combined model (AUCs of 0.884,

0.831, and 0.831, respectively), (Figure 3).

To better illustrate the potential clinical value of the combined
model, the incremental differences between the XGBoost com-
bined model and the single model were compared using the NRI,

and the net benefit was determined using DCA. Although there

A Training cohort
Logislic-C === RF-C === SVM-C == XGBoost-C
AUC
F1_score Accuracy
>
Specificity Sensitivity
B Training cohort

08

0.6

04

True Positive Rate

02
I yd CEncal RUC = 0.660(95% €10:362.0.750)
4 Rassogical AUC = 0.796(35% C107210868)
Raomsc AUK = 0732095% CLOT110.857)
— XGBossC AU = 088435 C1O2240835)

00+~

0.2 0.4 0.6

False Positive Rate

08 1.0

External-validation cohort

Logistic-C === RF=-C === SVM-C == XGBoost-C

F1_score

Specificity

AUC

Accuracy

Sensitivity

External-validation cohort

0.8

0.6

04

True Positive Rate

——

02

0.0

—

/

Cinical AUC = 0601(95% C10.469-0.720)

Rasiciogieal AUC = 0.826(95% 010.7330.907)

RagemC AUC = 0.74B(55% CLO.63S-0.843)
—— XGBos-C AUC = 0831(95% CLOTIS-091S)

0.0

0.4 0.6
False Positive Rate

0.8

1.0

Prospective cohort
Logistic-C === RF=C === SVM-C == XGBoost-C
AUC

F1_score . Accuracy
]
Specificity Sensitivity
Prospective cohort
10
08 1 /
/
-]
g 06
v
3
3 ;
& — o
2 04
E
0.2 2
| I 4 CErial AUC = 0.586(95% CL0.345-0.817)
Racsoiogical AUC = 0.726(95% CL0.479-0966)
- Raciomic AUC = 0.729(95% C1.0.477-0.925)
A —— XGBOOSC AUC = 0.831(55% CLOS67.1 000)
00

0.0 0.4

0.6 08 10

False Positive Rate

Figure 3. (A) The radar chart visualization of prediction performance for different machine learning combined models. (B) Receiver operating characteristic (ROC)
curves. Area under the curve (AUC) and 95% Cls of the training, external, and prospective validation cohorts for the XGBoost combined and single models.
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was no statistical difference in AUCs between the XGBoost
combined model and the single model in some cohorts, NIRs
were greater than 0 in the vast majority of cohorts, indicating that
the XGBoost combined model had an improvement, suggesting
that its predictive ability was better (Supplement Table 6,
Supplemental Digital Content 1, http:/links.lww.com/JS9/B281).
DCA graphically demonstrated that the XGBoost combined
model provided a larger net benefit across the range of reasonable
threshold probabilities compared to the single model in all
cohorts (Supplement Figure 4, Supplemental Digital Content 1,
http://links.lww.com/JS9/B281).

XGBoost combined model for SHAP

We calculated the overall and individual Shapley values for the
XGBoost combined model interpretation and clinical application.
In the overall visualization, the SHAP bar chart (Fig. 4A) shows
the weights of the four most important characteristics (radsocre,
PLR, arterial phase enhancement, and tumour location) of the
model. The average Shapley values were 0.38, 0.28, 0.28, and
0.25, respectively, with the radscore having the highest weight.
The SHAP bees-warm plot (Fig. 4B) shows each feature’s positive
or negative effects on the prediction probability in red and blue.
In predicting the probability of positive PNI expression, the rad-
score, tumour location, and PLR had a positive effect, while
arterial phase enhancement had a negative effect. The SHAP
heatmap plot (Fig. 4C) shows each feature’s direction and inten-
sity of influence in all model cases, whereas the SHAP decision
plot (Fig. 4D) shows the impact process of each significant feature
on the final predicted probability. In the individual visualization,
Fig. 5 shows four typical examples of correctly predicted PNI
positivity and negativity. The SHAP effort plot shows each fea-
ture’s positive and negative effects on predictive outcomes in a
single case. The base value represents the basic prediction

probability of the model, and f (x) represents its final prediction
probability.

Prognostic analysis of the models

In institution III, 65 patients were successfully followed up. The
overall RFS rate was 75.4% (49/65 patients). The median RFS
rate of PNI (+) and PNI (-) was 8.0 (range: 2—45 months) and
12.5 months (range: 2-55 months), respectively. Statistically
significant differences in RFS between PNI (+) and PNI (-)
patients were observed (HR, 1.925; 95% CI: 1.070-3.460;
P=0.025) (Fig. 6A). To evaluate the prognostic stratification
value of the combined model, patients were divided into predicted
PNI (-) (XGBoost <0.413) and PNI (+) (XGBoost > 0.413)
groups based on the combined model cut-off value by maximiz-
ing their Youden index values. Kaplan—Meier survival analyses
(Fig. 6B) showed that the combined model could successfully
stratify RFS (HR, 1.933; 95% CI: 1.093-3.418; P=0.021).

Discussion

In this study, we established a PNI radiomics signature based
on 136 arterial phase- and portal venous phase-enhanced CT
images, combined clinical and radiological features to con-
struct a comprehensive model, and compared four commonly
used machine-learning models to determine the optimal per-
formance model for predicting PNI in patients with ICC.
Its performance was successfully verified in external (81
patients), and prospective cohorts (26 patients). Meanwhile,
we compared RFS between PNI from institution III and
attempted to evaluate the predictive value of the combined
model for RFS. Finally, we used SHAP to visualize the entire
model prediction process, from the overall to the individual
levels. These results indicate that the combined model incor-
porating radiomics signature and clinicoradiological features
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Figure 4. Overall visualization of the model through SHAP. (A) The SHAP bar chart shows the weight of the four most important characteristics in the model. (B) The
SHAP bees-warm plot shows the positive or negative effects of each feature on the prediction probability through red and blue colours. (C) The SHAP heatmap plot
shows the direction and intensity of influence for each feature of all cases in the model. (D) The SHAP decision plot shows the impact process of each significant
features on the final predicted probability. PLR, platelet to lymphocyte ratio; SHAP, Shapley Additive explanation.
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two examples of correctly predicted PNI-positive cases. Pathological images were subjected to hematoxylin and eosin staining (x 100). PLR, platelet to lymphocyte

ratio; SHAP, Shapley Additive explanation.

is a feasible tool for evaluating PNI status and can be used for
prognostic stratification, with XGBoost machine learning
being more accurate and robust.

In this multicenter study, heterogeneity was observed in the
datasets from various institutions. To ensure the robustness of the

subsequently established models for the different datasets, we
created two additional designs. First, according to previous studies,
the incidence rate of PNI varies widely, about 21.8-80%/5-23>4,
The incidence rate of PNI in the three institutions in our study was
also unbalanced (38.3%, 54.8%, and 45.8%, respectively), and

1048



Liu et al. International Journal of Surgery (2024)

A Institution Il
1.00 —_
‘ Strata PNi(-) == PNI(+)
075 —L‘
z \
2 L
o L]
3 |
8 L
G 050
5 o B
4 -
&
@ g =
025 |
p=0.025 4
1 "
0.00
0 10 20 30 40 50 60
Time in months
Number at risk
o=t 32 20 11 7 6 1 0
s
@ —&- 33 13 4 2 1 0 0
0 10 20 10 40 50 60
Time in months

B XGB
1.00 -
L Strata lovrmrisk group =~ high-=risk group
L. o1
= T
£ 4
& 050 g B
® | -
2 |
e a
& L
025 1
p=0.021 g TE—
—
|
0.00 1
0 10 20 % 40 50 60

Time in months
Number at risk
L 35 21 11 7 6 1 0

—{' 30 12 4 2 1 0 0

0 10 20 30 40 50 60
Time in months

Strata

Figure 6. Kaplan-Meier curves of relapse-free survival (RFS). (A) Kaplan-Meier curves comparing RFS between perineural invasion (PNI) (+) and PNI (=) groups
from institution Ill (hazard ratio, 1.925; 95% CI: 1.070-3.460; P=0.025). (B) Kaplan-Meier curves comparing RFS between high-risk and low-risk groups from
XGBoost combined model (institution Ill), (hazard ratio, 1.933; 95% Cl: 1.093-3.418; P=0.021).

we merged institutions I and II to ensure the consistency of their
PNI incidence rate with the institution III (43.4%, 45.8%).
Second, the CT scanning models and parameters at each institution
differed. In addition, data heterogeneity was reduced through
voxel resampling and grey-level discretization pre-processing.
We also used the ComBat method to eliminate potential
centre effects. This is a relatively novel method for image
standardization!®*21],

Seven radiomics features, including six peritumoral features
and one entire feature, successfully demonstrated the feasibility of
CT radiomics features to predict PNI pathological information.
Interestingly, seven radiomics features all involved the liver
region surrounding the tumour. This might reflect an aggressive
tendency to invade the tumour capsule and protrude into the
peritumoral non-neoplastic parenchyma. The radiomics features
of the peritumoral region can reflect the tumour microenviron-
ment. Recent studies have demonstrated that neuromodulation is
important in remodelling the immune microenvironment'*2>2¢1,
Meng et al.'*” also found that the PNI-positive status of ICC was
associated with decreased NK cells and increased neutrophils. In
addition, peritumoral radiomics features contain some important
characteristics related to treatment and prognosis, confirmed
in cervical®®! breast®®!, and liver cancers?®*%. Our study
demonstrates the significant importance of radiomics, especially
peritumoral radiomics, in predicting PNI It may help elucidate
whether PNI occurs more frequently in the tumour-periphery
region and whether there is a specific association with
the immune microenvironment and prognosis. These aspects
warrants further investigation in our future studies.

We also evaluated preoperative clinical and radiological fac-
tors. Our results showed that PLR, tumour location, and arterial
phase enhancement were independent variables associated with
the PNI. PLR and NLR are commonly used peripheral blood
inflammatory markers. These inflammatory factors can stimulate
tumour blood vessels formation, leading to a higher invasiveness
of the tumour and being associated with poor prognosis!>'32.,
We speculate that PNI-positive ICC exhibits greater invasiveness,
leading to a more pronounced peripheral inflammatory response.
Our results recapitulate previous findings that the perihilar ICC is

closely correlated with the PNI*3); poor histological differentia-
tion of perihilar ICC, which is more invasive, or the rich dis-
tribution of the nerve plexus around the hepatic portal may
explain this**. Diffuse arterial hypoenhancement is another
important PNI predictor. According to previous studies, tumours
contain abundant fibrous stroma, leading to low enhancement in
the arterial phase, which is associated with more aggressive bio-
logical behaviour and a poor prognosis!®***®! and may provide a
bridge for tumour cell progression and migration, making it more
likely to invade blood vessels and nerves.

Radiomics’ capacity to characterize tumour size and hetero-
geneity may explain why the radiomics model outperformed the
clinical model (DeLong’s test, all P <0.05). However, the radio-
mics model was comparable to the radiological model (DeLong’s
test, P=0.196-0.981), and the main reason for this result may be
that the CT feature-tumour location emerged as an important
independent predictive factor in this study, which was not
reflected by radiomics. This finding emphasizes the com-
plementary nature of radiological features and radiomics, high-
lighting the importance of constructing a combined model for a
comprehensive assessment of PNI status. Our results show that
the combined model is better than a single model. We constructed
four machine-learning models based on radscore and clinicor-
adiological features, and the results showed that the XGBoost
model was more accurate and robust. The satisfactory results of
the prospective validation cohort further demonstrated the
applicability and reliability of the model. We further explored the
prognostic information of the combined model, and preliminary
results of this study indicate that the combined model of PNI can
predict tumour recurrence stratification (HR, 1.933; 95% CIL:
1.093-3.418; P=0.021). Previous studies have also demon-
strated the high predictive power of the XGBoost model®>”-38!,
Recently, interpretable machine learning has solved the “black
box” phenomenon. SHAP, a highly practical machine-learning
interpretation tool, can visualize each feature’s overall or indivi-
dual contribution and promote the clinical application of models,
boosting clinicians’ confidence in using predictive models!'!). The
weights and effects of four independent prediction features in the
combined model we have built are shown through SHAP. Case
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analysis demonstrates the contributions of these four features in
the case and calculates the final Shapley value, thereby obtaining
the final prediction probability and achieving personalized
prediction.

Our study had several limitations. Firstly, this was a retrospective
and prospective study, which may have led to an information
selection bias. Secondly, although this was a multicenter study, the
relatively low incidence of ICC limited the sample size. Therefore, a
larger sample size is required to validate the efficacy of our prediction
models in future studies. Thirdly, the manual segmentation of ICC
tumours was time-consuming; however, ongoing research in auto-
mated segmentation is expected to substantially reduce this workload
in the future. Fourthly, the biological interpretability of radiomics
remains a significant challenge, and further research is necessary to
uncover the underlying connections between radiomics and geno-
mics/proteomics. Finally, despite pathology being considered the gold
standard, ICC can sometimes be indistinguishable from perihilar
cholangiocarcinoma, potentially introducing bias.

Conclusion

We developed and validated a noninvasive and robust combined
model incorporating CT radiomics signature and clinicor-
adiological features based on machine learning to identify
patients’ PNI status and stratify RFS. The SHAP provides a bridge
for personalized prediction, which may aid clinical decision-
making for the individualized treatment of ICC.
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