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We introduce a novel methodology for predicting the time evolution of the
number of individuals in a given country reported to be infected with
SARS-CoV-2. This methodology, which is based on the synergy of explicit
mathematical formulae and deep learning networks, yields algorithms
whose input is only the existing data in the given country of the accumulative
number of individuals who are reported to be infected. The analytical
formulae involve several constant parameters that were determined from the
available data using an error-minimizing algorithm. The same data were
also used for the training of a bidirectional long short-term memory network.
We applied the above methodology to the epidemics in Italy, Spain, France,
Germany, USA and Sweden. The significance of these results for evaluating
the impact of easing the lockdown measures is discussed.
1. Introduction
Thenovel coronavirus SARS-CoV-2 is the third coronavirus to appear in the human
population in the past two decades, following the severe acute respiratory syn-
drome coronavirus SARS-CoV outbreak in 2002 and the Middle East syndrome
coronavirus MERS-CoV outbreak in 2012. SARS-CoV-2 initially emerged in
Wuhan, China, at the end of 2019; after Chinese scientists identified the sequence
of the causative virus [1], this information was immediately shared with the
international community. Furthermore, China took effective measures for the con-
tainment of the spread of this outbreak. This new coronavirus is less pathogenic
than the earlier two coronaviruses [2]. For example, in the first case of pneumonia
caused by this virus reported in USA, a 35-year-old, healthy, individual (who had
travelled in Wuhan) presented in a hospital four days after he experienced dry
cough and low grade fever; he proceeded to develop pneumonia 5 days later, but
quickly recovered [3]. This is the typical disease course foryoungpersons.However,
COVID-19 has a significant mortality rate for elderly persons and for those with a
variety of underlyingmedical conditions, including respiratory and cardiovascular
diseases, aswell as diabetesmellitus. For example, after the identification of an indi-
vidual in a skilled nursing facility in USA infected with SARS-CoV-2, extensive
testing was carried out and 23 days later it was established that 57 of 89 residents
(67%) were infected; as of 3 April, 11 of the infected persons had been hospitalized
(three in the intensive care unit) and 15 haddied (mortality 27%) [4]. A crucial factor
for the high transmissibility of this virus is the high level of SARS-CoV-2 shedding
in the upper respiratory tract even among asymptomatic individuals [5]. As a result
of the above facts, and the lack of appropriate early international measures for the
suppression of its spread, it has now caused a pandemic.

This pandemic represents themost serious global public health threat since the
devastating 1918 H1N1 influenza pandemic. Justifiably, several countries have
adopted draconian measures to combat this threat. The scientific community, in
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Figure 1. SARS-CoV-2 virus epidemics in Italy, Spain, France, Germany, USA and Sweden: total cumulative number of individuals reported to be infected up to 24
May 2020, as a function of days after the day that 500 cases were reported.
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addition to its accelerated efforts to develop an effective treat-
ment and a vaccination, is also playing an important role in
advising policymakers of possible non-pharmacological
approaches to limit the catastrophic impact of the pandemic.
For example, two possible strategies, calledmitigation and sup-
pression, are thoroughlydiscussed in the important paper [6]; in
the early stages of the pandemic, the UK was following mitiga-
tion, but after the publication of this report, is now following
suppression.

In this paper, we present a novel methodology for predict-
ing the time evolution of the cumulative number, N(t), of the
individuals reported to be infected in a given country, by SARS-
CoV-2. This methodology can be used for predicting several
features of the epidemic, such as the time that a plateau will
be reached, as well as the total number of individuals reported
to be infected at that time. Here, the plateau is defined as the time
when the rate of change of the people reported to be infected is 5% of
the maximum rate of infection.

Ourmethodology is based on two different tools: on the use
of appropriate mathematical models and on the employment of
deep learning networks. Regarding the first tool, ourmathemat-
ical models have led to two analytical formulae, called rational
and birational. The advantage of these formulae is that they pro-
vide more accurate predictions for the characteristics of the
plateau than the classical logistic formula often used in epide-
miology. Also, importantly, the birational model may provide
an upper bound ofN(t), and hence it is preferable to the rational
one. However, the rational model can be constructed sooner
than the birational one: the input needed for the rational
model is data until around the time when the maximum rate
of infection occurs, which will be denoted by T (the correspond-
ing point on the curve describingN(t) is known as the inflection
point). On the other hand, the birational model requires data for
severalmore additional days. The effectiveness of the above two
analytical formulae is supported by showing that their predic-
tions are as accurate as those obtained via a deep learning
algorithm; in particular, we employed a bidirectional long
short-term memory (BiLSTM) network, which provides a
powerful generalization of recurrent neural networks.

A prerequisite for the development of any accuratemodel is
the existence of appropriate data. For the pandemic of SARS-
CoV-2 such data are certainly available. For example, there
exist a long series of data from Italy, Spain, France andGermany,
where their SARS-CoV-2 epidemics are approaching or have
passed the plateau; USA and Sweden passed the inflection
point several weeks ago but appear to have a slow approach
towards a plateau. The total reported cases of the above
countries as a function of the number of days after the day
that 500 cases were reported are shown in figure 1. Estimated
rates of change (new reported cases) for Italy, Spain, France
and Germany are plotted in figure 2.

These graphs show that in all countries, except Sweden,
the growth of the epidemics is similar for the first approxi-
mately 10 days after the day that the number of infected
persons reached 500. However, following this period, the be-
haviour of the epidemics is different, presumably reflecting
the type of measures and the time that these measures were
implemented, in each country.

The mathematical modelling of epidemics has a long and
illustrious history; it began with the Kermack–McKendrick
model, introduced in 1927 [7]. In this pioneering paper, the
population is divided into susceptible, infectious and recovered
(removed) sub-populations. Then, specific ordinary differential
equations are formulated characterizing the time evolution of
the functions representing these populations. The above work
was certainly ahead of its time. It was rediscovered in the
1980s, and since then it has provided the basis for a variety of
deterministic models, known as SIR models (rigorous math-
ematical results for such models are derived in [8]). The
generalization of SIR to models involving partial differential
equations is presented in [9]. A simple extension of the standard
SIR model capable of modelling SARS-CoV-2 is presented in
[10]. This model involves six ordinary differential equations
(ODEs) specified by nine parameters. There is an underlying
belief in the mathematical epidemiology community that
these parameters, in principle, can be determined from the epi-
demiological data of the number of infected and diseased
individuals. However, the analysis of the above six ODEs
presented in [10] shows that this is not possible (on the
other hand, it is possible to determine those combinations of
the nine model parameters that specify a fourth-order ODE
characterizing the time evolution of the number of deaths [10]).

In addition to the above formidable obstacle rigorously
derived in [10] concerning the determination of the SIR model
parameters, the number of the individuals infected by SARS-
CoV-2 is obviously different than the number of individuals
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Figure 2. SARS-CoV-2 virus epidemics in Italy, Spain, France and Germany: new reported cases up to 24 May 2020, as a function of days after the day that 500 cases
were reported.
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Figure 3. Ebola outbreak of Guinea in 2014: predicted versus actual for the total cumulative number of individuals reported to be infected with the Ebola virus, as a
function of days after the day that 500 cases were reported. The logistic formula given by equation (1.3) provides an excellent fit for the actual data.
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reported to be infected. These considerationsmake it necessary to
seek a direct approach to modelling the accumulative number
N(t)of individuals reported at time t to be infectedbyaviral epi-
demic. In thiswork,we assume that the functionN(t) satisfies the
ordinary differential equation

dN(t)
dt

¼ a(t) N(t)�N(t)2

Nf

 !
: ð1:1Þ

This is a Riccati equation that is specified by the time-
dependent function α(t) and the constant parameter Nf. This
constant as well as the function α(t) depend on the basic
characteristics of the particular virus and on the cumulative
effect of the variety of different measures taken by the given
country for the prevention of the spread of the viral infection.
The dependence of α(t) on time reflects various time-
dependent factors, including the fact that the effect of the
different measures taken by the government depends on t.
The case of α(t)=constant can be considered as an ‘ideal’ case.
Remarkably, although (1.1) is a nonlinear equation
depending on time-dependent coefficients, it can be solved
in closed form. Its solution depends on α(t), the constant
parameter Nf, and the constant of integration β:

N ¼ Nf

1þ be�t
, t ¼

ð
a(t)dt : ð1:2Þ

In the particular case that α(t) is a constant denoted by κ,
equations (1.2) yield the classical logistic formula

N ¼ Nf

1þ be�kt : ð1:3Þ

Interestingly, this simple formula is adequate for capturing the
evolution N(t) of typical viral epidemics. For example, deter-
mining the three constant parameters κ, β and Nf of equation
(1.3) with data from the Ebola virus epidemic of 2014 in
Guinea, we find the excellent fit depicted in figure 3. Impor-
tantly, the above parameters remain essentially unchanged if
we use a smaller set of data for their determination, which
shows that the logistic model could also have been used for
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Italy SARS-CoV-2 outbreak
prediction from T + 25 (t = 62) trained data points
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Figure 4. Predictions using a smaller training dataset for the cumulative number of reported cases as a function of days after 500 cases were reported for: (a) Italy, (b) Spain,
(c) France and (d ) Germany. The prediction fits were obtained using training data up to T + 25 for each country, which for Italy, Spain, France and Germany, corresponds to
t = 62 (T = 37), t = 53 (T = 28), t = 57 (T = 32) and t = 55 (T = 30), respectively. The inflection point T in ‘T + 25’was calculated by training the logistic function with data
up to 24 May 2020. The models were trained with the data shown in light blue, and then were used to predict the remaining data shown in red.
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predictive purposes (throughout this paper the unknown par-
ameters are determined by employing an error-minimizing
algorithm described in §2.1). The cases of Liberia and Sierra
Leone are very similar to the case of Guinea (the relevant
data were obtained from the official site of the Centers for Dis-
ease Control and Prevention (CDC); they are official World
Health Organization (WHO) data)1.

As it will be shown in §3, the simple formula (1.3) also
provides a good fit of the SARS-CoV-2 pandemic. However,
the long series of existing data of the epidemics of Italy,
Spain, France and Germany show that the logistic model
does not provide accurate predictions. For example, figure 4a
shows that if we use a subset of the existing data of the epi-
demic in Italy for the determination of the parameters of the
logistic model, and then compare the resulting graph of N(t)
with the remaining available data, we find that the logistic
model underestimates N(t); in other words, the logistic
model provides a lower bound of the actual N(t). This raises
the following natural question: is it possible to find a formula
yielding more accurate predictions than the logistic one?
After experimenting with more than 50 different forms of
α(t), we have obtained an affirmative answer to the above
question, by introducing two novel formulae which will be
referred to as rational and birational. In the former case, the
exponential function appearing in equation (1.3) is replaced
by an algebraic function; in the birational formula, the
values of the parameters specifying this algebraic function
change, depending on whether t is larger or smaller than a
parameter denoted by X.
In this work, we implemented the following tasks associ-
ated with the epidemics in Italy, Spain, France and Germany:
(i) we determined the parameters of the logistic, rational and
birational formulae, by training the above formulae using
only a subset of the data, namely data up to T + 25 (the inflec-
tion point T was determined by fitting the logistic model over
the whole dataset of each country, namely up to 24 May
2020). By plotting the prediction curves of these formulae
against the actual data up to 24 May 2020, it becomes evident
that first, the logistic formula provides a lower bound, and
second, that the rational and birational formulae generate
more accurate predictions. Furthermore, for the cases of Italy,
the birational formula generates a curve which is above the
curve of the data, suggesting that the birational modelmay pro-
vide an upper bound. (ii) We established that the rational and
birational formulae have similar predicting performance with
a far more complicated deep learning network, which does
not depend on the assumption of the validity of equation
(1.1). This finding highlights the suitability of the proposed
mathematical models for predictive purposes. (iii) We com-
puted the time of the plateau as well as the value of N at the
plateau using the logistic, the rational and the birational
formulae, as well as the BiLSTM network.

In particular, the birational model yielded the following
estimates for the dates that the plateau will be reached, as
well as for the number of individuals reported to be infected
with SARS-CoV-2 when this occurs: Italy, plateau on 11 June
2020, with 242 315 individuals reported to be infected (as
noted above, the estimate for Italy may be an upper
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bound); Spain, plateau on 17 May 2020, with 226 573 reported
individuals; France, plateau on 21 May 2020, with 138 873
reported individuals; Germany, plateau on 23 May 2020,
with 174 356 individuals.

According to the distinguished philosopher of science
Karl Popper, a necessary requirement for the validity of a
theory is that it is falsifiable. This notion suggests that sup-
portive evidence for the validity of our approach can be
provided by presenting cases where our models fail. For
this purpose, we have investigated the epidemics of
Sweden and of USA. In the case of Sweden, only partial
restrictions were applied instead of strict lockdown measures,
whereas the different measures adopted by different states
makes USA very difficult to model. Indeed, for the epidemics
in these two countries, after using a subset of the available
data to train the three models and the neural network, we
could not obtain curves that were close to the curves of the
remaining data. Thus, for USA and Sweden, we have pre-
sented the parameters determined with data up to 24 May
2020, with the understanding that we do not expect neither
the associated analytical formulae nor the BiLSTM network
to provide accurate predictions (for these two countries the
following numbers provide rather inaccurate lower bounds:
USA, plateau on 28 August 2020, with 2 264 338 reported
individuals; Sweden, plateau on 9 October 2020, with
57 540 reported individuals).
2. The basic model
Let F denote the relative infectivity of the epidemic, defined by

F ¼ dN=dt
N

: ð2:1Þ

We assume that F is a linear, time-dependent function of N. Let
the constant Nf denote the final cumulative number of indi-
viduals reported to be infected. Taking into consideration
that F vanishes when N=Nf, we have

F ¼ a(t) 1� N
Nf

� �
: ð2:2Þ

Inserting equation (2.2) in the definition (2.1) we find the
basic equation modelling this situation, namely the Riccati
equation (1.1).

The particular case of a Riccati equation with constant coef-
ficients (corresponding to the case that α(t) is constant) has
appeared in a plethora of dynamic processes, including the
modelling of epidemics. Indeed, in the classical SIR model
mentioned in the introduction, if one assumes that R = 0,
then after replacing in the first-order differential equation sat-
isfied by I, S with I-T, where the constant T denotes the total
population, one finds a Riccati equation of the form (1.3),
where α(t) is replaced by a constant. Another notable example
of the appearance of a constant coefficients Riccati equation in
the mathematical modelling of infectious processes can be
found in the paper of Anderson and May [11]; this work
describes the dynamic interaction of parasites with their host
environment. In this paper, whose impact in the field of math-
ematical biology was far reaching [12], a Riccati equation is
formulated that involves a single constant parameter2.

In order to solve the Riccati equation (1.1), we first use the
independent change of variables specified by the second of
equations (1.2). This gives rise to an equation similar to
equation (1.1), where α is replaced by 1 and t by τ. This con-
stant coefficients Riccati equation can be linearized via the
change of the dependent variable specified by

N ¼ dy=dt
y

: ð2:3Þ

Indeed, substituting equation (2.3) into the above constant
coefficients Riccati equation and simplifying, we find

d2y
d2t

¼ dy
dt

:

Solving this equation, substituting the resulting expression in
equation (2.3), and simplifying, we find the first expression in
equation (1.2).
We expect that the validity of the above model improves as t
increases. Thus, we avoid evaluating the first of equations
(1.2) at τ =0 to express β in terms of Nf and N at τ = 0. Instead
we determine β by matching the expression obtained from
the first of equations (1.2) with the actual data.
Important information provided by the above model is the
time Twhen the maximum rate of infection is achieved: com-
puting the second derivative of the right-hand side of the first
of equations (1.2) and requiring that the resulting expression
vanishes, we find that T satisfies the equation

e
Ð T

0
a(t) dt ¼ b

a2 þ a0

a2 � a0

� �
t¼T

, ð2:4Þ

where throughout this paper prime denoted differentiation
with respect to time. Using the above expression in the expo-
nential occurring in the expressions for N and N0 evaluated at
t = T, we find.

N(T) ¼ Nf
1
2
þ a0

a

� �
t¼T

� �
,

N0(T) ¼ Nf

4
1
a

a2 � a0

a2 þ a0

� �� �
t¼T

: ð2:5Þ

For the logistic model we have α(t) = κ. Thus, equations (2.4)
and (2.5) yield

T ¼ ln (b)
k

, N(T) ¼ Nf

2
, N0(T) ¼ Nf

4k
: ð2:6Þ

Taking into consideration that the logistic formula is a good
approximation of the relevant dynamic process, the above
value of T provides an approximate value for the time that
the inflection point is reached.
The rational and birational models are defined, respectively,
as follows:

N ¼ Nf

1þ b(1þ dt)�k , ð2:7Þ

and

N ¼

c

1þ b(1þ dt)�k , t � X

c

1þ b(1þ dX)�k �
c1

1þ b1(1þ d1X)
�k1

:

þ c1
1þ b1(1þ d1t)

�k1
, t . X,

8>>>>>><
>>>>>>:

ð2:8Þ

where X is a constant parameter in the vicinity of T.
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Letting in equation (2.8) t ! 1, we find

Nf ¼ c

1þ b(1þ dX)�k �
c1

1þ b1(1þ d1X)
�k1

þ c1: ð2:9Þ

By comparing equations (2.7) and (2.8) with the first of
equations (1.2), it is straightforward to determine α(t) for
both the rational and the birational models: for the rational
model

a(t) ¼ kd
1þ kt

,

which justifies the terminology ‘rational’. For the birational
model

a(t) ¼
kd

1þ dt
, t � X

k1d1

1þ d1t
1

1þ (1� ðc1=Nf Þ)(1þ d1t)
�k1

, t . X:

8>><
>>:

If b, c, d, k are close to b1, c1, d1, k1, thenNf is close to c1, and hence
the value of α(t) for t > X is close to the value of α(t) for t <X.

Computing the second derivative of the right-hand side
of equation (2.7) and equating the resulting expression to
zero, we find that the value of T for the rational model is
characterized by the equation

(1þ dT)k ¼ b
k � 1
k þ 1

� �
: ð2:10Þ

Similarly, for the birational model where the parameters b, d,
k are replaced with b1, d1, k1, respectively.
Replacing the rational function in the expressions for N and of
its derivative with the rational function of equation (2.10), we
find that for the rational model

N(T) ¼ Nf

2
1� 1

k

� �
, N0(T) ¼ Nf

d
4k

k2 � 1
1þ dT

: ð2:11Þ

Similar expressions are valid for the birational model.
The birational model is based on the natural assumption

that the parameters of the rational function specifying the
function N(t) are different before and after T. It is quite satis-
fying that this very simple model yields the best fits among
more than 50 models that were tested. Included in these
models were several ‘fractal’ models; in the simplest such
model, the exponent kt in the logistic formula was replaced
with k × tμ. Among other models investigated was the
generalized logistic formula

N(t) ¼ Nl þ Nu �Nl

1þ e�k(t�T) ,

where Nl and Nu are the upper and lower values of the rel-
evant curve. This expression provides the general solution
of the time-independent ODE

dN
dt

¼ k
Nu �Nl

(N �Nl)(Nu �N):

It turns out that this equation is actually equivalent with the
time-dependent ODE (1.1), where

Nf ¼ Nu, a(t) ¼ k
1þ ðNl=NuÞe�k(t�T) :

In other words, the generalized logistic formula is the general
solution of equation (1.1) with the above choices of Nf and
α(t).
2.1. Optimization method
We obtained the time-series data for the coronavirus disease
(COVID-19) for the counties studies here from the official site
of the European Centre for Disease Prevention and Control.3

We arranged the data in the form of individuals N reported to
be infected over time measured in days, after the day that the
number of cases reached 500.

All evaluated formulae were fitted using the simplex algor-
ithm, which is an iterative procedure that does not need
information regarding the derivative of the function under
consideration. The algorithm creates a ‘random’ simplex of
n + 1 points, where n is the number of the model parameters
that need to be estimated. The simplex changes iteratively by
reflection, expansion and contraction steps until it finds the
model parameters that minimize the given likelihood function.
The constrained variation of the simplex algorithm [13,14]
available in MATLAB® was used for all tested formulae; an
L1-norm was employed in the likelihood function to improve
robustness [15]. The simplex algorithm is particularly effective
for cases where the gradient of the likelihood functions is not
easy to calculate. Random parameter initializations were used
to avoid local minima. The simplex algorithm was chosen
because it performed better than certain nonlinear least-
squares curve fitting algorithms evaluated in this work,
namely the Levenberg–Marquardt [16] and the trust-region-
reflective [17] algorithms.

The stability of the fitting procedure was established
using the following simple criterion: different fitting attempts
based on the use of a fixed number of data points must yield
curves which have the same form beyond the above fixed
number of points. The fitting accuracy of each model was
evaluated by fitting the associated formula on all the avail-
able data in a specified set. The relevant parameters
specifying the logistic, rational and birational formula are
given in table 1. For computing the inflection point T, we
require the time that the derivative of N becomes maximum.
For this purpose, we used the model with the best fit in the
neighbourhood of the inflection point, which in most cases
turned out to be the birational model. For all countries pre-
sented for the fitting of the birational model we used X= T.
3. Deep learning
Machine learning and in particular deep learning have had a
transformative impact in many areas of science and technol-
ogy; furthermore, they have begun to have a significant
impact in medicine [18]. The first important relevant appli-
cations of neural networks were related to the employment
of artificial neural networks (ANN) with one hidden layer
and a finite number of neurons. According to the universal
approximation theorem [19], by estimating the weights of
these neurons, ANN can learn any nonlinear function; but
this may require a large number of neurons. In order to fit
complex multivariate functions, such as those required to
model the number of individuals reported to be infected by
SARS-CoV-2, deeper neural networks (many hidden layers)
may provide a more efficient alternative. Each hidden layer
of an ANN has its own weights and acts independently,
hence ANN cannot capture sequential information of time
series, such as the cumulative number of individuals reported
to be infected. On the other hand, this can be easily achieved
using recurrent neural networks (RNN), where the current



Table 1. Model parameters and plateau characteristics for the logistic, rational, birational models as well as for the BiLSTM network, for the SARS-CoV-2
epidemics of Italy, Spain, France and Germany. For completeness, the epidemics of USA and Sweden are also included, although for these cases all three
analytical formulae and the deep learning network are not able to provide accurate predictions.

Italy Spain France Germany USA Sweden

logistic model

Nf 197 140 202 595 128 894 156 381 1 596 647 36 289

k 0.1176 0.1663 0.1420 0.1450 0.0899 0.0721

β 50.7112 76.6129 70.2454 59.7248 56.9872 26.3107

T 33 26 30 28 45 45

plateau (days) 70 54 62 58 95 107

plateau (cases) 194 511 200 661 127 544 154 334 1 579 077 35 868

R2 0.9952 0.9965 0.9981 0.9969 0.9935 0.9968

RMSE 4999 4689 2112 3312 45 299 602

rational model

Nf 240 309 230 987 141 032 170 124 2 143 854 56 472

k 3.1823 3.9391 5.3226 5.3035 3.0843 2.7294

b 6257.6849 1999.5016 433.2972 399.9912 3079.8451 183.0564

d 0.39307 0.21195 0.06882 0.07179 0.23336 0.09069

plateau (days) 101 72 75 68 157 210

plateau (cases) 229 472 223 414 137 306 164 659 2 056 370 53 724

R2 0.9994 0.9996 0.9996 0.9994 0.9988 0.9996

RMSE 1761 1583 940 1499 19 331 214

birational model

c 158 859 191 523 142 712 180 587 1 588 919 38 949

k 8.9480 6.6694 7.1566 4.5688 3.8026 4.1501

b 285.1039 542.1584 277.3544 871.7813 4013.6717 87.6494

d 0.03068 0.06346 0.03896 0.11310 0.17924 0.04060

c1 221 318 224 369 126 839 206 283 2 113 840 58 016

k1 4.5998 4.4835 6.1164 3.4905 3.1932 3.6924

b1 142.7772 287.9202 297.1107 445.5426 2899.4413 57.7578

d1 0.04595 0.08890 0.04669 0.16854 0.17723 0.02931

plateau (days) 105 73 76 78 173 211

plateau (cases) 242 315 226 573 138 873 174 356 2 264 338 57 540

R2 0.9999 0.9998 0.9997 0.9997 0.9996 0.9997

RMSE 538 1022 821 1128 10 754 178

BiLSTM Network

plateau (days) 92 75 71 75 125 105

plateau (cases) 232 072 233 641 139 383 175 357 2 072 246 46 111

R2 0.9999 0.9993 0.9993 0.9998 0.9997 0.9999

RMSE 764 4069 1578 807 23 397 490
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state of the hidden layers ht at each time step t is estimated via
the process of combining the current input xt with the
previous state of the hidden layers ht−1:

ht ¼ sf(whhht�1 þ wxhxt):

In this equation, σ is the activation function, whh are the
weights of the recurrent neurons, and wxh are the weights
of the input neurons. The final state of the hidden layers is
estimated after the network goes, sequentially, through all
the inputs of the time series. The prediction of the RNN is
given by yt ¼ whyht, where why are the weights of the output
neurons.

A common problem with both ANN and RNN, particu-
larly when many hidden layers are used, is the vanishing
or the exploding of the gradient in the backpropagation
algorithm occurring during the process of updating the
weights. Unlike ANN, RNN can capture sequential infor-
mation, but cannot learn from long-term dependencies.
Hochreiter & Schmidhuber introduced in [20] the long



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200494

8
short-term memory (LSTM) networks that can capture long-
term dependencies and at the same time avoid the problem
of vanishing/exploding gradients. LSTM are a type of
RNN, where a memory cell maintains its state over time;
they use gates to decide whether to flow information in
(keep) or out (forget) of the memory cell. The first step of
LSTM decides which information to ‘forget’ from a memory
cell state; this step and can be expressed in the form

ft ¼ s(wf
hhht�1 þ wf

hxxt þ bf ),

where σ is an activation function (usually sigmoid) to output a
value ft [ [0,1]. For ft = 1, it flows all information in the
memory cell Ct−1, whereas for ft = 0 it forgets all information.
The second step involves the input gates, denoted by int and
Ĉt, respectively, which synergistically decide which infor-
mation will be added in the memory cell. First, the input is
restricted between −1 and 1 using the tanh layer,
Ĉt ¼ tanh(wC

hhht�1 þ wC
hxxt þ bC). Then, Ĉt is multiplied by the

input gate int to decide the values to be added in the current
state of the memory cell to replace the ones the network forgot:

int ¼ s(win
hhht�1 þ win

hxxt þ bin):

The current state Ct aggregates the old memory state via the
forget gate, Ct ¼ Ct�1 � ft þ Ĉt � int. In the final step, the
output gate decides which information of the cell state to
output:

outt ¼ s(wout
hh ht�1 þ wout

hx xt þ bout):

The final output of the cell memory is given by
ht ¼ tan h(Ct) �outt.

Graves & Schmidhuber introduced in [21] the BiLSTM net-
works; this development was motivated by the bidirectional
RNN networks, introduced earlier by Schuster & Paliwal in
[22], where the training runs forwards and backwards using
two separate RNN. Consequently, the main difference is the
training sequence: in the LSTM, the sequence runs backwards,
preserving information from the future, whereas in the bidir-
ectional LSTM training, the sequence runs backward and
forward preserving information from both the past and the
future. The resulting forward and backward hidden values
of the bidirectional LSTM, namely hf and hb respectively, are
concatenated giving the final output ht= (hf,hb). The bidirec-
tional LSTM are well suited for time-series prediction and
can potentially completely capture the contextual information
of the time series.
3.1. Implementation
Several machine algorithms have been validated for the pur-
poses of this study such as ANN, RNN, LSTM and BiLSTM.
The BiLSTM network was chosen based on fitting perform-
ance and prediction accuracy. The relevant model was
implemented in Matlab; it consisted of two Bi-LSTM layers
and a fully connected layer, using the ReLu activation func-
tion. The model was optimized by the algorithm of
adaptive learning rate [23], using as a loss function the root
mean square error (plus an L2 regularization term to avoid
overfitting) at learning rate 0.01. The batch size used was
1. Dropout was included in the bidirectional LSTM layer,
and the proportion of disconnection was 0.1. Each model
was optimized by training for 2000 epochs. Hyperparameters
such as the number of hidden units and the regularization
factor of the loss function were optimized using, as part of
the training, a grid search approach for each network.
4. Results
Table 1 presents the parameters for the three different models
as applied to Italy, Spain, France, Germany, USA and
Sweden. This table also presents the fitting accuracy and pla-
teau characteristics for all the aforementioned countries for all
three mathematical models, as well as for the BiLSTM predic-
tion. For Italy, Spain, France and Germany, only a subset of
the available data were trained, namely data up to T + 25.
In this case, T corresponds to the inflection point of the com-
plete dataset, namely data up to 24 May 2020. The constant T,
where the inflection point occurs, was determined by fitting
the logistic model in the complete dataset (the other models
yield similar results). For Italy, Spain, France and Germany,
the inflection point occurred at t = 37, t = 28, t = 32 and
t = 30, respectively. The inflection point for USA and
Sweden, which was also determined from the complete set
of data (up to 24 May 2020), occurred at t = 45 for both
countries; for USA and Sweden this corresponds to 22 and
26 April 2020, respectively.

Incidentally, if one uses data only up to T + 25, then the
inflection point is slightly different than the one computed
from all the data (up to 24 May 2020): for Italy, Spain,
France and Germany, it is found to occur at t = 33, t = 26,
t = 30 and t = 28, respectively (table 1). This corresponds to
31 March, 31 March, 5 April and 3 April 2020, respectively.

Figure 4 presents the predictions made by the analytical
formulae and the deep learning network versus the actual
data for the cumulative number of reported cases due to
SARS-CoV-2, as a function of days after 500 cases were
reported, for the epidemics in Italy, Spain, France and
Germany. The parameters of the analytical formulae and
for the deep learning network were obtained using a smaller
set of the available data for each country, namely up to T + 25,
which for Italy, Spain, France and Germany, corresponds to
t = 62, t = 53, t = 57 and t = 55, respectively. It is important to
emphasize that each of the three mathematical models,
namely equations (1.3), (2.7), and (2.8), as well as the deep
learning model, can fit the trained data quite well (see R2 in
table 1). However, the predictive capacity of these formulae
is not the same. This is best illustrated by comparing the pre-
dictive curves of each model with the remaining available
data up to 24 May 2020 (in red). For the epidemic of Italy
(figure 4a), the logistic model predicts a plateau on 7 May
2020 (70 days after the day that 500 cases were reported)
with 194 511 individuals reported to be infected by SARS-
CoV-2; the rational model predicts a plateau on 7 June 2020
(day 101) with 229 472 reported individuals; the birational
model predicts a plateau on 11 June 2020 (day 105) with
242 315 reported individuals and the BiLSTM network pre-
dicts a plateau on 29 May 2020 (day 92) with 232 072
reported individuals. Clearly, the logistic model already
underestimates the actual plateau day and the number of
reported cases, since on 24 May 2020 (last day of acquired
data for this study) the number of reported cases for Italy
had reached 229 327.

For the epidemic of Spain (figure 4b), the logistic model
predicts a plateau on 28 April 2020 (day 54 after the day
that 500 cases were reported) with 200 661 reported
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individuals; the rational model predicts a plateau on 16 May
2020 (day 72) with 223 414 reported individuals; the bira-
tional model predicts a plateau on 17 May 2020 (day 73)
with 226 573 reported individuals and the BiLSTM network
predicts a plateau on 19 May 2020 (day 75) with 233 641
reported individuals. Again, the logistic model clearly under-
estimates the actual plateau day and the number of reported
cases, since on 24 May 2020, the number of reported cases for
Spain had reached 235 772.

For the epidemic of France (figure 4c), the logistic model
predicts a plateau on 7 May 2020 (day 62 after the day that
500 cases were reported) with 127 544 reported cases; the
rational model predicts a plateau on 20 May 2020 (day 75)
with 137 306 reported cases; the birational model predicts a
plateau on 21 May 2020 (day 76) with 138 873 reported
cases and the BiLSTM network predicts a plateau on 16
May 2020 (day 71) with 139 383 reported cases. Again, the
logistic model clearly underestimates the actual plateau day
and the number of reported cases, since on 24 May 2020,
the number of reported cases for France had reached 144 806.

For the epidemic of Germany (figure 4d ), the logistic
model predicts a plateau on 3 May 2020 (day 58 after the
day that 500 cases were reported) with 154 334 reported
cases; the rational model predicts a plateau on 13 May 2020
(day 68) with 164 659 reported cases; the birational model
predicts a plateau on 23 May 2020 (day 78) with 174 356
reported cases and the BiLSTM network predicts a plateau
on 20 May 2020 (day 75) with 175 357 reported cases.
Again, the logistic model clearly underestimates the actual
plateau day and the number of reported cases, since on 24
May 2020, the number of reported cases for Germany had
reached 178 281.

For completeness, we also present the time of the plateau
and the corresponding value of N for the epidemics of USA
and Sweden, although, as stated in the introduction, neither
the explicit formulae nor the deep learning network provide
accurate predictions. As stated earlier, in these cases, the three
explicit formulae and the BiLSTM network were trained with
data up to 24 May 2020. For the epidemic of USA the logistic
model predicts a plateau on 11 June 2020 (day 95 after the
day that 500 cases were reported) with 1 579 077 reported
cases; the rational model predicts a plateau on 12 August
2020 (day 157) with 2,056,370 reported cases; the birational
model predicts a plateau on 28 August 2020 (day 173) with 2
264 338 reported cases and the BiLSTM network predicts a pla-
teau on 11 July 2020 (day 125) with 2 072 246 reported cases.

For the epidemic of Sweden, the logistic model predicts a
plateau on 27 June 2020 (day 107 after the day that 500 cases
were reported) with 35 868 reported cases; the rational model
predicts a plateau on 8 October 2020 (day 210) with 53 724
reported cases; the birational model predicts a plateau on 9
October 2020 (day 211) with 57 540 reported cases and the
BiLSTM network predicts a plateau on 25 June 2020 (day
105) with 46 111 reported cases.
5. Conclusion
Several useful models elucidating aspect of the COVID-19 pan-
demic have already appeared in the literature; they include
the following: (i) a model for simulating the transmissibility
of SARS-CoV-2 from bats to humans is presented in [24].
(ii) The calculations of exponential growth and maximum
likelihood are used in [25] to determine the reproductive
number of SARS-CoV-2 and SARS in China. (iii) The formu-
lation of a susceptible–infected–recovered–dead (SIDR)
model, together with the knowledge of data from China in
the period 11 January to 10 February 2020, is used in [26] to
estimate the associated per day infection mortality and recov-
ery rates. (iv) In [27], by combining a stochastic model for
the SARS-CoV-2 infection with the knowledge of data from
China during January and February 2020, the probability
that newly introduced cases might generate new outbreaks is
calculated. (v) In [28], an SIDR model supplemented with
mean-field kinetics is used to calculate the time and peak of
confirmed infected individuals in China, Italy and France.
(vi) In [29], the effect of social distancing was studied by
using a model where the population was divided into those
who are asymptomatic or have mild symptoms (95.6%),
those who are hospitalized but do not require critical care
(3.08%), and individuals who require critical care (1.32%); sea-
sonal variations were incorporated by allowing the basic
reproduction number to be a time-dependent function following
a cosine curve that peaks in early December.

The above references, as well as the references [30–39] that
also contain interesting results, represent only a tiny fraction
of more than 3000 publications that have appeared in the last
four months in arXiv, medRxiv and bioRxiv.

Here, we have modelled the cumulative number N(t) of
persons reported to be infected by SARS-CoV-2 in a given
country as a function of time, in terms of the Riccati equation
(1.1). In addition, we have introduced a particular deep learn-
ing network which is capable of predicting accurately the
time evolution of N.

Regarding equation (1.1), it is noted that although it is a
nonlinear ODE containing time-dependent coefficients, it
was solved in closed form, yielding (1.2). For appropriately
chosen functions α(t), the first of equations (1.2) provides a
flexible generalization of the classical logistic formula that
has been employed in a great variety of applications, includ-
ing the modelling of infectious processes. The fact that α is
now a function of t has important implications. In particular,
it made it possible to construct the rational and birational for-
mulae which provide more accurate predictions than the
logistic formula.

The construction of the exact solution of equation (1.1),
given by equations (1.2), has the following consequences:
(i) for the case that an infection that has been stabilized,
any of the three analytical formulae presented here can be
used for the characterisation of the evolution of the cumulat-
ive number of persons reported to be infected. These
expressions can be used for a variety of purposes. (ii) More
importantly, the rational and birational models can be used
for predictive purposes, providing accurate estimates for the
characteristics of the plateau. (iii) Our approach has the
capacity to provide increasingly accurate predictions: as soon
as the epidemic in a given country passes the timeT, the rational
model can be used; furthermore,when the sigmoidal part of the
curve is approached, the rational model can be supplemented
with the birational model (a simple criterion of checking
whether the birational model can be used is given in §2.1).
Also, as more data become available, the parameters of the
rational and of the birational models can be re-evaluated; this
will yield better predictions. (iv) The Riccati equation (1.1)
together with the flexibility of the arbitrariness of α(t), offer
the possibility of deciphering basic physiological mechanisms



a
(t

)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

(a) (b)

Italy Spain France Germany USA SwedenItaly Spain France Germany USA Sweden

1.00.90.80.70.60.5

N(t)/Nf

a (t) versus N(t)/Nf  a (t) versus t

0.40.30.20.10 1009080706050

t

a
(t

)

403020100

Figure 5. Plot of α(t) for the SARS-CoV-2 virus infection for Italy, Spain, France, Germany, USA and Sweden as a function of: (a) N(t)/Nf and (b) t. After t around T-
7, α(t) for all of the above countries is the same linear function of N(t).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200494

10
dictating the evolution ofN(t). In particular, following the tran-
sient stage of the epidemic, it is envisioned that α(t) becomes a
function ofN instead of a function of t. By plotting α in terms of
N it is possible to scrutinize a posteriori such a relationship: we
find that after t approximately equal to T− 7 the relation
between α and N/Nf is, remarkably, linear, and almost identical
for all studied countries, figure 5.

How can the success of the simple mathematical model
expressed by (1.1) be explained? Apparently, the constant Nf

defining equation (1.1), the constant of integration β entering
the associated solution, and the constant parameters specifying
the function α(t), capture the essence of the underlying time
evolution process. This suggests that the cumulative effects
of a variety of different mechanisms express themselves via
the few parameters entering in the explicit solution formulae
(1.3), (2.7) and (2.8). In this connection, it is worth recalling
that the single parameter characterizing the Riccati equation
of the celebrated Anderson–May model mentioned earlier rep-
resents the cumulative effect of different biological mechanisms4.

An additional partial explanation of the success of equation
(1.1) is that the implementation of the formulae obtained via
(1.1) for predicting the number of individuals infected by
SARS-CoV-2 shares the same philosophy employed by the
powerful technique of machine learning. Indeed, the explicit
formulae (1.3), (2.7) and (2.8) used in this work can be thought
of as ‘algorithms’, where given t, they predict N; these algor-
ithms are characterized by several parameters, which are
fixed by the ‘knowledge’ of the data. Thus, the more data are
available, the better this algorithm ‘learns’ how to make accu-
rate predictions. Hence, choosing these parameters by
requiring that the analytical solution matches the data curve
is consistent with the approach of machine learning.

An important part of thiswork is the presentationof detailed
comparisons between the predictions of the analytical formulae
and those obtained via a BiLSTM network. As discussed in the
results section, the rational and birational formulae yield similar
predictions with those of the above network.

As noted in the introduction, it is not possible using the
epidemiological data of infected and deceased individuals
to determine the parameters of SIR type models that specify
the time evolution of the number of individuals infected by a
given viral infection. On the other hand, assuming that the
number of individuals reported to be infected is a time-invariant
percentage of the actual number of infected persons, the analytical
formulae as well as the deep learning algorithm discussed
here can be used to predict the time evolution of the
number of infected individuals. This information can be
useful for a variety of purposes. In particular, following the
expected decline of the ‘first wave’ of infections, several
countries have begun easing the lockdown measures. This
was vital, not only for economical but also for health con-
siderations. Indeed, the psychological impact on the
population at large of the current situation is substantial
[40]; furthermore, this is expected to worsen, especially due
to the effect of the post-traumatic disorder. Under the assump-
tion that the characteristics of the virus remains unchanged,
SIR type models predict that in the post-lockdown period
the number of reported infected individuals as well as the
number of deaths will begin to grow [10,41,42]. At this
stage, the predictions made here and in [43] will cease to be
accurate. However, these works are still very valuable: they
can be used to compute the additional number of reported
infected individuals and deaths caused by easing the lock-
down measures. If these numbers are very small, it would
mean that the assumption made in the SIR type models
regarding the time invariance of the virus characteristic is
no longer valid, and that the virus has mutated to one which
is less contagious and less virulent. In this connection, we
note that France begun easing the lockdown restriction on
11 May thus, since this effect will not be evident for approxi-
mately two weeks, it would not have been detected by 24
May 2020, which was the last day of our analysis. However,
Germany begun easing the measures on 15 April (t = 40)
and accelerated further this process on 30 April (t = 55)
when, for example, playgrounds and churches were reo-
pened; furthermore, all state-wide curfews were lifted on
9 May (t = 64). The fact that for the epidemic in Germany,
our model predicts the situation quite well until at least 24
May, implies that the partial easing of the measures did not
have any impact on the number of reported infected. This
is most encouraging, pointing towards the possibility of the
emergence of a less contagious virus.

We conclude with some general remarks: (i) taking into
consideration the ubiquitous use of the logistic formula, and
the fact that equations (2.7) and (2.8) provide variations of
this formula, the rational and birational formulae may be
useful for the modelling of a variety of phenomena. (ii) The
fact that two different viral infections, namely SARS-CoV-2
and Ebola, are modelled by the same ODE, suggests that the
Riccati equation (1.1) analysed here may play a generic role
in the modelling of aspects of viral epidemics. (iii) The cele-
brated Burgers’ equation, which is an evolution partial
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differential equation combining the generic effects of diffusion
and nonlinear convection, admits a travelling wave solution
that satisfies the Riccati equation (1.1) with α(t) a constant
(this constant specifies the speed of propagation of the travel-
ling wave, whereas Nf is a free parameter appearing in
Burgers’ equation). Hence, the mathematical analysis pre-
sented in this work may also be relevant for some of the
phenomena modelled by appropriate generalizations of the
Burgers’ equation.
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Endnotes
1https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/
case-counts.html.
2It should be noted that certain optimal features of the dynamics of
the SIR model are also characterized by a Riccati equation that
involves three time-dependent functions [12].
3https://www.ecdc.europa.eu/en/geographical-distribution-2019-
ncov-cases.
4It is shown in [11] that this constant can be expressed in terms of the
population size parameterH, the mortality rate of uninfected hosts par-
ameter b, the mortality rate of infected hosts parameter α + b, and the
rate atwhich infected hosts recover andbecome susceptible parameter γ.
Note added in proof
Figure 1 of the electronic supplementary material presents the updated
curves of figures 4 for the period 24 May to 17 June. The curves associa-
ted with the epidemics of Italy and Spain, where most of the lockdown
measures remain in effect, provide strong evidence for the capacity of
our models to make accurate predictions. The curves associated with
the epidemics of France and Germany provide strong evidence that the
effect of the elimination of the lockdown measures has only a slight
effect on the numbers of reported infected individuals as compared
with the numbers predicted under the lockdown conditions. Remark-
ably, the large bump on the actual data of France occurred on 29 May
(t= 84), which is indeed approximately two weeks after the easing of
the lockdown measures (that occurred on 11 May). Furthermore,
for the epidemic in Germany, the predicted curve began to deviate
from the curve of the actual data on 25 May (t = 80), i.e. approximately
two weeks after all state-wise curfews were eliminated.

A similar analysis presented in [43] shows that the number of
deaths caused by COVID-19 has not been affected by the easing of
the lockdown measures in the above countries. Taken together, these
results suggest that the virus responsible for the current pandemic, at least
in the above four countries, has muted to one which is both less contagious
and less virulent. An alternative explanation is that the older and the
vulnerable individuals continue to observe the lockdown measures.

For completeness, in figure 2 in the electronic supplementary
material, we present a comparison of the actual data with predictions
for the epidemics in USA and Sweden. These curves illustrate clearly
the failure of both the analytical formulae and of the deep learning
network to make accurate predictions.
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